
Two patterns, a study and a message for the validation of our
patterns

Apostolos V. Zarras

Department of Computer Science and Engineering, University of Ioannina

Greece

zarras@cs.uoi.gr

ABSTRACT

Each time we write a pattern we have to make sure that the pattern

can be used by others and show how this can be done in practice.

Moreover, we have to make sure that what we describe is really

a pattern that concerns others and not just a one-shot solution to

a problem that concerns only us. This paper revisits the issue of

pattern validation. In this context, the paper reports in the form

of patterns two well-established techniques that allow pattern au-

thors to show the applicability and the generality of their patterns.

Following, the paper investigates the extent to which authors apply

these techniques in practice, in a study of 109 EuroPLoP papers,

published from 2019 until 2021. The results of the study indicate

that the pattern authors show the applicability and the generality

of their patterns quite often, but not always. Therefore, the overall

validation process can be further improved.

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement.

KEYWORDS

Patterns, Validation, Known Uses

ACM Reference Format:

Apostolos V. Zarras. 2023. Two patterns, a study and a message for the

validation of our patterns. In 28th European Conference on Pattern Languages
of Programs (EuroPLoP 2023), July 05–09, 2023, Irsee, Germany. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3628034.3628047

1 INTRODUCTION

The following excerpt is a shepherd’s comment to his sheep during

the shepherding phase of a past EuroPLoP conference

"... But what comes to known uses, I want to be sure
that the pattern is grounded to practice and comes from
the experience of many. Pattern is a pattern because it
has been observed three times independently in separate
occurrences. If you see a solution, it is just noise. If you
see the same solution twice in different products by
different vendors, it might be a pattern, but it might
also be coincidence. If you see the same solution thrice, it

This work is licensed under a Creative Commons Attribution International

4.0 License.

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0040-8/23/07.

https://doi.org/10.1145/3628034.3628047

is a pattern. I still feel, that the known uses section really
describes only one instance of the solution. So, I would
very much like to see added other occurrences where
the three-step refactoring detector has been observed.
Patterns are not novel, they are not invented, they are
discovered..."

The shepherd’s comment is pretty much inline with the defini-

tion of what is a pattern, given by Christopher Alexander and his

colleagues, in their seminal book, back in 1977 [4].

"A pattern is a careful description of a perennial solu-
tion to a recurring problem within a building context,
describing one of the configurations that brings life to
a building. Each pattern describes a problem that oc-
curs over and over again in our environment, and then
describes the core solution to that problem, in such a
way that you can use the solution a million times over,
without ever doing it the same way twice."

The message conveyed by the previous quotes is that a valid
pattern description should illustrate the applicability and the gen-
erality of the pattern. Typically, we show these two key properties

via examples and known uses of the pattern. Specifically, to show

the applicability of the pattern we provide a detailed example that

illustrates the solution of the pattern in a specific instance of the

problem. On the other hand, to show the generality of the pattern

we discuss known uses of the pattern in several different real-world

instances of the problem.

In the literature, there are several popular pattern writing forms

[11–13]. In some forms, examples and known uses are considered

as mandatory elements of the pattern description, while in others

this is not the case. For instance, in the Alexandrian form [4] a

pattern description includes an archetypal example of the pattern,

while the problem statement provides empirical background and

evidence of the pattern validity. In the GoF form, a pattern descrip-

tion comprises a motivating example, sample code that shows how

to use the pattern in the motivating example and a discussion of

known uses. The POSA form [6] includes a motivating example,

the example resolved based on the pattern solution and known

uses. The Portland form [8] is more brief, comprising the problem

statement and a few paragraphs that discuss the solution; exam-

ples and known uses are not mandatory in this form. The PEAA

form [11] is also brief, it includes examples that show the use of

the pattern in practice, but the examples are not necessarily from

real-world situations. The Coplien form [7] focuses mainly on the

context, the problem, the forces, the solution, and the resulting

context. Similarly, the Fearless Change pattern form starts with an

opening story and a summary, followed by the problem, the forces,

the solution, and the resulting context [20].

https://doi.org/10.1145/3628034.3628047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3628034.3628047

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany A. V. Zarras

Regarding pattern writing guidelines, the situation is similar.

Meszaros and Doble [23] provide a very interesting pattern lan-

guage for patterns writing. According to this language, the manda-

tory parts of a pattern description are the name, the context, the

problem, the forces, the solution, and the consequences. Examples

and code samples are among the optional elements that can be used

when necessary. Harrison’s guidelines [14] focus mainly on how

to write the problem, the solution, and the forces of the pattern. He

also points out the importance of specifying the target audience.

At the end of their paper, Harrison focuses on further details that

could be useful for the readers, along with the description of the

pattern. As part of this discussion he refers to code samples and

examples. Wellhausen and Fiesser [27] focus mainly on the context

of a particular pattern, the problem that is solved, the solution, and

the consequences.

This paper attempts to givemore emphasis on the issue of pattern

validation. To this end, the paper provides two patterns: Illustrate

Applicability and Show Generality. The purpose of the patterns

is to pinpoint the need, the mechanics, and the benefits of pattern

validation, via examples and known uses. Moreover, the paper

investigates the extent to which pattern authors actually use these
techniques, in a study of 108 papers, published in previous EuroPLoP
conferences.

The rest of the paper is structured as follows. Sections 2 and

3 introduce Illustrate Applicability and Show Generality.

Section 4 discusses the setup and the results of the study. Section 5

concludes the paper with a more general discussion concerning

the validation of our patterns and related issues that we should

consider to achieve this.

2 ILLUSTRATE APPLICABILITY

Context

You are writing a pattern that gives a solution to a problem in a

context. You have already described the context, the problem, the

forces, the solution, and the consequences. Your pattern describes

the core of the solution to the problem in hand at a certain level

of abstraction so that the solution can be applied several times to

solve different instances of the problem.

Problem

Being described abstractly can make the pattern hard for some

people. So, you want to make sure that you described the pattern

in a way that allows the readers to actually apply it in practice and

show how this can be done in more detail.

Forces

Using a pattern can be difficult when the description of the pattern

suffers from certain weaknesses like a very broad context, a vague

problem statement and forces, a very abstract solution, a solution

that does not match the problem, and so on.

Even if the pattern description is adequate, it is given at a certain

level of abstraction. Mapping the abstract concepts (classes, inter-

faces, roles, etc.) of the pattern to the respective concrete concepts

of a particular problem instance may not be easy for all people who

intend to use it.

A very detailed pattern description may restrict the applicability

of the pattern to very specific cases.

Solution

Illustrate the use of the pattern in a detailed example. Start with

the description of a particular situation in which the pattern can

be applied, i.e., an instance of the context. Describe the problem

instance in the given situation. Then, describe the solution to this

problem instance. If there are different variants of the solution it

would be good to discuss them in the context of the given exam-

ple. Illustrate all the different concepts, parts, elements, roles, etc.

involved in the pattern. To make the example more clear you can

provide a mapping between the abstract concepts of the pattern

and the concrete concepts of the specific example.

Consequences

Giving a detailed example that demonstrates the use of the pattern

is a sanity check that shows to you and the readers that the pattern

can be actually applied in practice. Giving a good example that

reflects the context, the problem and the solution of the pattern can

help you to improve the description of the pattern itself. It allows

you to give concrete details about the solution separately, without

restricting the solution.

The example helps the reader to understand the intent of the

pattern, witness a particular situation in which the pattern can

be applied and see how to map general pattern-specific concepts,

parts, elements, roles to respective situation-specific concepts, parts,

elements, roles. etc.

The example can make the description of the pattern longer,

more complicated and tiring for the readers.

Finding a good example that reflects the context, the problem and

the solution of the pattern may not be easy. A superficial example

will be just noise.

A good example that demonstrates a solution to a problem in

a context does not establish the generality of the pattern, i.e., the

recurrence of the pattern in several real-world situations.

Example

Facade is a well-known GoF pattern [13]. The intent of the pattern

is to make the use of a subsystem easier via a higher-level interface.

To show the applicability of the pattern the authors employ the

example of a compiler subsystem that includes various classes. To

make the use of these classes easy the compiler subsystem also

includes a Compiler class that serves as a facade. The provided

example includes an overall design that shows the relations be-

tween the involved classes, along with code samples that illustrate

implementations of the classes (Figure 1).

Known Uses

All of the patterns in the seminal book of Gamma et al. [13] include

examples and code samples that illustrate the usage of the patterns

in respective problem instances. The use of detailed examples and

code samples for the illustration of patterns is further employed in

several other well-formed pattern catalogs like the Fluent C catalog

of C programming patterns [25], the xUnit automated testing pat-

terns catalog [21], the Enterprise Application Architecture (EAA)

Two patterns, a study and a message for the validation of our patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Figure 1: Excerpt from the compiler example that illustrates

the applicability of the GoF Facade pattern [13].

patterns catalog [11], the object-oriented re-engineering patterns

catalog [9], the distributed control systems pattern language [10]

and so on.

Related Patterns

Validate Applicability can be seen as a refinement of the Run-

ning Example pattern discussed by Meszaros and Doble [22]. In

particular, Validate Applicability provides a more detailed dis-

cussion of the problem, the forces, and the solution.

3 SHOW GENERALITY

Context

You are writing a pattern that gives a solution to a problem in a

context. You have already described the context, the problem, the

forces, the solution, and the consequences. To make the pattern

easier to understand you also added a detailed example that explains

how to use the pattern in a particular situation.

Problem

Still, what you described as a pattern may concern only you and no

one else. Others will not use your pattern unless they are convinced

that the pattern provides a solution to a recurrent problem that

concerns them.

Forces

There can be several reasons for which a solution to a problem in a

context may not be a pattern. The context of the problem may be

too narrow. The problem may not be important for others than the

author of the pattern. The problem may not be recurrent or it may

be very rare. The solution to the problem may be fixed, regardless

of the circumstances. Even if what you have is really a pattern,

the general intent and the consequences of the pattern may not be

entirely clear for the readers.

Solution

In the pattern description, provide convincing evidence that shows

the generality and the usefulness of the pattern. Such evidence

comes right out from the pattern creation process that you em-

ployed.

Often, patterns are observed in different real-world situations

(a.k.a., known uses). The usual practice is to report at least three

known uses (Rule of Three). If you observed your pattern in real-

world situations, provide details about the particular context, the

problem instance and the solution instance that resolved the prob-

lem. You should further discuss the practical consequences in this

particular situation.

Evidence about the generality and the usefulness of the pattern

can be derived from other sources too, like workshops, focus groups,

interviews with experts, surveys, case studies, controlled experi-

ments and other pattern mining and scientific research methods

[18, 19, 26]. If you employed such a method for creating your pat-

tern, provide details about the overall process that you followed

(meetings, workshops, interviews, participants, etc.) and report the

results that you obtained.

You can provide evidence that shows the generality and the

usefulness of the pattern in dedicated pattern form sections (e.g.

known uses). However, if the pattern form that you use does not

have such sections you can provide the evidence wherever else it

seems appropriate in the pattern description.

Consequences

Providing evidence that shows the generality and the usefulness of

the pattern gives confidence to you and the readers that what you

have is really a pattern and not a one-shot solution to a problem.

Providing evidence that shows the generality and the recurrence

of the pattern further allows the reader to understand the general

intent of the pattern, witness different situations in which it can be

applied, see similarities and differences between problem instances

and respective solutions.

Discussing in detail known uses, expert opinions, personal expe-

riences, case studies, empirical results, etc. can make the description

of the pattern longer, more complicated and tiring for the readers.

In some cases, it may be difficult to provide evidence that shows

the pattern generality for confidentiality reasons. Moreover, there

may be only anecdotal evidence that shows the pattern generality.

Examples

Showing generality with known uses. To show the generality of the

Facade pattern the GoF refer to three real world cases. Firstly, they

refer to the Objectworks Smalltalk compiler system as the main

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany A. V. Zarras

inspiration of the pattern. Secondly, they discuss the involvement

of the pattern in the ET++ application framework. Finally, they

refer to the facades used in the Choices operating system. In the

excerpt that is provided below, we can see that the authors do not

simply refer to the specific cases. On the contrary, they discuss in

detail the usage of the pattern in these contexts.

"... The compiler example in the Sample Code section
was inspired by the ObjectWorks Smalltalk compiler
system [Par90]. In the ET++ application framework
[WGM88], an application can have built-in browsing
tools for inspecting its objects at run-time. These brows-
ing tools are implemented in a separate subsystem that
includes a Facade class called "ProgrammingEnviron-
ment." This facade defines operations such as InspectO-
bject and InspectClass for accessing the browsers
....... The Choices operating system [CIRM93] uses fa-
cades to compose many frameworks into one. The key
abstractions in Choices are processes, storage, and ad-
dress spaces. For each of these abstractions there is a
corresponding subsystem"

Showing generality via Iba’s method. Iba’s method is a well estab-

lished pattern mining method [18], that involves collecting feed-

back and experiences from individuals about a particular problem,

analyzing and clustering the collected data to discover common

pattern seeds and finally specify the resulted patterns. An exam-

ple of applying Iba’s method concerns for the creation of patterns

for improving foreign language skills when studying abroad can

be found in [16]. In this effort, the authors conducted interviews

to acquire practical experiences from four individuals who have

studied abroad regarding important things for improving foreign

language skills.

Showing generality with scientific research methods. The creation
and validation of patterns via scientific research methods has been

discussed in detail by Riehle et al. [26]. The idea is to assume pat-

terns as theories that are created and validated with well established

research methods like qualitative surveys, grounded theory, case

studies, controlled experiments, etc. An specific example discussed

in [26] concerns the use of multiple case studies to derive patterns

for the design, implementation and management of user experience

design in the context of product lines.

Known Uses

Showing generality with known uses. The discussion of known uses

is an essential part of the description of the GoF patterns [13]. In

particular, for each pattern the authors report at least two real

world cases in which the pattern has been observed. In the Fluent

C patterns catalog [25], each pattern is supported by at least three

known uses. The authors of the distributed control systems pat-

tern language [10] also provide at least three known uses for each

pattern. In the object-oriented re-engineering patterns catalog [9]

the authors refer to known uses, but this is not done for all of the

patterns.

Showing generality via Iba’s method. Iba and Iba [16, 17] employed

Iba’s method to mine patterns for improving foreign language skills

when studying abroad. Yamakage et al. used Iba’s method to create

Table 1: EuroPLoP papers 2019-2021.

patterns for creative living [28], and patterns for online education

[28].

Showing generality with scientific research methods. Rubem Barbosa-

Hughes [5] introduced a pattern approach for the identification of

opportunities for personalisation and automation of user interac-

tions for the IoT. The author validated the generality of the proposed

approach in an empirical study that involved 23 participants. Mor et

al [24], reported assessment patterns for online professional devel-

opment. They created and evaluated the generality of the patterns

using mixed qualitative research methods like reviews, surveys

and interviews. Harutyunyan and Riechle [15] introduced patterns

for component approval in FLOSS governance. To this end, the

authors employed a qualitative survey research method, involving

interviews with industry experts.

4 SOME FACTS AND FIGURES

The goal of this study is to evaluate the extent to which pattern

authors show the applicability and the generality of their patterns.

To this end we manually inspected a corpus of papers that have

been published in previous EuroPLoP conferences. Specifically, the

corpus of the examined papers consists of 39 papers published in

2019 [1], 35 papers published in 2020 [2] and 35 papers published in

2021 [3] (Table 1). 18 of these papers have been excluded from the

study because they do not report patterns. Instead, the excluded

papers discuss issues that concern the specification of patterns, or

the usage of patterns in specific contexts. Overall, we looked in these

papers for examples that illustrate the use of the patters. Moreover,

we looked in the papers for evidence that show the generality

and the usefulness of the patterns. We searched for examples and

generality evidence independently from the pattern forms that have

been used by the authors to specify the patterns, i.e., we did not

focus on specific pattern form sections.

Table 2, summarizes the results of the study. Specifically, the

table gives the frequency of papers that show both the applicability

and the generality of the patterns, the frequency of papers that

illustrate at least the applicability of the patterns, the frequency

of papers that show at least the generality of the patterns, and the

frequency of papers that do not consider any of these properties.

The results of the study reveal the following key observations:

• Usually, about half of the papers include illustrating exam-

ples. In the overall corpus, the frequency of papers that vali-

date at least the applicability of the patterns ismedium. Over

the years the frequency is quite stable ranging from 50.00%

to 56.38%

• The frequency papers that show the generality of the patterns
is medium-high. In particular, the frequency of the papers

in the whole corpus is 79.12%. 2020 is a notable year with

Two patterns, a study and a message for the validation of our patterns EuroPLoP 2023, July 05–09, 2023, Irsee, Germany

Table 2: Frequencies of papers that show (a) applicability and generality, (b) at least applicability, (c) at least generality, (d) none

of the two.

Table 3: Different generality validation methods.

a 85.71% of papers that validate generality, while in 2019

and 2021 the frequency is not lower than 71.88%. Table 3

gives more details about the different kind of methods that

have been used to show generality. By far, the most common

method is to report known uses. Iba’s method and other

scientific research methods are less frequent.

• Fortunately, the papers that do not include any systematic
validation for the patterns are not frequent. Nevertheless, the
frequency of such papers is not negligible. Overtime it ranges

from 9.38% to 10.71%, while overall it is 9.89%.

• The frequency of papers that validate both the applicability

and the generality of the patterns is medium. Specifically,

in the overall corpus the frequency of the papers is 46.15%,

while over the years the frequency varies from 40.63% to

50.00%.

5 TAKEAWAY MESSAGE

This paper introduced two patterns that describe well established

pattern validation techniques, via examples and known uses, respec-

tively. The intent of Illustrate Applicability is to demonstrate

the applicability of a pattern via a detailed example, while the idea

behind Show Generality is to show the generality of the pat-

tern with evidence that concern known uses, workshops, focus

groups, interviews with experts, surveys, case studies, controlled

experiments, etc.

The results of the study reported in this paper suggest that the

authors actually use these validation techniques in practice. Never-

theless, the results also show that there is room for improvement.

As authors, we should provide evidence of the applicability and the

generality of our patterns, no matter which form we choose for

writing them. If the form does not provide specific parts for exam-

ples and known uses, we can incorporate these elements in other

parts of the pattern like the problem and the solution. Applicability

and generality are equally important for having a valid pattern. As

authors, we should assess both of these aspects when validating

our patterns. As shepherds we have to insist more during the shep-

herding process on the validation of the patterns applicability and

generality and highlight to the authors the necessity for good ex-

amples that show how to use their patterns, and convincing known

uses that strengthen the foundation of their patterns. Overall, as

a community (authors, shepherds, and everybody else involved in

the pattern writing process) we have to give some more attention

to the issue of patterns validation.

The patterns reported in this paper focus on "what" should the

pattern authors do to illustrate the applicability and the generality

of their patterns. Additionally, more detailed patterns that describe

"how" to write good examples and known uses may also be useful.

Another interesting issue for future research would be the iden-

tification of smells and threats to pattern validity. To this end, a

larger corpus of existing patterns from various sources (e.g., PLoP,

EuroPLoP, AsinaPLoP, VikingPLoP) should be studied. Studying

a larger and more diverse corpus of papers shall further allow to

investigate trends in the validation of patterns applicability and

generality overtime.

ACKNOWLEDGMENTS

Many thanks to the shepherd of the paper, Rosana Teresinha Vac-

care Braga for her feedback during the shepherding process. Also,

many thanks to the members of the writers workshop for their

valuable comments and suggestions.

REFERENCES

[1] 2019. Proceedings of the 24th European Conference on Pattern Languages of Pro-
grams, EuroPLoP 2019, Irsee, Germany, July 3-7, 2019. ACM.

[2] 2020. EuroPLoP ’20: European Conference on Pattern Languages of Programs 2020,
Virtual Event, Germany, 1-4 July, 2020. ACM.

[3] 2021. EuroPLoP’21: European Conference on Pattern Languages of Programs 2021,
Graz, Austria, July 7 - 11, 2021. ACM.

[4] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. 1977. A Pattern
Language: Towns, Buildings, Construction. Oxford University Press.

[5] Rubem Barbosa-Hughes. 2019. A pattern approach for identification of oppor-

tunities for personalisation and automation of user interactions for the IoT. In

Proceedings of the 2019 European Conference on Pattern Languages of Programs
(EuroPLoP). ACM, 8:1–8:9.

[6] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. 2007. Pattern-oriented
software architecture, 4th Edition. Wiley.

[7] James O. Coplien. 1996. Software Patterns. SIGS Books.
[8] Ward Cunningham. 1994. The CHECKS Pattern Language of Information Integrity.

c2.com/ppr/checks.html

[9] Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz. 2002. Object-Oriented
Reengineering Patterns. Morgan Kaufmann.

[10] Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, and Ville Reijonen.

2014. Designing Distributed Control Systems: A Pattern Language Approach. Wiley.

c2.com/ppr/checks.html

EuroPLoP 2023, July 05–09, 2023, Irsee, Germany A. V. Zarras

[11] Martin Fowler. 2003. Patterns of Enterprise Application Architecture. Addison
Wesley.

[12] Martin Fowler. 2006. Writing Software Patterns.

www.martinfowler.com/articles/writingPatterns.html.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley.

[14] Neil B. Harrison. 2004. Advanced Pattern Writ-

ing Patterns for Experienced Pattern Authors.

www.europlop.net/sites/default/files/files/1_2003_Harrison_AdvancedPatternWriting.pdf.

[15] Nikolay Harutyunyan and Dirk Riehle. 2020. Industry Best Practices for Com-

ponent Approval in FLOSS Governance. In Proceedings of the 2020 European
Conference on Pattern Languages of Programs (EuroPLoP). ACM, 33:1–33:12.

[16] Haruka Iba and Takashi Iba. 2019. A pattern language for improving foreign

language skills when studying abroad. In Proceedings of the 24th European Con-
ference on Pattern Languages of Programs, EuroPLoP 2019, Irsee, Germany, July
3-7, 2019. ACM, 13:1–13:9.

[17] Haruka Iba and Takashi Iba. 2020. Patterns for Gaining Language as Native

Speakers Do: A Pattern Language for Improving Foreign Language Skills when

Studying Abroad, Part 2. In Proceedings of the 2020 European Conference on Pattern
Languages of Programs (EuroPLoP). ACM, 23:1–23:7.

[18] Takashi Iba and Taichi Isaku. 2016. A Pattern Language for Creating Pattern

Languages. In Proceedings of the 20th European Conference on Pattern Languages
of Programs (EuroPLoP). ACM.

[19] Christian Kohls and Panke Stefanie. 2009. Is that true. . . ? - Thoughts on the epis-

temology of patterns. In Proceedings of the 16th Conference on Pattern Languages

of Programs (PLoP). ACM.

[20] Mary Lynn Manns and Linda Rising. 2005. Fearless Change: Patterns for Introduc-
ing New Ideas. Addison-Wesley.

[21] Gerard Meszaros. 2003. xUnit Test Patterns: Refactoring Test Code. Addison

Wesley.

[22] Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing.
Addison-Wesley Longman Publishing Co., Inc., 529–574.

[23] Gerard Meszaros and Jim Doble. 1997. Pattern Languages of Program Design 3.

Chapter A Pattern Language for Pattern Writing, 529–574.

[24] Yishay Mor, Karen Donner-Asscher, and Jimena Pereyra. 2020. Assessment pat-

terns for online professional development: Patterns from IIEP’s Virtual Campus.

In Proceedings of the 2020 European Conference on Pattern Languages of Programs
(EuroPLoP). ACM, 32:1–32:24.

[25] Christopher Preschern. 2022. Fluent C. O’Reilly.
[26] Dirk Riehle, Nikolay Harutyunyan, and Ann Barcomb. 2021. Pattern Discovery

and Validation Using Scientific Research Methods. arXiv 2107.06065 - To appear

in Transactions of Pattern Languages of Programming V.

[27] Tim Wellhausen and Andreas Fiesser. 2012. How to Write a Pattern?: A Rough

Guide for First-time Pattern Authors. In Proceedings of the 16th European Confer-
ence on Pattern Languages of Programs (EuroPLoP). ACM, 5:1–5:9.

[28] Misaki Yamakage, Miku Minami, Sora Hatori, Takashi Iba, and Mitsuki Saito.

2021. Natural & Creative Living Patterns, Part 1, Patterns for Creative Living:

Patterns for Creative Living. In Proceedings of the 2021 European Conference on
Pattern Languages of Programs (EuroPLoP). ACM, 25:1–25:9.

	Abstract
	1 Introduction
	2 Illustrate Applicability
	3 Show Generality
	4 Some Facts and Figures
	5 Takeaway Message
	Acknowledgments
	References

