The Strategy Configuration Problem and How to Solve It

Apostolos V. Zarras
Department of Computer Science and Engineering, University of Ioannina
Greece
zarras@cs.uoi.gr

ABSTRACT

The STRATEGY pattern allows the developer to implement a fam-
ily of algorithms that can be used interchangeably and vary in-
dependently from the objects that use them. To achieve this, the
algorithms are implemented as an hierarchy of respective strategy
classes that realize the same interface.

One particular issue that is not precisely specified in the pattern
is how to configure objects with the algorithms that they need to
use. This paper introduces recurring solutions to the problem. These
solutions appeared in different projects delivered in the context
of Software Engineering, a compulsory course of the Department
of Computer Science and Engineering of the University of Ioan-
nina. The reported solutions are of two kinds, those that facilitate
the constant configuration of objects with algorithms that do not
change during the lifetime of the objects, and those that enable
the adaptable configuration of objects with algorithms that can be
dynamically reconfigured. The solutions that adhere to the intent of
STRATEGY are reported as patterns, while the solutions that deviate
from it are reported as anti-patterns.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement;

KEYWORDS
Behavioral Patterns, Strategy

ACM Reference Format:

Apostolos V. Zarras. 2021. The Strategy Configuration Problem and How to
Solve It. In European Conference on Pattern Languages of Programs (Euro-
PLoP’21), July 7-11, 2021, Graz, Austria. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3489449.3489980

1 INTRODUCTION

The Gang of Four (GoF) patterns [4] provide reusable solutions to
problems that are frequently encountered in the development of
Object-Oriented (OO) software. The usefulness of the patterns has
been proven over the years by the fact that they are diachronic,
still being used by many developers in many different contexts and
OO programming languages. Apart from their practical application,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8997-6/21/07...$15.00
https://doi.org/10.1145/3489449.3489980

over the years there have also been several research papers, inves-
tigating the way that they are applied, their benefits and liabilities
(e.g., [1-3, 5, 8-10]).

The key issues for getting the best out of the GoF patterns (and in
fact out of all patterns) is to select the right pattern for the problem
in hand, and to implement it correctly in this particular context.
However, this is not always the case. In practice, the misuse or
the incorrect implementation of patterns can introduce problems,
increase the complexity and deteriorate the overall software quality
[11]. For this reason, several approaches emerged for checking the
correct use of design patterns [6].

Typically, the mistakes that people do when they apply a par-
ticular pattern are recurring [12]. Trying to find common errors
and misuses in the use of design patterns and documenting them,
along with solutions that allow the developers to avoid them is
an interesting and challenging exercise. Since the observed errors
and misuses are recurring they qualify as anti-patterns, i.e., ineffec-
tive solutions to frequently encountered problems that introduce
risks, inefficiencies and other problems [7]. A number of such anti-
patterns that concern mistakes in the use of the GoF CoMMAND
pattern are discussed in [12]. Moreover, [12] reports a pattern that
allows to avoid these mistakes.

This paper, focuses on the STRATEGY pattern. STRATEGY is a very
handy behavioral pattern, found in the GoF catalog [4]. The intent
of the pattern is to let a developer implement a family of alternative
algorithms in a way that allows them to be used interchangeably
and vary independently from the objects that use them. To this end,
the algorithms should be implemented as an hierarchy of concrete
strategy classes that implement a common interface.

Although the description of the pattern in the
GOF catalog is clear and simple, when it comes to
the actual use of the pattern, a key point that de-
mands special attention is that there are several
approaches that can be followed to configure an
object with the algorithm it will use. The situa-
tions in which these approaches can be applied
and the consequences of the approaches vary.

This paper, discusses different solutions to the aforementioned
problem. These solutions appeared in projects delivered in the con-
text of Software Engineering, a course that took place in the second
semester of 2019-2020 at the Department of Computer Science and
Engineering of the University of Ioannina. Software Engineering
is a compulsory course in the Department’s five-year curriculum.
The course is offered to fourth-year students of the Department.
During the course the students study conventional and agile soft-
ware development methods. A core part of the course is the study
of popular design patterns from the GoF catalog and the use of
these patterns in the project of the course.

https://doi.org/10.1145/3489449.3489980
https://doi.org/10.1145/3489449.3489980

EuroPLoP’21, July 7-11, 2021, Graz, Austria

A. V. Zarras

public class Context {

public void doWork() {
1/

1o

private Strategy strategy;

// things that happen before algorithm execution

strategy.executeAlgorithm();

/...
// things that happen after algorithm execution
/AT
return;
}
}
’
P
7
’
/
z
Context

Strategy

-strategy : Strategy

+doWork()

+executeAlgorithm()

T

|

ConcreteStrategyA

ConcreteStrategyB ConcreteStrategyC

+executeAlgorithm()

+executeAlgorithm() +executeAlgorithm()

Figure 1: The structure of the STRATEGY pattern.

The observed solutions are divided in two categories: The first
category includes solutions that facilitate the constant configuration
of objects with algorithms that do not change during the lifetime
of the objects, while the second category comprises solutions that
enable the adaptable configuration of objects with algorithms that
can by dynamically reconfigured. The solutions of each category
are further divided into anti-patterns that compromise the intent
of STRATEGY and patterns that conform with STRATEGY. The paper
further provides a detailed post-mortem analysis of the use of the
anti-patterns/patterns in the projects of the Software Engineering
course.

The rest of this paper is structured as follows. Section 2, discusses
in more detail the structure and the benefits of the STRATEGY pattern.
Sections 3 and 4 detail the constant and the adaptable configuration
anti-patterns/patterns, respectively. Section 5, discusses the anti-
patterns/patterns mining process and the uses of the reported anti-
patterns/patterns, in the context of the Software Engineering course.
Finally, Section 6 summarizes the contribution of this paper.

2 STRATEGY PATTERN
Intent

Literally, the intent of the STRATEGY pattern is the following [4]:

"Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients
that use it

Simply put, there are three key ideas behind the pattern:

o The first idea is to encapsulate alternative algorithms, so
that the objects that use them are not exposed to the internal
implementation details of the algorithms. To achieve the
encapsulation, the algorithms are implemented in separate
classes.

e The second idea is to make the encapsulated algorithms
interchangeable so that any one can be used in place of the
other. To make the algorithms interchangeable all the classes
that realize the algorithms implement a common interface.

o The third idea is to let the algorithms vary independently
from the objects that use them. To this end, the objects use
the common interface to call the algorithms.

Structure

In more detail, the structure of the STRATEGY pattern involves the
following participants (Figure 1):

e Strategy, defines a common interface for all the algorithms
that belong to the family.

e ConcreteStrategyA, ConcreteStrategyB, ... are different
implementations of Strategy, one for each alternative algo-
rithm that belongs to the family.

e Context, uses an algorithm to do some work. To this end,
Context has a reference to a Strategy object.

In a typical execution scenario the pattern participants collab-
orate as follows: A client configures a Context object with an
algorithm by setting the Strategy reference to a corresponding
object of a concrete class that implements Strategy. The Context
object interacts with the referenced object by invoking methods

The Strategy Configuration Problem and How to Solve It

of the Strategy interface. In general, there are several ways for
configuring the Context object with an algorithm. Some of these
ways, discussed in Section 3, result in a constant configuration that
can not be changed during the lifetime of the Context object, while
others, detailed in Section 4, facilitate the adaptable configuration
of the Context object.

3 CONSTANT STRATEGY CONFIGURATION
Context

A developer implements a family of algorithms. The objects of a
Context class have to use these algorithms. The developer employs
STRATEGY to encapsulate the algorithms, make them interchange-
able, and let them vary independently from the Context objects
that use them. The algorithm that is used by a Context object does
not have to be changed with another one during the lifetime of the
object.

Problem

The developer should implement the code that configures Context
objects with algorithms and make sure that the resulting configura-
tions are constant. The design choices that he will make to achieve
this goal should not deviate from the intent of the STRATEGY pattern.

Forces

e The configuration code must ensure that the algorithms used
by the Context objects are specified once and do not change
with other algorithms from then on.

e The configuration code should facilitate the interchangeabil-
ity of the algorithms.

o The configuration code should contribute to the independent
variation of the algorithms from the Context objects that
use them.

Anti-Pattern: Strategy Creation in Constructor

The developer encapsulates the algorithms in separate concrete
classes that implement the Strategy interface (Figure 2). The devel-
oper further defines a Strategy field in Context and a Context
constructor, which takes a parameter, whose value identifies a con-
crete class that implements Strategy; hereafter the term strategy
identifier is used to refer to such parameter. The Context construc-
tor is the only means for setting the value of strategy. Specifically,
the configuration of a Context object with an algorithm, takes
place when the object is created by a Client object. The Client ob-
ject gives to the constructor a strategy identifier. Based on the given
strategy identifier, the constructor selects the algorithm, creates an
object of the respective concrete class, and assigns to strategy a
reference to this object.

Consequences.

+ The configuration of a Context object is done when the
object is created and can not be changed after this point.

+ A new Context object can be configured with any algo-
rithm, by giving to the constructor a corresponding strategy
identifier.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

- The parameterized constructor depends on the concrete
classes that realize the algorithms. Hence, any addition, dele-
tion or modification to the family of algorithms can affect
Context.

The use of a strategy identifier as parameter may not be very
intuitive and type safe.

- The parameterized constructor includes a complex selection
logic for choosing the particular algorithm to use.

Giving an invalid strategy identifier to the parameterized
constructor can result to a Context object that does not
behave properly. Configuring the Context object with a de-
fault algorithm can be a way to avoid the problem. However,
it may not always be possible to consider an algorithm as a
default.

Pattern: Strategy Injection with Constructor

The developer implements the algorithms as separate concrete
classes that realize the Strategy interface (Figure 3). Moreover,
the developer defines a Strategy field in Context and a Context
constructor, which takes as parameter a Strategy reference. The
parameterized constructor is the only means for setting the value
of strategy. In a typical execution scenario, a Client object creates
a Context object. To configure the Context object with an algo-
rithm, the Client object passes to the constructor a reference to an
object of the corresponding concrete class. The constructor assigns
the given object reference to strategy.

Consequences.

+ The configuration of a Context object with an algorithm
is done once and for all by the parameterized constructor,
during the creation of the Context object.

+ A new Context object can be configured with any algorithm,
by passing to the constructor an reference to an object of
the concrete class that implements the algorithm.

+ The parameterized constructor is not coupled with the con-
crete classes that realize the algorithms. Hence, any addition,
deletion or modifications to the family of algorithms can be
done without changing Context.

- Passing null to the parameterized constructor can result in
a Context object that does not behave correctly. The issue
can be handled by configuring the Context object with a
default algorithm. However, it may not always be possible
to assume a default algorithm.

Variants

There are certain variants of the pattern solution that the developer
can use to deal with the constant strategy configuration problem.
The developer’s choice should be done on the basis of the conse-
quences that characterize the basic solution and its variants.

Constant Strategy Configuration Using Reflection. The de-
veloper defines a Context constructor that takes as parameter a
strategy identifier. The constructor uses reflection' to create a new
object that belongs to the corresponding concrete class and assigns
to strategy a reference to this object (Figure 4). Reflection allows

len.wikipedia.org/wiki/Reflective_programming#cite_note-1

EuroPLoP’21, July 7-11, 2021, Graz, Austria

public void init(){ AN
/1

// Create and configure a context object
Context contextA = new Context("ConcreteStrategyA");

// Create and configure another context object
Context contextB = new Context("ConcreteStrategyB");

Context
-strategy : Strategy

A. V. Zarras

public Context(String strategyIdentifier) {

if(strategyIdentifier.equals("ConcreteStrategyA"))
this.strategy = new ConcreteStrategyA();

else if(strategyIdentifier.equals("ConcreteStrategyB"))
this.strategy = new ConcreteStrategyB();

else if(strategyIdentifier.equals("ConcreteStrategyC"))
this.strategy = new ConcreteStrategyC();

Strategy

. |tContext(in strategyldentifier : String)
+doWork()

[+executeAlgorithm()

\I ConcreteStrategyA |

o G o

B |+executeAIgorilhm() |

|+execuleAIgariihm() ‘ ‘*EXECU@NQONWW‘() |

Figure 2: Constant Strategy Configuration Anti-Pattern: Strategy Creation in Constructor.

public void init(){
1/

// Create and configure a context object

Context contextA = new Context(injectedStrategyA);
Iociiiia

// Create and configure another context object

Context contextB = new Context(injectedStrategyB);

Strategy injectedStrategyA = new ConcreteStrategyA();

Strategy injectedStrategyB = new ConcreteStrategyB();

Context
|-strategy : Strategy

. [|*Context(in injectedStrategy : Strategy)

public Context(Strategy injectedStrategy) {
this.strategy = injectedStrategy;
}
—-
-
-
///
Strategy
+executeAlgorithm()

+doWork()

 [Gorosianga] _[¢ m

|+executeAIgorithm()kJ

+executeAlgorithm()

|+execuleAIgorithm() ‘

Figure 3: Constant Strategy Configuration Pattern: Strategy Injection with Constructor.

to create the object, without explicitly referring to the class of the
object. To determine the class of the object, it is sufficient to pass
to the reflection mechanism the given strategy identifier.

Consequences.

+ Reflection decouples Context from the concrete classes that
implement Strategy.

+ Client is not coupled with the concrete classes that imple-
ment Strategy.

- Decoupling Context from the concrete classes may not be
possible if the constructors of the concrete classes require
different parameters.

- Reflection can make the parameterized constructor more
complicated and harder to understand.

- The use of reflection may introduce an additional perfor-
mance overhead.

- Giving an invalid strategy identifier to the parameterized
constructor can result to a Context object that does not
behave correctly.

Constant Strategy Configuration With Parameterized Fac-
tory. The developer defines a Context constructor that takes as
parameter a strategy identifier. Moreover, the developer implements
a parameterized factory for the concrete classes that implement
Strategy [4] (Figure 5). The parameterized factory provides a fac-
tory method that takes as parameter a strategy identifier and returns
a reference to a Strategy object. The Context constructor gives
the strategy identifier to the factory method. The factory method

The Strategy Configuration Problem and How to Solve It

EuroPLoP’21, July 7-11, 2021, Graz, Austria

public Context(String strategyIdentifier) {

Class concreteStrategyClass = Class.forName(strategyIdentifier);
Constructor constructor = concreteStrategyClass.getConstructor();
this.strategy = (Strategy) constructor.newInstance();

} catch (Exception e) {
e.printStackTrace();

‘ ConcreteStrategyB | ConcreteStrategyC

public void init(){ N
Ioeeeennn
// Create and configure a context object try {
Context contextA = new Context("ConcreteStrategyA");
Hoviaaaas
// Create and configure another context object
Context contextB = new Context("ConcreteStrategyB");)
I ocieaees -
} -
’ -
’ _-
/ -
/ _-~
[client Context
‘*init() ‘ _strategy : Strategy Strategy
. [+Context(in strategyldentifier : String) +executeAlgorithm()
+doWork() I\
|Concrete StrategyA |
|+executeAIgurilhm() | ‘+execuleAlgonthm() |

‘+executeAlgorimm() ‘

Figure 4: Constant Strategy Configuration Using Reflection.

public void init(){
1/

// Create and configure a context object

Context contextA = new Context("ConcreteStrategyA");

// Create and configure another context object
Context contextB = new Context("ConcreteStrategyB");

public Context(String strategyIdentifier) {

StrategyFactory strategyFactory = new StrategyFactory();
this.strategy = strategyFactory.createStrategy(strategyIdentifier);

J72T -
} -
/ -7
’ -
/ -
/ Context s
[client “strategy : Strategy W
-
[+init() . [+Context(in strategyldentifier : String) executeAlgorithm()
+doWork()
[c [c y
[rexecuteAlgorithm() | [+executeAlgorithm() | +executeAlgorithm()

| StrategyFactory ‘
|+crea(eS(rategy(in strategyldentifier : String) : Strategy \

~
N

N
N

public Strategy createStrategy(String strategyIdentifier) {
if(strategyIdentifier.equals("ConcreteStrategyA"))

return new ConcreteStrategyA();

else if(strategyIdentifier.equals("ConcreteStrategyB"))

return new ConcreteStrategyB();
else
return new ConcreteStrategyC();

Figure 5: Constant Strategy Configuration With Parameterized Factory.

creates an object of the corresponding concrete class and returns a
reference to the object. Finally, the constructor assigns the returned
reference to strategy.

Consequences.

+ The parameterized factory allows to decouple Context from
the concrete classes that implement Strategy.

+ Client is not coupled with the concrete classes that imple-
ment Strategy.

- The parameterized factory is an extra class that is added in
the overall design.

- The parameterized factory is coupled with the concrete
classes that implement Strategy.

- Giving an invalid strategy identifier to the parameterized
factory can result to a Context object that does not behave
correctly.

4 ADAPTABLE STRATEGY CONFIGURATION

Context

A developer implements a family of algorithms. The objects of a
Context class have to use these algorithms. The developer employs
STRATEGY to encapsulate the algorithms, make them interchange-
able, and let them vary independently from the Context objects
that use them. The algorithm needed by a Context object may be
specified at any time, during the lifetime of the object. Moreover, the

EuroPLoP’21, July 7-11, 2021, Graz, Austria

public void init(){ AN
1/

A. V. Zarras

// Create and configure a context object
Context contextA = new Context();
contextA.setStrategy("ConcreteStrategyA");

public void setStrategy(String strategyldentifier) {

if(strategyIdentifier.equals("ConcreteStrategyA"))
this.strategy = new ConcreteStrategyA();
else if(strategyIdentifier.equals("ConcreteStrategyB"))

ZARREES this.strategy = new ConcreteStrategyB();
: . else if(strategyIdentifier.equals("ConcreteStrategyC"))
// re-configure the cgntext object " this.strategy = new ConcreteStrategyC();
contextA.setStrategy("ConcreteStrategyB"); }
Ifoeeeinen _
} -7
7 -
/ P
/
/ Prag -
Client Context
Finit() “strategy : Strategy Strategy
. |+setStrategy(in strategyldentifier : String) +executeAlgorithm()
+doWork() AN
ConcreteStrategyA Concr B C gyC
, 7 |[+executeAlgorithm() +executeAlgorithm() +executeAlgorithm()

Figure 6: Adaptable Strategy Configuration Anti-Pattern: Strategy Creation in Setter.

algorithm that is used by the object may be replaced with another
algorithm, during the lifetime of the object.

Problem

The developer should implement the code that configures Context
objects with algorithms and make sure that the resulting configu-
rations are adaptable. The developer’s design choices towards the
implementation of the configuration code should comply with the
intent of the STRATEGY pattern.

Forces

e The configuration code should allow to configure and alter
the algorithms used by the Context objects at any time.

o The configuration code should enable the interchangeability
of the algorithms.

e The configuration code should facilitate the independent
variation of the algorithms from the Context objects that
use them.

Anti-Pattern: Strategy Creation in Setter

The developer encapsulates the algorithms in separate concrete
classes that implement the Strategy interface (Figure 6). The de-
veloper further defines a Strategy field in Context and a method
for setting the value of this field. The setter method takes as pa-
rameter a strategy identifier. To configure Context object with an
algorithm, a Client object calls the setter method on the Context
object, with a strategy identifier as parameter. The setter method
creates an object of the corresponding concrete class and assigns to
strategy a reference to this object. To re-configure the Context ob-
ject with another algorithm, the Client object should re-invoke the
setter method on the Context object, with the strategy identifier
of the concrete class that realizes this other algorithm as parameter.

Consequences.

+ The configuration of a Context object can be changed at
any time by re-invoking the setter method.

+ A Context object can be configured with any algorithm,

by giving to the setter method a corresponding strategy

identifier.

The setter method is coupled with the concrete classes that

realize the algorithms. Therefore, any addition, deletion or

modification to the family of algorithms can affect Context.

- The use of a strategy identifier as parameter may not be very

intuitive and type safe.

The setter method comprises a complex selection logic for

selecting the particular algorithm to use.

Passing an invalid strategy identifier when calling the setter

method on a Context object can cause erroneous object

behaviors. Configuring the Context object with a default

algorithm may be a possible solution to this issue, assuming

that it is possible to consider an algorithm as a default.

Pattern: Strategy Injection with Setter

The developer implements the algorithms as separate concrete
classes that realize the Strategy interface (Figure 7). The developer
further defines a Strategy field in Context and a method for set-
ting the value of this field. The setter method takes as parameter
a reference to a Strategy object. To configure a Context object
with an algorithm, a Client object calls the setter method on the
Context object, with a reference to an object of the corresponding
concrete class as parameter. The setter method assigns to strategy
the given object reference. To re-configure the Context object with
another algorithm, the Client object should re-invoke the setter
method on the Context object, with a reference to an object of the
concrete class that realizes this other algorithm as parameter.

The Strategy Configuration Problem and How to Solve It

public void init(){
Y7

// Create and configure a context object

Strategy injectedStrategyA = new ConcreteStrategyA();
Context contextA = new Context();
contextA.setStrategy(injectedStrategyA);

// re-configure the context object
Strategy injectedStrategyB = new ConcreteStrategyB();
contextA.setStrategy(injectedStrategyB);

EuroPLoP’21, July 7-11, 2021, Graz, Austria

this.strategy = injectedStrategy;

public void setStrategy(Strategy injectedStrategy) { ﬁ

ConcreteStrategyC

+executeAlgarithm()

Hooeennnn L
} -
7 ~
v - *
s | - \L
Client Context
+init() [strategy : Strategy Strategy
. [|+setStrategy(in injectedStrategy : Strategy) +executeAlgorithm()
+doWork() %
Co ategyA Co vB
. +executeAlgorithm() +executeAlgorithm()
Figure 7: Adaptable Strategy Configuration Pattern: Strategy Injection with Setter.
Consequences.

+ The configuration of a Context object can be altered at any
time by re-invoking the setter method.

+ A Context object can be configured with any algorithm, by
giving to the setter method a reference to an object of the
corresponding concrete class.

+ The setter method does not depend on the concrete classes
that realize the algorithms. Thus, any addition, deletion or
modification to the family of algorithms does not require to
change Context.

- Passing null when calling the setter method on a Context
object can cause erroneous object behaviors. Configuring the
Context object with a default algorithm may be a possible
solution to overcome this issue. Nevertheless, it may not
always be possible to consider an algorithm as a default.

Variants

There are certain variants of the pattern solution that the developer
can use to deal with the adaptable strategy configuration prob-
lem. The developer’s choice should be done with respect to the
consequences that characterize the basic solution and its variants.

Adaptable Strategy Configuration Using Reflection. The de-
veloper defines a setter method in Context that takes as parameter
a strategy identifier. The setter method uses reflection to create a
new object that belongs to the concrete class and assigns to strat-
egy a reference to this object (Figure 8).

Consequences.

+ Reflection allows to decouple Context from the concrete
classes that implement Strategy.

+ Client is not coupled with the concrete classes that imple-
ment Strategy.

- Decoupling Context from the concrete classes may not be
possible if the constructors of the concrete classes require
different parameters.

- Reflection can make the setter method more complicated
and harder to understand.

- The use of reflection may introduce an additional perfor-
mance overhead.

- Passing an invalid strategy identifier when calling the setter
method on a Context object can cause erroneous object
behaviors.

Adaptable Strategy Configuration With Parameterized Fac-
tory. The developer defines a setter method in Context that takes
as parameter a strategy identifier. The developer further implements
a parameterized factory for the concrete classes that implement
Strategy [4]. The parameterized factory provides a factory method
that takes as parameter a strategy identifier and returns a reference
to a Strategy object (Figure 9). The setter method gives the strat-
egy identifier as input to the factory method. The factory method
creates an object of the corresponding concrete class and returns a
reference to the object. Finally, the setter method assigns the object
reference to strategy.

Consequences.

+ The parameterized factory allows to decouple Context from
the concrete classes that implement Strategy.

+ Client is not coupled with the concrete classes that imple-

ment Strategy.

The parameterized factory is an extra class that is added in

the overall design.

- The parameterized factory depends on the concrete classes

that implement Strategy.

Passing an invalid strategy identifier when calling the setter

method on a Context object can cause erroneous object

behaviors.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

public void init(){
1/

A. V. Zarras

public void

// Create and configure a context object try

Context contextA = new Context();
contextA.setStrategy("ConcreteStrategyA™);

// re-configure the context object
contextA.setStrategy("ConcreteStrategyB");
7

setStrategy(String strategyIdentifier) {

{

Class concreteStrategyClass = Class.forName(strategyIdentifier);
Constructor constructor = concreteStrategyClass.getConstructor();
this.strategy = (Strategy) constructor.newInstance();

} catch (Exception e) {

e.printStackTrace();

Context

-strategy : Strategy Strategy
. |[+setStrategy(in strategyldentifier : String) +executeAlgorithm()
+doWork()
|Com: reteStrategyA ‘ [ConcreteStrategyB ‘ ConcreteStrategyC
|+executeAIgorithm() ‘ ‘+executeAlgurithm() ‘ [+executeAlgorithm() |

Figure 8: Adaptable Strategy Configuration Using Reflection.

[N

public void init(){
1/

// Create and configure a context object

Context contextA = new Context();
contextA.setStrategy("ConcreteStrategyA™);

// re-configure the context object

public void setStrategy(String strategyIdentifier) {

StrategyFactory strategyFactory = new StrategyFactory();

this.strategy = strategyFactory.createStrategy(strategyIdentifier);

contextA.setStrategy("ConcreteStrategyB");
1/

Context
-strategy : Strategy

+setStrategy(in strategyldentifier : String)
+doWork()

Strategy

+executeAlgorithm()

StrategyFactory
‘+crealeSlrategy(in strategyldentifier : String) : Strategy |
<

N
N

|Goncrete StrategyA ‘ ‘ [of ‘ C
|+execu teAlgorithm() ‘

ay avC|

[rexecuteAigorithm() | [executeAlgorithm() |

N
N

return new ConcreteStrategyA();

return new ConcreteStrategyB();
else
return new ConcreteStrategyC();

public Strategy createStrategy(String strategyldentifier) {
if(strategyIdentifier.equals("ConcreteStrategyA™))

else if(strategyldentifier.equals(“ConcreteStrategyB"))

Figure 9: Adaptable Strategy Configuration With Parameterized Factory.

Adaptable Strategy Configuration With Map. In general, a
map (or dictionary) is a generic data structure for storing object
references. A map has a set of keys and each key has a single
associated object reference. A main advantage of the map over a
simple list or an array of object references is that the code that uses
the map to retrieve an object reference that is associated with a
particular key is quite simple. Typically, the map provides a method
that takes as input a key and returns the associated object reference.
The complexity of the algorithm that actually matches a given key
against the keys stored in the map is encapsulated in this method.

In this variant, the idea is to associate strategy identifiers with
object references of the corresponding concrete classes that im-
plement Strategy by adding a map field in Context (Figure 10).
Context further provides a setter method that takes as parameter
a strategy identifier. The setter method uses the strategy identifier
to get the associated object reference from the map. Finally, the
setter method assigns the object reference to strategy.

One option for the initialization of the map field is to add a corre-
sponding parameter in the Context constructor. Another option, is
to initialize the map using reflection. In any case, the initialization of

The Strategy Configuration Problem and How to Solve It

I

public void init(){
// Create strategies map
HashMap<String, Strategy> strategiesMap = new HashMap<String, Strategy>();
strategiesMap.put("ConcreteStrategyA", new ConcreteStrategyA());
strategiesMap.put("ConcreteStrategyB", new ConcreteStrategyB());
strategiesMap.put(”ConcreteStrategyC”, new ConcreteStrategyC());

// Create and configure a context object
Context contextA = new Context(strategiesMap);

contextA.setStrategy("ConcreteStrategyA”);

EuroPLoP’21, July 7-11, 2021, Graz, Austria

V7P - - -
public Context(Map<String, Strategy> strategies) {
// re-configure the context object this.strategiesMap = strategies;
contextA,setStrategy("ConcreteStrategyB"); }
o
} public void setStrategy(String strategyIdentifier) {
strategy = strategiesMap.get(strategyldentifier);
// }
7 -
s -
7 —
rd —
// -
Context
Client

-strategy : Strategy

~strategiesMap: Map<String, Strategy>
+Context(in strategiesMap)
+setStrategy(in strategyldentifier : String)
+doWork()

Strategy

+executeAlgorithm()

+init()

(o Ci aleyc‘

[< ategyA ‘
+executeAlgorithm() ‘

[rexecuteAlgorithm() |

‘+executeAlgorithm() |

»

Figure 10: Adaptable Strategy Configuration with Map.

the map should be done in a way that keeps Context independent
from the concrete classes that implement Strategy.

Consequences.

+ The map decouples Context from the concrete classes that
implement Strategy.

- Context becomes more complex with the definition of the
additional map field and the respective parameterized con-
structor.

- The use of the map can make the code harder to comprehend
and introduce type safety issues.

Adaptable Strategy Configuration on Demand. The developer
adds a Strategy reference as an extra parameter to all the methods
of Context that need to use an algorithm. A Client object that
calls a method on a Context object uses the extra parameter to
pass a reference to an object of a concrete class that realizes an
algorithm (Figure 11). The method uses this reference to execute
the algorithm.

Consequences.

+ Context is decoupled from the concrete classes that imple-
ment Strategy.

- The prototypes of the methods that need to use an algorithm
become more complex.

- Passing null when calling a method on a Context object can
cause erroneous object behaviors.

5 EMPIRICAL EVIDENCE

As already mentioned in Section 1 the patterns and the anti-patterns
reported in this paper were observed in projects delivered in the

context of the Software Engineering course that took place in the
second semester of 2019-2020 at the Department of Computer Sci-
ence and Engineering of the University of Ioannina. The students
of the course formed 58 different development groups consisting
of 2-3 people. Each group developed its own project. The overall
duration of the project was 10 weeks. The main objective of the
project was to develop a simple text-to-speech editor. One of the re-
quirements for the editor was to encode a given text and transform
the encoded text to speech. Another requirement was to provide
different kinds of encodings and allow the users to alter the partic-
ular encoding strategy that is used for the text transformation at
any time. Following the instructor’s guidance, the groups used the
STRATEGY pattern to implement the encoding algorithms.

Concerning the configuration of context objects with algorithms,
the groups employed different solutions. Some of these solutions
conformed with the observed anti-patterns, while some others con-
formed with the observed patterns. According to the requirements
of the project, the most appropriate pattern for the project would
be the STRATEGY INJECTION WITH SETTER. Figure 12, summarizes
what the groups actually did in practice. Specifically, 44 groups
groups successfully used the STRATEGY INJECTION WITH SETTER
(and its variants). Overall that is 75.86% of the groups that enrolled
in the software engineering course. The remaining groups did not
make the right design choices; either they used an anti-pattern
or a pattern that is not appropriate for the context of the project.
More specifically, 5 groups used STRATEGY CREATION IN SETTER, 7
used the STRATEGY INJECTION WITH CONSTRUCTOR, and 2 used the
STRATEGY CREATION IN CONSTRUCTOR.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

public void init(){
Ioveennns

// Create and configure a context object

Strategy injectedStrategyA = new ConcreteStrategyA();
Context contextA = new Context();
contextA.doWork(injectedStrategyA);

A. V. Zarras
public void doWork(Strategy injectedStrategy) { AN
/Hoeeen
// things that happen before algorithm execution
Ioeeen

injectedStrategy.executeAlgorithm();

I oveens
7/ re-configure the context object # things that happen after algorithm execution
Strategy injectedStrategyB = new ConcreteStrategyB(); r‘etl:u:'l‘!:‘
contextA.doWork(injectedStrategyB); } ’
I
} -
e
/ -7 »
i e
Client -~ \b
Finit() Context Strategy
. [+doWork(in injectedStrategy : Strategy) +executeAlgorithm()
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
+executeAlgorithm() [+executeAlgorithm() +executeAlgorithm()
Figure 11: Adaptable Strategy Configuration on Demand.
» 50 4 of the STRATEGY pattern can be achieved was also discussed in
] detail.
8. a0 ¥ <&
0 i o
g &
o 30 . ,Q‘b- Q’b
s & ACKNOWLEDGMENTS
= 20
@ ? .
£ . 7 I would like to thank the shepherd of the paper, Eduardo Guerra,
3 2 fr—] for his valuable comments and suggestions. I would also like to
0 — . A)
thank the members of the writers’ workshop for their feedback on
Strategy Strategy Strategy Strategy th
L L — . — . € paper.
Creationin Creationin Injection With Injection with pap
Constructor Setter Constructorand Setterand
variants variants REFERENCES

Figure 12: Anti-patterns/patterns uses in the software engi-
neering course project.

6 CONCLUSION

Developers often make mistakes when they try to apply a pattern
in their application. Discovering and systematically documenting
these mistakes can be very helpful for the developers. In this vein,
this paper focused on the STRATEGY pattern. The paper introduced
different anti-patterns and patterns that document, respectively, bad
and good solutions to the problem of configuring context objects
with strategies. The anti-patterns/patterns appeared in different
projects delivered in the context of the Software Engineering course
of the Department of Computer Science and Engineering of the
University of Ioannina. The anti-patterns/patterns are of two kinds,
those that facilitate the constant configuration of objects with algo-
rithms that do not change during the lifetime of the objects, and
those that enable the adaptable configuration of objects with al-
gorithms that can be dynamically reconfigured. The impact of the
observed anti-patterns/patterns on the degree to which the benefits

[1] Apostolos Ampatzoglou and Alexander Chatzigeorgiou. 2007. Evaluation of
Object-Oriented Design Patterns in Game Development. Information and Software
Technology 49, 5 (2007), 445-454.

[2] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and
Massimiliano Di Penta. 2007. An Empirical Study on the Evolution of Design
Patterns. In Proceedings of the 6th Joint European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC-FSE). 385-394.

[3] James M. Bieman, Greg Straw, Huxia Wang, Willard P. Munger, and Roger T.
Alexander. 2003. Design Patterns and Change Proneness: An Examination of
Five Evolving Systems. In Proceedings of the 9th IEEE International Symposium
on Software Metrics (METRICS). IEEE Computer Society, Washington, DC, USA,
40-50.

[4] E.Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley.

[5] Brian Huston. 2001. The Effects of Design Pattern Application on Metric Scores.
Journal of Systems and Software 58, 3 (2001), 261-269.

[6] Salman Khwaja and Mohammad Alshayeb. 2016. Survey On Software Design-
Pattern Specification Languages. ACM Compututing Surveys 49, 1 (2016), 21:1-
21:35.

[7] Andrew Koenig. 1995. Patterns and Antipatterns. Journal of Object Oriented
Programming (JOOP) 8, 1 (1995), 46-48.

[8] L.Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. 2001. A Controlled
Experiment in Maintenance Comparing Design Patterns to Simpler Solutions.
IEEE Transactions on Software Engineering 27, 12 (2001), 1134-1144.

[9] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and Walter F. Tichy.
2002. Two Controlled Experiments Assessing the Usefulness of Design Pattern
Documentation in Program Maintenance. IEEE Transactions on Software Engi-
neering 28, 6 (2002), 595-606.

[10] Marek Vokac. 2004. Defect Frequency and Design Patterns: An Empirical Study of
Industrial Code. IEEE Transactions on Software Engineering 30, 12 (2004), 904-917.

The Strategy Configuration Problem and How to Solve It

[11] Peter Wendorff. 2001. Assessment of Design Patterns during Software Reengi-

[12

neering: Lessons Learned from a Large Commercial Project. In Proceedings of the
IEEE European Conference on Software Maintenance and Reengineering (CSMR).
77-87.

Apostolos V. Zarras. 2020. Common Mistakes When Using the Command Pattern
and How to Avoid Them. In Proceedings of the ACM European Conference on
Pattern Languages of Programs (EuroPLoP). 4:1-4:9.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

	Abstract
	1 Introduction
	2 Strategy Pattern
	3 Constant Strategy Configuration
	4 Adaptable Strategy Configuration
	5 Empirical Evidence
	6 Conclusion
	Acknowledgments
	References

