Towards Systematic Synthesis of Reflective
Middleware

Petr Tuma, Valerie Issarny, Apostolos Zarras

INRIA/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{tuma, issarny, zarras}@irisa.fr
http://www.irisa.fr/solidor/work/aster.html

Abstract. In this paper, we present a method for systematic synthesis
of middleware based on the meta-level requirements of the application
that stands on top of it. Particular attention is paid to the ability to
accommodate evolving requirements of a running application.

1 Introduction

Following the definition of programming languages supporting reflection [3], we
say that a middleware supports reflection if the application that lies on top of
it is provided with means for reasoning about the middleware properties and
for customizing the properties as necessary. Many middleware infrastructures,
such as FLEXINET and reflective ORBs, expose functionality in a way that can
be used to customize the properties. This process is called reification [2] of the
middleware functionality. Reification alone, however, does not equal reflection.
What is missing are the means for reasoning about the properties of the middle-
ware. The reasoning itself is left to the application designer, who is free to make
unconstrained changes to the reified functionality and has to deduce the impact
of the changes on the middleware properties himself. We remedy this drawback
by designing a method for the systematic synthesis of middleware based on the
application requirements, detailed in [4] and outlined in Section 2. Here, we con-
centrate more on how to use the systematic synthesis to accommodate changes
in the requirements of a running application, as detailed in Section 3.

2 Systematic Middleware Synthesis

The systematic synthesis of middleware uses an architectural description of the
application consisting of two views. The structural view describes interconnection
of the individual components of the application; the property view describes
meta-level properties of the middleware that implements the interconnections.
The meta-level properties are described formally using temporal logic, a theorem
prover is used to check the relationship between properties.

The available middleware services are stored in a middleware repository to-
gether with descriptions of the properties they provide. Based on the specifica-
tion of requirements on the middleware properties, the appropriate middleware

P. Cointe (Ed.): Reflection’99, LNCS 1616, pp. 144-146, 1999
© Springer-Verlag Berlin Heidelberg 1999



Towards Systematic Synthesis of Reflective Middleware 145

services are retrieved from the repository, assembled into a middleware and in-
corporated into the application [4].

3 Dynamic Reflection

Here, we extend the systematic synthesis of middleware with the ability to build
middleware that can be dynamically exchanged so as to reflect changes in the
requirements of a running application. The problem of exchanging the middle-
ware is twofold. Immediately visible are the technical issues related to dynamic
loading and unloading of the middleware code, where many solutions have been
proposed. Less visible is the issue of what impact the dynamic change of the
middleware code has on the properties provided by the middleware.

At the time a new middleware M’ is to replace the old middleware M, there
might be requests issued through M for which the application requirements are
not satisfied yet. Examples of these requests include an unfinished remote pro-
cedure call when reliable delivery is required, or an open distributed transaction
when some of the AcCID transaction properties are required. The new middle-
ware M’ must guarantee that the requirements R(req) valid at the time these
pending requests were issued will be satisfied. During system execution, the in-
formation necessary to complete pending requests is a part of the middleware
state. The new middleware should start from an initial state that contains this
information and should be able to satisfy requirements related to the pending
requests. Given a specific mapping Map(c) between the states of the old and
the new middleware, we define a safe state o, in which it is possible to perform
the exchange while satisfying the requirements:

SafeState(on, M, M', Map) =
[on] AVreq | Pendingy (req) : [Map(on)] = R(req)

A safe state is defined in relation to the ability to map the state from the
old to the new middleware. When no state mapping is available, we refine the
SafeState predicate into a stronger criterion, IdleState, defined only with re-
spect to the old middleware properties. In an idle state [1], no requests are
pending and hence no state needs to be mapped:

IdleState(on, M) = [om] A (Vreq : =Pendingar (req))

Based on a straightforward utilization of the safe state definition, the gen-
eral strategy of the exchange is to reach the safe state of the middleware, block
incoming requests to remain in the safe state during update, exchange the mid-
dleware implementation, and unblock incoming requests. To detect whether the
middleware reached a safe state, an idle state detection code is incorporated
into it at the time it is being synthesized. The definition of the idle state makes
this code independent of the middleware implementation; it is retrieved from
the repository based on the middleware properties only. During exchange, this
code is used to determine when it is safe to perform it; alternatively, a safe state
detection code specific to the particular update can be installed.



146 P. Tuma, V. Issarny, and A. Zarras

It is generally not guaranteed that the middleware will reach a safe state
within finite time during normal execution. We therefore selectively block re-
quests from the application, so as to prevent activities that do not participate
in driving the middleware into a safe state from issuing requests that would
keep the middleware away from the safe state. It can be shown that the decision
whether to block a request depends only on the safe state used during the up-
date. This decision is therefore taken by the safe state detectors associated with
the update.

For the purpose of the exchange, the middleware is separated into a static and
a dynamic part. The static part of the middleware contains the proxy through
which the application accesses the middleware, and the code for blocking re-
quests. The dynamic part contains the safe state detection code and the middle-
ware itself, both retrieved from the repository based on the required properties.
The exchange is directed by a coordinator component, responsible for exchange
within the scope of the changed property. When requested to perform an ex-
change and given the new code of the dynamic middleware parts, the coordinator
instructs the static middleware parts to block the requests as described above.
After a safe state is reached, the coordinator directs the middleware to unload
the existing dynamic parts and install the new code.

4 Conclusion

The approach presented in this paper tackles the problem of changing middle-
ware properties in a running application. Its advantage is in synthesizing the
middleware systematically based on the required properties, as opposed to only
exposing the functionality through reification. The basic concepts of the ap-
proach were prototyped using several CORBA platforms and the STeP theorem
prover. The current work focuses on improvements related to granularity and
timing of the middleware exchange, and on using the approach to synthesize
adaptive middleware.

Acknowledgement: this work has been partially supported the C3DS LTR Esprit
project.

References

1. J. Kramer and J. Magee. The Evolving Philosophers Problem. IEEE Transactions
on Software Engineering, 15(1):1293-1306, November 1990.

2. J. Malenfant, M. Jacques, and F.N. Demers. A Tutorial on Behavioral Reflection
and its Implementation. In Proceedings of REFLECTION ’96. ECOOP, 1996.

3. B. C. Smith. Procedural Reflection in Programming Languages. PhD thesis, MIT,
1982. Available as MIT Techical Report 272.

4. A. Zarras and V. Issarny. A Framework for Systematic Synthesis of Transactional
Middleware. In Proceedings of MIDDLEWARE 98, pages 257-272. IFIP, Sept
1998.



	1 Introduction
	2 Systematic Middleware Synthesis
	3 Dynamic Reflection
	4 Conclusion
	References

