
Multi-Objective Service Similarity Metrics
for more Effective Service Engineering Methods

Dionysis Athanasopoulos
Electronics, Information & Bioengineering Department

Politecnico di Milano, Italy
Email: dionysiscsuoi@gmail.com

Apostolos V. Zarras
Computer Science & Engineering Department

University of Ioannina, Greece
Email: zarras@cs.uoi.gr

Abstract—The usage of single-objective similarity functions in
engineering tasks of service-oriented software may reduce their
effectiveness, since a single similarity value can be misleading.
A single value cannot be clearly interpreted, since it hides the
values of its individual objectives. The state-of-the-art approaches,
which propose service similarity functions, rely on single-objective
functions exclusively. Going to a completely different direction,
we propose the usage of multi-objective functions for calculating
service similarity. We formally define such a function, and we
provide preliminary results, which show that the effectiveness
of a service-engineering task (esp., service organization) can be
improved by using multi-objective functions.

Keywords—Service-oriented engineering, service interface, ser-
vice similarity function, multi-objective function.

I. INTRODUCTION

Service-oriented software follows the Service-Oriented Ar-
chitecture (SOA) style, in which systems are designed as a
composition of existing and reusable software functionalities.
SOA style has been emerged as a promising solution to
the rapid and low-cost development of large enterprise-scale
software systems. The existing software functionalities used
by SOA software are developed in-house (single-organization
development), or by third parties (multi-organization devel-
opment). Third-party functionalities are exposed by their
providers (e.g., Amazon1) as services. Available services are
usually accessible through the Web infrastructure by using the
Web-service technology [1].

The functional characteristics of services are generally
specified in terms of multiple facets [2] (e.g., interface, se-
mantics). Among all different types of documents that specify
the functional characteristics of a service, the only document
that is always publicly available is the specification of its
programmable interface. Thus, since the provision of all these
documents is not the rule, we focus in this paper on the
specification of service interface. As typically assumed by
the state-of-the-art approaches (e.g., [3]), we also assume
that different parts of service interface specify the functional
characteristics of a service in terms of different facets. Details
about which parts of service interface are related to different
service description facets are given in Section III.

Motivation. A core part of the engineering of service-
oriented software is the discovery, organization, and the selec-
tion of candidate services that meet the functional requirements

1http://aws.amazon.com

of software. These services are used either for composing
and releasing the final version of software, or for substituting
currently used services in order to maintain it. The usage of
effective service similarity metrics plays crucial role in the
aforementioned tasks. To calculate the similarity of individual
service facets (e.g., interface vs. semantics), different metrics
(hereafter called objectives) are required, due to their different
nature. To calculate the overall service similarity with respect
to all objectives, the typical option in the literature is the usage
of aggregation functions [4], integrating multiple objectives in
only one.

However, the usage of a single-objective similarity function
may negatively affect the outcome of the aforementioned
tasks, by reducing their effectiveness, since a single service
similarity value can be misleading. Specifically, a single value
cannot be clearly interpreted, because it hides the values of its
individual objectives. For instance, a high single value may not
necessarily mean that both objectives have high values or equal
single values may hide very different objective values. While
the effectiveness reduction using single-objective functions has
been verified in some research fields (e.g., [5]), it has not been
investigated in the service engineering field.

Contribution. Going to a completely different direction
from the state-of-the-art, we argue that multi-objective service
similarity metrics are more effective than single-objective ones.
To support this argument we propose a metric that employs
multi-objective functions in the different parts of service in-
terface document, which specify the functional characteristics
of a service in terms of different facets. In this paper, we
consider two objectives, one for assessing semantic and
one for assessing syntactic (element/service) similarity2. In
service similarity, each objective aggregates the corresponding
objectives of the element similarity, guided by the element
structure. In this way, there is a clear interpretation of the
similarity results in each service facet. Also, the proposed
metric can be extended with new objectives, without affecting
the definitions of the remaining ones.

To demonstrate the benefits of measuring service similarity
based on multi-objective functions, we compare the results
produced by the service organization task that adopts a typical
hierarchical clustering method [6], in two cases: (i) using the
proposed multi-objective metric; (ii) using a hybrid single-
objective metric, which adopts a hard-wired aggregation func-
tion for calculating the element similarity. We also show that

2We denote by this font semantic and by this font syntactic information.



the values of the single-objective metric can be misleading,
compared to the values of the proposed multi-objective metric.
The overall results are promising, indicating that the current
research directions are somehow misguided.

Impact. Service-oriented software engineering tasks can
exploit such a metric via examining in which facets the
compared services are similar and aggregating in a proper
way the final results of the service similarity objectives. In
this way, the engineering tasks can integrate the results of the
distinct service similarity objectives within a composite metric,
while the state-of-the-art approaches aggregate the objectives
of element similarities into a hybrid one, as discussed in
Section II. In general, a composite multi-objective metric is
more flexible than a single-objective one, since the former
offers alternative orderings of (simultaneously or sequentially
calculated) objectives. In this way, the effectiveness of engi-
neering tasks, which depend on the proposed similarity metric,
is usually improved.

The rest of the paper is structured as follows: Section II
describes the related state-of-the-art approaches. Section III de-
fines the proposed multi-objective metric. Section IV evaluates
the effectiveness of the metric. Finally, Section V concludes
this work and discusses its future directions.

II. STATE-OF-THE-ART

Studying the state-of-the-art approaches, which propose
service similarity functions based on the service interface
exclusively, we interestingly observe that they all rely on
single-objective functions, as described below.

In detail, some of these approaches initially repre-
sent their input services as a set of elements, usually
connected in a hierarchical structure. In these represen-
tations, an element may be characterized by information,
which belong to different facets. For instance, the defini-
tion, element name= ’price’ type= ’float’, includes
the attribute name, which is mainly related to the service
semantics, while the attribute type is related to the service-
interface syntax. Based on these representations, the related
approaches define different objectives for the different parts of
an element. The element similarity is assessed by integrating
these objectives into a single hybrid one by typically using
hard-wired aggregation functions, such as the sum [7], [8] and
the weighted sum [3], [9], [10], [11], [12].

There are also approaches that exploit only one kind of the
information, included in the service interface document (e.g.,
only service semantics [13], [14], [15]).

Finally, in all these approaches, the most similar pairs of
elements are determined either by comparing them as two
flat sets of elements [7], [8], [3], [9], [10], [11], [13], or by
matching their structure (e.g., XML schema structure [14]).

III. MULTI-OBJECTIVE SERVICE SIMILARITY

The semantic objective of the proposed function is based
on the part of service interface, which implicitly defines service
semantics and is the name of elements. The remaining informa-
tion in the service-interface document concerns the signatures
of service interface and is considered syntactic information.
Alternative definitions of the semantic and the syntactic

information could be considered. Prior to defining the proposed
function, we firstly specify the model, with which we represent
a service interface.

This model does depend on the version of the language
in which a service interface is specified. In general, the
interface of a Web service is specified in the Web Services
Description/Definition Language (WSDL), which has been
released in two versions, in 1.1 3 and 2.0 4. Both versions
of WSDL are XML5-based languages.

A. Service Interface Representation

Independently of the specification language, a service
interface si can be represented by a tree model, in which
the root node is the interface, characterized by its name and
the set of its operations (Table I (Eq., 1)). An operation is
characterized by its name, its (possibly empty) input and output
messages (Table I (Eq., 2)). A message comprises its name and
the (possibly empty) set of its message types (Table I (Eq., 3)).
A message type is characterized by its name and its XML type
(Table I (Eq., 4)), which in turn consists of its name and the
set of its built-in XML data-types (Table I (Eq., 5)). Even if a
complex XML type is recursively defined by other XML types
forming a tree structure, we keep only the built-in data-types,
which are the leaves of this tree structure by assuming that they
include the substantial portion of semantic and syntactic
information. The internal nodes of this tree structure can
also contribute in the examined semantic and syntactic
information. However, we leave this issue as future work.

TABLE I. DEFINITION OF THE SERVICE INTERFACE REPRESENTATION.

si :=
(
name : String, ops : OPs

) ∣∣ OPs =
{
opi : OP

}
(1)

OP :=
(
name : String, in : MSG, out : MSG

)
(2)

MSG :=
(
name, mts : MTs

) ∣∣MTs =
{
mti : MT

}
(3)

MT :=
(
name, xt : XT

)
(4)

XT :=
(
name, bts : BTs

) ∣∣ BTs =
{
bti : anyType 6} (5)

B. Multi-Objective Service Similarity Function

The proposed function F (Table II (Eq., 1)) accepts as
input a pair of service interfaces and calculates the values
of its semantic and syntactic objectives. Both objectives
traverse in parallel the tree representations of the compared
service interfaces. The hierarchical traversal of all layers (in-
terface, operation, message, message type, and XML type) of
the service interface representation is common in both objec-
tives. The objectives differ in the considered part (semantic
vs. syntactic) of service interface representation.

Service interface similarity. In this layer, both objectives
calculate their values by firstly identifying the set COPs of

3http://www.w3c.org/TR/wsdl
4http://www.w3.org/TR/wsdl20/
5http://www.w3.org/TR/REC-xml
6http://www.w3.org/TR/xmlschema-2



TABLE II. DEFINITION OF MULTI-OBJECTIVE SERVICE SIMILARITY FUNCTION.

F
(
si1 : SI, si2 : SI

)
:=
[
Fsi

(
’sem’, si1, si2

)
, Fsi

(
’syn’, si1, si2

)]
(1)

Fsi

(
obj : OBJ, si1 : SI, si2 : SI

)
:=

Fn

(
obj, si1.name, si2.name

)
+ fOPs

(
obj, si1.ops, si2.ops

)
2

∣∣ OBJ := ’sem’ ∨ ’syn’ ∨ ′
single

′ (2)

fOPs

(
obj : OBJ, ops1 : OPs, ops2 : OPs

)
:=

|COPs|∑
k=1

Fop(obj, ops1.opi, ops2.opj)

|COPs|

∣∣∣ (opi, opj

)
∈ COPs ∧ i, j ∈

[
1, |COPs|

]
(3)

Fop

(
obj : OBJ, op1 : OP, op2 : OP

)
:=

Fn

(
obj, op1.name, op2.name

)
+

Fmsg

(
obj, op1.in, op2.in

)
+Fmsg(obj, op1.out, op2.out

)
2

2
(4)

Fmsg

(
obj : OBJ, msg1 : MSG, msg2 : MSG

)
:=

Fn

(
obj, msg1.name, msg2.name

)
+ fMTs(obj, msg1.mts, msg2.mts)

2
(5)

fMTs

(
obj : OBJ, mts1 : MTs, mts2 : MTs

)
:=

|CMTs|∑
k=1

Fmt(obj, mts1.mti, mts2.mtj)

|CMTs|

∣∣∣ (mti, mtj
)
∈ CMTs ∧ i, j ∈

[
1, |CMTs|

]
(6)

Fmt

(
obj : OBJ, mt1 : MT, mt2 : MT

)
:=

Fn

(
obj, mt1.name, mt2.name

)
+ Fxt(mt1.xt, mt2.xt)

2
(7)

Fxt

(
obj : OBJ, xt1 : XT, xt2 : XT

)
:=

Fn

(
obj, xt1.name, xt2.name

)
+ fBTs(obj, xt1.bts, xt2.bts)

2
(8)

fBTs

(
obj : OBJ, bts1 : BTs, bts2 : BTs

)
:=

|CBTs|∑
k=1

Fbt(obj, bts1.bti, bts2.btj)

|CBTs|

∣∣∣ (bti, btj
)
∈ CBTs ∧ i, j ∈

[
1, |CBTs|

]
(9)

Fbt

(
obj : OBJ, bt1 : anyType, bt2 : anyType

)
:=

{
0, if obj = ’sem’

Fbt

(
bt1, bt2

)
, otherwise

(10)

Fn

(
obj : OBJ, name1 : String, name1 : String

)
:=


0, if obj = ’syn’

Lin
(
name1, name2

)
, if name1, name2 ∈ WordNet

Levenshtein
(
name1, name2

)
, if name1, name2 /∈ WordNet

0, otherwise
, otherwise

(11)

their most similar pairs of service operations. These pairs are
found by solving the assignment problem of the maximum
weighted matching in a bipartite graph [16]. The nodes of the
graph correspond to service operations and the edges to similar
operations. Following, both objectives calculate the average
similarity of the set of the most similar operations, fOPs

(Table II (Eq., 3)). The overall (semantic or syntactic)
service similarity, Fsi (Table II (Eq., 2)7), equals to the average
of the similarity of their names (taken into account only in
the semantic objective) and the (semantic or syntactic)
similarity of their operations. The way, in which the proposed
function calculates the similarity of names, is explained in the
following.

Service operation similarity. To calculate the similarity
between two operations, Fop (Table II (Eq., 4)), both objectives
calculate the average of the similarity of the operation names
and of the average similarity of their input and output mes-
sages.

Operation message similarity. The similarity between two
messages, Fmsg (Table II (Eq., 5)), equals to the average of the
similarity of their names and of the similarity of their message
types. To calculate the latter similarity, both objectives firstly
identify the set CMTs of the most similar pairs of message

7The equation is parameterized with regard to the used objective.

types, by solving again the assignment problem. Following,
the similarity of the set of the message types, fMTs (Table II
(Eq., 6)), equals to the average similarity of the previously
identified most similar message types.

Message type similarity. The similarity between two
message types, Fmt (Table II (Eq., 7)), equals to the average
of the similarity of the message-type names and the similarity
of the XML types of the message types.

XML type similarity. The similarity between two XML
types, Fxt (Table II (Eq., 8)), equals to the average of the
similarity of their names and the similarity of their built-in
data-types. To calculate the latter similarity, both objectives
firstly identify the set CBTs of the most similar pairs of built-
in data-types, by solving once more the assignment problem.
Following, the similarity of the set of the built-in data-types,
fBTs (Table II (Eq., 9)), equals to their average similarity.

Built-in data-type similarity. Concerning the syntactic
similarity between two built-in data-types, Fbt (Table II
(Eq., 10)), it is usually calculated in the literature based on
a statically defined similarity table. In this paper, we adopt
the table detailed in [9], where the built-in data-types are
organized into five groups: the Integer, Real, String, Date,
and Boolean groups (e.g., the Integer group consists of
the integer, byte, short, and long data-types). Data-types



of the same group are characterized by the highest possible
similarity degree (equal to one). Data types of different groups
are not always considered completely dissimilar, but their
similarity degree equals to the complement of the information
loss that occurs if a casting from the one data-type to the other
can be applied. Underline that we do not provide in Table II a
specific formula for the metric Fbt, because the value of this
metric is directly given in the aforementioned similarity table.

Regarding the semantic similarity between two built-in
data-types, it apparently equals to zero.

Name similarity. Concerning the similarity between
two names, it is usually calculated in the literature either by
comparing the names as a sequence of string characters or
by comparing their meaning. In the former way, a variety
of string similarity metrics [17], [18] have been used in the
literature. In the latter way, the relatedness of the concepts
of an ontology, to which the names belong, is calculated. An
ontology can be domain-specific, i.e., includes concepts related
to an application domain, or general-purpose, i.e., includes
all the concepts of a human language. A metric that uses
domain-specific ontologies tends to give more effective results,
as commented in [9], though, they are not usually available.

Inspired by [19], we propose the metric Fn (Table II
(Eq., 11)), which firstly calculates the similarity of two names
by comparing their meaning through using the general-purpose
ontologies of WordNet [20]. Among the six available similarity
metrics [21], which exploit WordNet, the proposed metric is
based on Lin’s metric because it is one of the most efficient
and effective ones. If only one of the names is contained in on-
tologies, then the proposed metric considers them completely
dissimilar. If both names are not contained in ontologies, then
the proposed metric compares them as a sequence of string
characters and calculates their similarity using Levenshtein’s
metric [22]. Among all the string-based metrics, the proposed
metric uses Levenshtein’s metric since it gives the best results
in XML schemas, as evaluated in [23].

IV. EMERGING RESULTS

Our evaluation includes two parts. Firstly, we demonstrate
that single-objective functions can be misleading when mea-
suring service similarity. Secondly, we show how the use of
multi-objective functions can improve the effectiveness of a
service clustering method that enables the service organization.
Prior to discussing the results of our evaluation, we present the
experiment setup.

Experiment setup. We compare our multi-objective sim-
ilarity metric against a single-objective one. The latter metric
follows the same hierarchical way of calculating similarity with
our multi-objective metric. The main difference between the
two metrics is that in the single-objective metric the similarity
of built-in data-types equals to the average of their semantic
and syntactic similarities. The used single-objective func-
tion is also defined in Table II (Eq., 2-11).

For the comparison of the two metrics, we use the ser-
vices, StockQuotePrice (si1), StockQuoteRoundedPrice
(si2), Date (si3), and Calculator (si4), whose WSDL
documents are available at this location8. The first (resp.,

8http://www.cs.uoi.gr/˜dathanas/allServices.zip

second) service returns the (resp., rounded) price of an input
product, the third service gives the date of an input product
order, and the fourth service calculates the square root of a
given integer number. We use these services, since they cover
different cases of service similarities.

Single-objective values are misleading. To realize the
first part of our evaluation, we calculated the values of the
single- and the multi-objective functions for the pairs (si1,
si2), (si1, si3), and (si1, si4). Ideally, the services of (si1,
si2) have high similarities in both objectives. The services of
(si1, si3) have high semantic and low syntactic similarity.
Finally, the services of (si1, si4) have low semantic and
high syntactic similarity. Based on the results, presented
in Table III, the multi-objective function correctly reflects
the ideal service similarity in both facets. On the contrary,
the single-objective values is misleading in (si1, si3) and
(si1, si4), since it hides the zero and the very high values,
respectively, of the syntactic objective.

TABLE III. SIMILARITY VALUES OF THE USED WEB SERVICES.

Service pair Single-objective Multi-objective
F = [ ’sem’, ’syn’ ]

(si1, si2) 0.89 [0.90, 0.99]
(si1, si3) 0.76 [0.76, 0.00]
(si1, si4) 0.29 [0.28, 0.99]

Note that in these results the value of the used single-
objective function is very close to that of the semantic objec-
tive, since the amount of the semantic information, used by
the proposed metric, is higher than that of the syntactic in-
formation. However, this fact does not subvert our observation
that the values of the single-objective may be misleading. Even
if the portions of semantic and syntactic information are
equal, similar single-objective values would probably conceal
very different values in the individual objectives.

Effectiveness improvement in service organization. We
indicatively use a service-engineering method that depends
on a service similarity function. In particular, we focus
on a method that organizes similar services into groups.
To this end, we apply the typical hierarchical bottom-up
clustering method [6] to form groups of semantically
and syntactically similar services. We executed this
method by giving as input to it the previous service in-
terfaces, si1-si4, along with one more, called Clock (si5),
which returns the current time. We use it since it is
highly syntactically and semantically similar with si3.

The used clustering method initially considers that all ser-
vice interfaces form singleton clusters and following, repeat-
edly merges cluster pairs until no more clusters can be formed
(zero similarity), or only one cluster remains. The output of the
method is a hierarchy of clusters. Usually, useful clusters are
determined at the lowest levels of this hierarchy. We executed
the clustering method twice, one time for the single-objective
and one for the multi-objective function. In the case of the
multi-objective function, the method merges clusters whose
similarity is greater than other clusters in both objectives. The
results are presented in the dendrograms of Figure 1, which
depict the clusters produced at each clustering iteration. Note
that the ideal clusters are the following: (si1, si2), which



corresponds to the most similar service interfaces in both
objectives, and (si3, si5), which corresponds to the second
most similar pair of service interfaces in both objectives.

Fig. 1. The results of the clustering method for each similarity function.

Based on the dendrograms, we observe that using the multi-
objective function is more effective than using the single-
objective function. In the case of the multi-objective function,
the method correctly merges, si1 and si2, in its first step. In its
second step, the method correctly merges, si3 and si5. In the
case of the single-objective function, the method forms in its
first step the same cluster with that in the case of the multi-
objective function. However, in its second step, the method
wrongly merges the previous cluster with si3. This faulty step
is because the single-objective function hides the high value
of the syntactic objective for (si3, si5) and the low of the
same objective in (si1, si3) and (si2, si3).

V. CONCLUSIONS AND FUTURE WORK

To sum up, we argued that single-objective service simi-
larity metrics can be misleading and compromise the effec-
tiveness of related service-engineering methods. To support
our argument, we proposed a multi-objective metric and we
evaluated it against a single-objective one. Our preliminary
results showed that the effectiveness of service-engineering
methods can be improved by using multi-objective metrics,
indicating that the proposed research direction is promising.
However, there is room for further research to this direction.

Possible future work includes more sophisticated multi-
objective metrics, which consider the structure of the in-
put/output XML types. Additional objectives, which measure
similarity in terms of other service facets (e.g., business
protocols, quality of service) can be examined. Finally, from a
broader perspective, the adoption of multi-objective metrics in
various phases of the service-engineering life-cycle is the ulti-
mate challenge, which involves modeling the issues involved
as multi-objective optimization problems.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[2] J. Walkerdine, J. Hutchinson, P. Sawyer, G. Dobson, and V. Onditi, “A
faceted approach to service specification,” in International Conference
on Internet and Web Applications and Services, 2007.

[3] G. Spanoudakis and A. Zisman, “Discovering services during service-
based system design using uml,” IEEE Transactions on Software
Engineering, vol. 36, no. 3, pp. 371–389, 2010.

[4] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions: A
Guide for Practitioners, ser. Studies in Fuzziness and Soft Computing.
Springer, 2007, vol. 221.

[5] K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 264–282, 2011.

[6] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 759–780, 2007.

[7] Y. Wang and E. Stroulia, “Flexible interface matching for web-service
discovery,” in International Conference on Web Information Systems
Engineering, 2003, pp. 147–156.

[8] J. Wu and Z. Wu, “Similarity-based web service matchmaking,” in IEEE
International Conference on Services Computing, 2005, pp. 287–294.

[9] P. Plebani and B. Pernici, “Urbe: Web service retrieval based on
similarity evaluation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 11, pp. 1629–1642, 2009.

[10] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering WSDL documents
to bootstrap the discovery of web services,” in IEEE International
Conference on Web Services, Miami, Florida, USA, 2010, pp. 147–154.

[11] D. Athanasopoulos, A. Zarras, P. Vassiliadis, and V. Issarny, “Mining
service abstractions,” in International Conference on Software Engi-
neering, 2011, pp. 944–947.

[12] Z. Cong and A. F. Gil, “Efficient web service discovery using hierarchi-
cal clustering,” in Agreement Technologies - International Conference,
Beijing, China, 2013, pp. 63–74.

[13] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu, “Measuring similarity of web
services based on wsdl,” in International Conference on Web Services,
2010, pp. 155–162.

[14] Y. Hao, Y. Zhang, and J. Cao, “Wsxplorer: Searching for desired
web services,” in International Conference on Advanced Information
Systems Engineering, 2007, pp. 173–187.

[15] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity
search for web services,” in International Conference on Very Large
Data Bases, 2004.

[16] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
USA: Society for Industrial and Applied Mathematics, 2009.

[17] S. V. Rice, H. Bunke, and T. A. Nartker, “Classes of cost functions for
string edit distance,” Algorithmica, vol. 18, no. 2, pp. 271–280, 1997.

[18] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[19] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-match: an algorithm
and an implementation of semantic matching,” in European Semantic
Web Symposium, 2004, pp. 61–75.

[20] G. A. Miller, “Wordnet: a lexical database for english,” ACM Commu-
nications, vol. 38, no. 11, pp. 39–41, 1995.

[21] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet: : Similarity
- measuring the relatedness of concepts,” in National Conference on
Innovative Applications of Artificial Intelligence, 2004, pp. 1024–1025.

[22] V. Levenshtein, “Binary Codes Capable of Correcting Spurious Inser-
tions and Deletions of ones,” Problems of Information Transmission,
vol. 1, pp. 8–17, 1965.

[23] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg, “A comparison
of string distance metrics for name-matching tasks,” in International
Workshop on Information Integration on the Web, 2003, pp. 73–78.


