
Keep Calm & Wait for the Spike! Insights on the
Evolution of Amazon Services

Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

Department of Computer Science and Engineering, University of Ioannina, Greece
{zarras, pvassil, idinos}@cs.uoi.gr

Abstract. Web services are black box dependency magnets. Hence,
studying how they evolve is both important and challenging. In this
paper, we focus on one of the most successful stories of the service-
oriented paradigm in industry, i.e., the Amazon services. We perform a
principled empirical study, that detects evolution patterns and regulari-
ties, based on Lehman’s laws of software evolution. Our findings indicate
that service evolution comes with spikes of change, followed by calm peri-
ods where the service is internally enhanced. Although spikes come with
unpredictable volume, developers can count in the near certainty of the
calm periods following them to allow their absorption. As deletions rarely
occur, both the complexity and the exported functionality of a service
increase over time (in fact, predictably). Based on the above findings,
we provide recommendations that can be used by the developers of Web
service applications for service selection and application maintenance.

Keywords: Software evolution, Web services, Lehman’s laws

1 Introduction

Web services expose their functionalities through the Web, via application pro-
gramming interfaces (APIs), which can be invoked by the client applications.
Concerning software evolution, Web services are black box dependency magnets1.
As application developers have no access to the internals of the services they
use, they are clearly dealing with software modules of a black box nature. At the
same time, even a small change in a Web service can reflect to a vast number
of applications that use it. In particular, when a conventional API changes, the
developers of the dependent applications can avoid dealing with the changes by
sticking with an older version of the API. On the contrary, when a Web service
changes, the evolution typically comes with a strict time plan, within which the
developers of the dependent applications must migrate to the new version [4].

Understanding the evolution of Web services is therefore both difficult and
important for application developers who need to know whether they can depend
on the stability of the services they use and whether there are patterns and

1 The term dependency magnet refers to a software module that is used by many
others [13].



2 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

regularities concerning their evolution. Unfortunately, although existing research
([5], [15]) has provided valuable information on the statistical breakdown of the
changes occurring to the services’ interfaces, the understanding of regularities
and patterns during the lifetime of services has not been investigated yet.

In this paper, we focus on one of the most successful stories of the service-
oriented paradigm in industry, i.e., the Amazon Web Services (AWS)2. In this
context, we perform a principled empirical study that detects evolution patterns
and regularities, based on Lehman’s laws of software evolution [3, 11]. Our find-
ings indicate that service evolution typically comes with spikes of change, during
which operations are added or updated, followed by longer or shorter ”calm” pe-
riods that focus on internal improvements of service correctness, performance
and security and allow the developers of Web service applications to absorb the
changes. Typically, the provided functionality increases in a predictable manner,
whereas, unfortunately, its incremental growth is not predicable. Based on our
findings, we provide recommendations that can be used by the developers of Web
service applications for service selection and application maintenance. In partic-
ular, evolution histories with calm periods between spikes are a desirable feature
in service selection, as it allows the absorbtion of change. Thus, the study of the
change history and functionality expansion can be used to attest on the suitabil-
ity of a service during service selection. Concerning maintenance, functionality
expansion can be predicted. At the same time, as the heartbeat of change itself
is unpredictable, resources and time must be allocated to keep the applications
up to date.

The rest of this paper is structured as follows: Section 2 discusses related
work on software evolution; Section 3 provides the basic concepts of our ap-
proach, along with the setup of the empirical study; Section 4 details our method
and findings; Section 5 discusses the practical implications of the study for the
developers of Web service applications; Section 6 concerns threats to validity;
finally, Section 7 summarizes our contribution and discusses future work.

2 Lehman’s Laws & Related Studies

To come up with patterns and detailed insights in the evolution of Web services,
we resort to traditional tools from the area of software evolution. Back in the
70’s, Meir Lehman and his colleagues initiated their study on the evolution of
software systems [3] and continued to refine and extend it for the next 40 years
(e.g., [12, 11]). Lehman’s laws concentrate on the evolution of E-type systems,
i.e., software systems that solve a problem, or address an application in the real
world. The essence of Lehman’s laws is that the evolution of an E-type system
is a controlled process that follows the behavior of a feedback-based mechanism.
More specifically, the evolution process is driven by positive feedback that reflects
the need to adapt to the changing environment, by adding functionalities to the
evolving system. The growth of the system is constrained by negative feedback

2 aws.amazon.com/



Insights on the Evolution of Amazon Services 3

that reflects the need to perform maintenance activities, so as to prevent the
deterioration of the system’s quality. In [9], the authors provide a detailed his-
torical survey of the evolution of Lehmans’s laws. Further studies revealed the
diverse behavior of software concerning the validity of Lehman’s laws. In [16],
for instance, the authors found evidence that commercial software is typically
more faithful to the laws than academic and research software. A number of
studies focused on open source software (e.g., [7, 10, 18, 8]), while in [17], we em-
ployed Lehman’s laws to investigate the evolution of open-source databases; the
common ground in all these studies is that they found support for the laws of
continuing change and growth.

So far, the efforts that concern the evolution of Web services focus on clas-
sifications of changes, compatibility checks, version control and so on [1, 5, 6,
15]. [5] and [15] provide a first valuable insight on the evolution of real-world
services. In both of these works the authors observed that the changes occurring
to the services’ interfaces are mostly additions and updates, while the deletions
were relatively few. Another interesting empirical study on Web service evolu-
tion is reported in [4]. In this study the authors interview the developers of Web
service applications to investigate the problems they encounter, due to the evo-
lution of the services they use. Moreover, they investigate the evolution policies
employed by the service providers. The findings of this study showed that differ-
ent providers follow different practices and essential features like versioning are
sometimes neglected. Moreover, the providers force changes upon the developers
of Web service applications, so as to co-evolve with the services.

Going beyond the state of the art, in this paper we perform, for the first time
in the related literature, a principled empirical study that exploits Lehman’s laws
of software evolution to provide detailed insights on the evolution of Amazon
services. Based on our findings we further provide recommendations that can
be used by the developers of Web service applications for service selection and
application maintenance.

3 Basic Concepts & Setup

In this section, we discuss the basic concepts and the overall setting of our study.

3.1 Basic Concepts

We study the evolution of services that follow the standard Web services ar-
chitecture3 and expose their functionalities via WSDL specifications. The core
concept of the data model that we employ in our study is the service evolution
history, which provides information about the way that a service evolves.

Definition 1. Service evolution history - The evolution history for a ser-
vice, s, is a list, Hs = {rs1, rs2, . . . , rsN}, that consists of the different releases of
s. The elements of Hs are totaly ordered with respect to the their corresponding
release dates.
3 www.w3.org/TR/ws-arch/



4 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

Definition 2. Service release - A service release that belongs to the evolu-
tion history, Hs, of a service, s, is a tuple, rsi = (ID, date, Size, Change) that
consists of the following elements:

– ID is the release identifier that reflects the order of rsi in Hs.
– date, is the release date of rsi .
– Size, is a tuple of basic size metrics that concern different parts of the WSDL

specification of rsi . Specifically, Size[Interfaces], Size[Opers], Size[Types],
denote the number of interfaces, operations, and XML types, respectively.

– Change, is a tuple of basic change metrics that concern the transition from
rsi−1 to rsi . In particular, Change[Adds], Change[Dels], and Change[Upds],
denote the number of operation additions, removals, and updates, respec-
tively 4. For the purpose of our study, we consider operations as composite
elements, whose updates involve (a) changes in their own structure (e.g.,
attributes, annotations), or (b) updates in the structure of their constituents
(e.g., messages, XML types).

3.2 Amazon Web Services

Amazon is a major service provider that provides a variety of services, hosted on
the AWS infrastructure. AWS is very popular, having customers such as NASA,
NASDAQ, Netflix, Facebook, Adobe, D-Link, etc.5. In our study, we selected
6 Web services, for which it was possible to recover their detailed evolution
history. Following, we provide further details regarding the functionalities of
the examined services, while Table 1 gives information concerning the service
releases that we considered.

Table 1. Description of the data-sets.

Dataset Releases URL

EC2 73 aws.amazon.com/ec2

ELB 14 aws.amazon.com/elasticloadbalancing/

AS 12 aws.amazon.com/autoscaling/

SQS 16 aws.amazon.com/sqs/

RDS 41 aws.amazon.com/rds/

MTurk 20 aws.amazon.com/mturk/

Elastic Compute Cloud (EC2) allows to reuse computational resources, via
the allocation and management of virtual servers, deployed on the AWS in-

4 We empirically observed that bindings and ports rarely change, while changes to
XML types and messages are very strongly correlated with changes to operations
(Spearman’s correlation is typically close to 1). For lack of space, we omit these
findings.

5 aws.amazon.com/solutions/case-studies/all/



Insights on the Evolution of Amazon Services 5

frastructure. Elastic Load Balancing (ELB) can be used together with EC2, to
balance the load that is handled by a set of virtual servers, which have been
allocated, via EC2. Auto Scaling (AS) provides means for scaling up, or down,
a set of virtual servers that have been allocated via EC2. Simple Queue Service
(SQS) allows message-based communication via queues. Relational Database
Service (RDS) provides means for managing and using relational databases,
over the AWS infrastructure. Mechanical Turk (MTurk) provides access to a
scalable workforce, via an interface that offers operations for the creation of
tasks, the qualification/selection of workers who are going to perform the tasks,
the retrieval/approval of the work done, the payment of the workers, etc.

3.3 Release History Extraction & Assessment Method

To proceed with our study we calculated the evolution history for each one of
the examined Web services. To this end, we exploited the public service release
notes and the WSDL specifications that are available in the service provider’s
Web portal. To automate the evolution history extraction we used Membrane
SOA6 which allows to parse and compare WSDL specifications. We exported
the evolution histories in the form of an Excel spreadsheet, from which we pro-
duced more advanced metrics and graphical representations of the data, which
facilitated the assessment of Lehman’s laws in our context (Sections 4 and 5).
In our deliberations, we consider the latest definitions of Lehman’s laws that are
given in [11]. At a glance, the steps that constitute our assessment method are
summarized below.

– For each law, we identify the criteria for the validation of the law in the
context of Web services.

– Then, we evaluate these criteria in the case of Amazon services.
– We conclude on the validity of the law.
– Finally, we draw conclusions on what practitioners should conclude.

4 Findings

Due to the limited space it is practically impossible to provide all the data in
detail7. Therefore, for each law, we discuss the main findings and we provide
indicative graphical representations of the data for the most interesting cases.

4.1 Continuing Change (Law I)

”An E-type system must be continually adapted, or else it becomes less satis-
factory in use” [11]. The intuition behind the first law is that as time goes by,
both the operational environment and the users’ needs change, causing the need

6 http://www.membrane-soa.org/soa-model/
7 An extended report with all the results can be found at:

www.cs.uoi.gr/˜zarras/LehmanWS WEB/LehmanWS.html



6 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

for the system to change too [11]. In the service-oriented paradigm, as the ser-
vices are publicly available through the Web, the number of the applications
that depend upon them and their diversity is potentially unlimited. Hence, the
potentials for the emergence of new requirements and the need for changing
the services can be very high. In our study, we assess the first law based on
the heartbeat of changes that have been performed during the service evolution
history.

The case of Amazon services: The study of the heartbeat of changes
in the case of Amazon services reveals two main observations. The first one is
that for a large number of service releases, the service interface remains un-
changed (Figure 1). According to the service release logs, in these releases most
of the activity concerns bug fixing, documentation, security and performance
improvements, deployment extensions, provision of client side APIs for specific
programming languages and environments. The second observation, which is in-
line with prior studies on the evolution of services [5, 15], is that the overwhelming
majority of changes concern additions and updates; there are very few cases of
deletions. Overall, the essence of the law holds for the examined services. No-
table properties are that changes are mostly internal and involve the structure of
the exported operations less frequently; when they do, they involve mostly updates
and additions.

Fig. 1. Distribution of operation changes per release ID (releases with zero change also
included).

4.2 Increasing Complexity (Law II)

”As an E-type system is changed its complexity increases and becomes more dif-
ficult to evolve, unless work is done to maintain or reduce the complexity” [11].
Software complexity is a vast concept that involves several aspects (Lehman et al.
[11] refer to requirements and specification complexity, architecture complexity,
design and implementation complexity, structural complexity, etc.) and metrics
widely discussed in the literature (see e.g., [18] for a large number of complex-
ity metrics). Addressing all these aspects in one study is simply not possible.



Insights on the Evolution of Amazon Services 7

Complexity from the viewpoint of the developers of Web service applications is
mostly related to the effort required for (a) understanding, using and testing
the functionalities of the interfaces exposed by the employed services [14], and,
(b) keeping the client applications up to date [2]. Regarding these aspects of
service complexity, in the empirical study that we performed in [2], we found
that the developers of Web service applications suggest the decomposition of fat
interfaces, as they find them hard to understand and use. Based on this finding,
in this paper we assess the second law with respect to the ratio of interfaces to
operations. We consider that a particular service release is hard to understand,
use and test if the provided interfaces consist of many operations. Following, we
formally define the metric that we employ, with respect to the concept of service
evolution history.

Definition 3. Interface Complexity - For a service release rsi that belongs
to the evolution history, Hs, of a service, s, we assess interface complexity in
terms of the complement of the ratio of the provided interfaces to the operations

offered by these interfaces, i.e., C(rsi ) = 1− rsi .Size[Interfaces]
rsi .Size[Opers] .

The case of Amazon services: Regarding the second law, in all cases
we observed that the value of C(rsi ) is generally high, which means that the
interfaces of the examined services are composed of many operations (Figure 2).
This holds, even for the initial releases of the services, where the value of C(rsi ) is
typically higher than 0.9 for all datasets (except SQS). As time passes, the value
of C(rsi ) increases smoothly with a slow logarithmic trend. To further validate
this observation we performed a logarithmic regression analysis. In all cases
except for SQS (Figure 2), the R2 values that we obtained are high (from 0.576
to 0.928, 0.83 on average), indicating the logarithmic trend that we observed.
Notably, there is no evidence of the existence of a control mechanism for the
aspect of complexity that we assess. As we discussed in the case of the first
law, the deletions of operations are very rare. Interface decomposition would
be another possible way to reduce complexity (e.g., [2]). Nevertheless, for the
examined services the number of provided interfaces is typically constant during
the evolution history of the services. To sum up, we conclude that the second
law holds. Specifically, the results brought out the following properties: Interface
complexity, measured in terms of the ratio of interfaces to operations, is high; it
smoothly increases over time; usually the increase is logarithmic.

4.3 Self Regulation (Law III)

”Global E-type system evolution is feedback regulated” [11]. The term regulation
is used in the third law to emphasize that the system evolves in a controlled
way, guided by (a) positive feedback activities that cause the system’s functional
capacity to grow, and, (b) negative feedback maintenance activities that resist
to the unrestrained growth.

The validity of the third law is typically demonstrated by the existence of
patterns in the incremental growth of a system [11, 18, 17]. Specifically, Lehman



8 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

Fig. 2. Interface complexity - measured in terms of the ratio of interfaces to operations
- per release ID.

and his colleagues, observed ripples, which reflect the existence of a stabilization
mechanism. Spikes indicate releases where the positive feedback activities that
grow the functional capacity of the system dominate, while valleys indicate re-
leases of small or even negative growth, where most of the effort is spent for nega-
tive feedback maintenance activities. Further studies report similar observations
in open source software [18] and database schemas [17]. In the aforementioned
studies, the incremental growth of the system is measured as the size difference
between two subsequent releases. The size of the system is typically measured
with respect to the system implementation (e.g, number of modules, number of
schema tables). To assess the third law, in the case of services we follow a simi-
lar track, by looking for patterns in the incremental growth of a service. In our
study, we measure the incremental growth of a service in terms of the difference
in the number of operations provided by subsequent service releases, as this is
the actual increase in the functional capacity of the service that is perceived by
the developers of Web service applications.

Definition 4. Incremental growth - For a pair of subsequent service re-
leases rsi , rsi+1 that belong to the evolution history, Hs, of a service, s, the
operations’ incremental growth IGop(rsi , r

s
i+1) is the difference in the number

of operations defined in the specification of rsi+1 and rsi , i.e., IGop(rsi , r
s
i+1) =

rsi+1.Size[Opers]− rsi .Size[Opers].

The case of Amazon services: As the case of typical E-type systems, in
the incremental growth of Amazon services we also have spikes. However, an
interesting difference is that the spikes are usually sparse interrupted by periods
of calmness, where the functional capacity of the Web service does not grow.
MTurk appears to be an exception with consequent spikes, and only one short
calmness period. In traditional E-type systems, negative feedback is concerned
with correction actions, documentation improvement, dead code elimination,
structural cleanups and restructurings, aiming to restrict uncontrolled change
and its side effects. In the case of Amazon services, although we do not observe
significant restructuring activities that are externally visible (resulting in an
increased structural complexity – Law II), we can however claim that the growth



Insights on the Evolution of Amazon Services 9

that results from the positive feedback is not uncontrolled or continuous: on
the contrary, we frequently see occasions where documentation improvements,
bug fixing, security patching and extension of programming facilities take place
(see Law I). In conclusion, there is evidence that the third law holds. Although
there are no visible restructurings and consolidations, we observe two patterns
of incremental growth, specifically, spikes and calmness periods, which together
indicate the existence of a stabilization mechanism.

Fig. 3. Incremental growth –difference between the number of operations in subsequent
service releases– per release ID.

4.4 Conservation of Organizational Stability (Law IV)

”The work rate of an organization evolving an E-type system tends to be constant
over the operational lifetime of that system, or phases of that lifetime” [11]. In
practice, a constant work rate, along with the patterns that control the self-
regulated evolution of the E-type system, facilitate the planning of resources that
are needed for the E-type system’s evolution activities. Unfortunately, though,
the assessment of the law has been problematic early on (see e.g., [12] or [18]), as
the available information on indicators like personnel time dedicated to software
evolution is typically unavailable and inaccurate. An approximation suggested by
Lehman et al. [12] involves measuring number of changes performed per release.

The case of Amazon services: In all cases we observed that the amount
of changes is not invariant during the lifetime of the Amazon services; on the
contrary, it may vary a lot (Figure 1). Also, it is not possible to speak about
phases in which the amount of changes remains constant. On the other hand, it is
not possible to know precisely the work done behind the scenes (e.g., refactorings,
repairs, etc.). Therefore, based on our results we can not confirm or disprove the
fourth law of software evolution.

4.5 Conservation of Familiarity (Law V)

”The incremental growth of E-type systems is constrained by the need to maintain
familiarity” [11]. Based on the observations of Lehman and his colleagues [12],



10 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

the validity of the law is demonstrated by two factors that relate with incremental
growth. The first one (which is more related to the wording of the law) is that
releases characterized by high incremental growth are followed by releases with
lower incremental growth, thus, smoothening the process of understanding and
mastering the performed changes. The second factor is that in the long term
there is a declining trend in the incremental growth of the system, due to the
increasing complexity of the system, which hardens the understanding of the
changed context.

The case of Amazon services: We do not observe a clear declining trend
in the incremental growth of the operations that are provided by the exam-
ined services (Figure 3). However, as pointed out in the case of the third law
(Section 4.3), spikes in the incremental growth of the operations are typically fol-
lowed by calmness periods of zero growth. Overall, we conclude that the essence
of the fifth law holds. Specifically, the property that comes out from the results
is that releases characterized by non-zero incremental growth, tend to be followed
by releases of zero incremental growth.

4.6 Continuing Growth (Law VI)

”The functional capability of E-type systems must be continually enhanced to
maintain user satisfaction over system lifetime” [11]. As discussed in detail in
[11] the sixth law reflects the addition of new functionalities, while the first
law generally concerns functional and behavioral changes. Based on the exact
wordings of the law, its validity for a particular system involves the existence of a
continuous increasing trend in the growth of the system. To assess the law in the
case of Web services, we employ a metric typically used in the related literature
[11, 18], the functionality growth. In our study, we measure the growth of the
service as the number of operations provided by a particular service release.
More formally, we employ the following metric.

Definition 5. Growth - The growth of the operations Gop(rsi ) for a service
release rsi that belongs to the evolution history, Hs, of a service, s, is defined as
the number of operations provided by rsi , i.e., Gop(rsi ) = rsi .Size[Opers].

The case of Amazon services: In all of the Amazon services we observed
an increasing trend in the growth of the service operations. However, the periods
of growth are interrupted by periods of calmness, consisting of subsequent service
releases that offer the same number of operations (in Figure 4, the solid lines
depict the actual growth, while the dashed and the dotted lines give growth
predictions, discussed later in law VIII). Hence, the results that we obtained
indicate that the sixth law holds. Nevertheless, the services do not grow exactly as
originally stated in the law ; their functional capacity increases, but the increase
is not continuous.

4.7 Declining Quality (Law VII)

”The quality of an E-type system will appear to be declining, unless rigorously
maintained and adapted to operational environment changes” [11].



Insights on the Evolution of Amazon Services 11

Fig. 4. Growth –number of operations– per release ID, and inverse square model pre-
dictions.

As discussed in [11] this law is closely related with the first and the sixth law,
in the sense that the system must be adapted and extended, with respect to the
evolving operational environment. Otherwise, it is likely that the provided func-
tionalities will not be satisfactory for the users and the overall perceived quality
of the system will downgrade. Regarding the assessment of the the seventh law,
Lehman and his colleagues do not provide a concrete definition of quality. On the
contrary, in [11] they state that the quality of an E-type system is a function of
many factors, whose definition, modeling, measurement and monitoring depend
on several aspects, which may include organization, product, process properties
and goals. In the case of Web services, the main problem concerning the as-
sessment of the seventh law is that the required data are typically not publicly
available to the developer of Web service applications. Nevertheless, in [12] and
[11], Lehman and his colleagues discuss a more general strategy to support the
seventh law, which can be used in the case of Web services. Their strategy relies
on logical induction, in the sense that the decline of the system quality, logically
follows from the growth of the system’s functional capacity (law VI), and from
the increasing complexity that comes along with functionality growth (law II).

The case of Amazon services: So far, in our study we have evidence of the
growing functional capacity of the examined services (Figure 4) that confirm the
validity of the sixth law (Section 4.6). Moreover, we have some evidence of the
increasing interface structural complexity of the examined services (Figure 2)
that support the validity of the second law (Section 4.2). Therefore, by following
the general strategy suggested by Lehman and his colleagues in [12, 11], we
have indications that the seventh law holds for the examined services. However,
given that the publicly available specifications of the examined services are not
accompanied by concrete qualitative evaluations, we cannot confirm or disprove
the law, based on indisputable objective measurements.

4.8 Feedback System (Law VIII)

”E-type evolution processes are multi-level multi-loop, multi-agent feedback sys-
tems” [11]. According to Lehman, the last law is a concise summary of the other



12 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

seven. In the literature, the main evidence for the validity of the law is to show
that the actual growth of the system adheres to the inverse square (IS) model,
which provides a feedback-based growth prediction formula [11, 18, 17]. In our
study we also rely on this strategy. Following, we adapt the IS growth prediction
formula, with respect to the definition of growth that we provided in Section 4.6.

Definition 6. IS model for services - According to the IS model, the pre-
dicted operations’ growth, Ĝop(rsi ), for a service release rsi that belongs to the

evolution history, Hs, of a service, s, is: Ĝop(rsi ) = Ĝop(rsi−1) + E

Ĝop(rsi−1)
2
,

where Ĝop(rsi−1) is the estimated operations’ growth for the previous service

release, rsi−1, and E estimates effort. More specifically, E is the average of
individual Ej, calculated for the service release history Hs, as follows: Ej =
(Gop(rsj ) − Gop(rsj−1)) ∗ Gop(rsj−1)2, where Gop(rsj ) refers to the actual opera-
tions’ growth for a service release rsj , and Gop(rsj−1) refers to the actual opera-
tions’ growth for the previous service release rsj−1.

The case of Amazon services: To assess the eighth law we calculated the
estimated values of the operations’ growth, with respect to the IS model, and
compared them with the respective actual values, derived from the evolution
histories of the Amazon services. Specifically, we considered 3 variants of the
model. The first variant, denoted by τ = all, corresponds to the original IS model
employed by Lehman in [12], where E is computed over the entire evolution
history. The other two variants (inspired from [17]), compute an average effort
taking only the recent past into consideration. Specifically, in τ = 2 and τ = 4, E
is computed for every release rsi , over the previous 2 and 4 releases, respectively.
To assess the quality of the estimated values, compared to the actual ones, we
further calculated the values of the R2 statistic for the IS model variants. Based
on the results, we observed that τ = 2 gives quite good estimations (R2 ranges
from 0.60 to 0.96, 0.78 on average). In fact, τ = 2 gives the best estimations in all
cases, but MTurk where τ = all outperforms the other two variants (Figure 4).
So, overall, we have evidence that the eighth law holds; specifically, we can safely
state that the growth of the examined Web services can be accurately estimated
via a feedback-based formula that exploits changes in previous service releases.

5 Practical Implications & Recommendations

Our study revealed that Amazon services live quite normal lives. Although their
loyalty to Lehman’s laws can not be fully confirmed, the Amazon services are
popular and constitute an integral part of a successful platform. Therefore, we
consider the evolution patterns that we observed in our findings, as a baseline for
a list of recommendations that target the developers of Web service applications
and concern service selection and usage.

How can I tell if this service lives a healthy life? Check the change
heartbeat of the service; calm lives consisting of frequent periods of calmness,
where the functional capacity of a service does not change, interrupted by spikes



Insights on the Evolution of Amazon Services 13

of change that involve mostly additions and updates, indicate a normal life. Dur-
ing the calm periods, the service is typically enhanced in terms of correctness,
documentation, security, performance and usability, showing that the service
provider takes perfective maintenance seriously, performs bug fixing and im-
provements. Check the incremental growth of the service; again, the existence
of spikes and calmness periods indicates that the service evolves normally, with
respect to an underlying stabilization mechanism.

Will I have time to absorb changes? Check the incremental growth of
the service; if you observe that releases of non-zero incremental growth, tend to
be followed by releases of zero incremental growth, it means that there will be
ample time to absorb the changes that take place.

Is the heartbeat of changes predictable in some way? Even for healthy
services, it may not really be possible to forecast the heartbeat of changes that
occur over time. Thus, you have to accommodate for resources for the worst
case.

Will I have time to learn about new functionalities? Check the growth
of the service; typically there is an increasing trend in the growth of the service
operations. If you observe that the increase is not continuous, you can count on
the interval for the understanding of the new features.

Is the amount of new functionalities predictable in some way? It
is likely that you could coarsely predict the expansion of the offered operations
and plan accordingly; try to do this via a feedback-based regression formula that
is based on Lehman’s IS model.

Will the complexity of the service be a problem for service usage?
Even for healthy services, complexity could be an issue. You have to assess the
specific aspects of complexity that concern you (e.g., specification, architectural,
structural, etc.). The complexity could be quite high and it may increase over
time. However, if the increase is smooth and predictable, you do not have to
worry too much. In any case, you will have to anticipate the need to allocate
time and resources for understanding and using the service.

Will the quality of the service improve, decline, remain as is? Most
likely you wont be able to tell, based on available information; first you will have
to determine the aspects of quality that concern you, then you you will have to
assess them by yourself. Anticipate the need to allocate time and resources for
QoS evaluation.

6 Threats to Validity

Regarding external validity, our study focused on the in-depth analysis of Ama-
zon services. We studied the evolution of Amazon services that provide various
functionalities. The population of the examined services is reasonable, with re-
spect to similar studies [5, 15, 18, 17]. More importantly, we considered services
that have already made a notable impact in industry. Hence, we are confident
that our findings are representative of the overall population of Amazon services



14 Apostolos V. Zarras, Panos Vassiliadis, and Ioannis Dinos

and that they are of interest to a broad community of developers. Neverthe-
less, the reader should be careful not to overgeneralize the results to the overall
population of existing Web services. At the same time, our approach for the as-
sessment of Web service evolution is general and can be used to perform further
similar studies. Also, the recommendations that we provide for service selection
and usage are general and concern the overall population of Web services.

When it comes to construct validity, we used Membrane SOA, a well-known
open-source API, for the accurate construction of evolution histories. Moreover,
we manually inspected random samples of the collected data. Internal validity,
is not a major issue in our study as we do not attempt to establish any partic-
ular cause-effect relationships. Regarding conclusion validity, we validated the
observed relations and trends with well-known statistic methods.

7 Conclusion

From a broader perspective, we believe that the success of the service-oriented
development paradigm strongly depends on whether services live a normal life.
Understanding the patterns and regularities that rule the evolution of services
is a key factor for increasing the developers’ confidence on the services that they
use, or intend to use. In this paper, we studied the evolution of Amazon ser-
vices. To perform our study we followed a principled approach that is based on
Lehman’s laws of software evolution. Although our findings showed that Ama-
zon services are healthy, this cannot be taken for granted for all services. To this
end, developers of Web service applications can exploit our principled approach,
to assess the health of the services they are interested in. Based on our study,
we further derived a list of practical recommendations that target the devel-
opers of Web service applications and concern service selection and application
maintenance.

Regarding the future directions of this line of research, two open issues of
significant practical importance are the forecasting of service evolution, and the
study of the relationship between the evolution of services (e.g., number, size,
frequency of spikes) and the applications that use them (e.g., number of clients,
usage profile).Metrics for service complexity and growth that account for more
factors (e.g., input/output parameters) is also a research issue that deserves
to be further investigated. Finally, another interesting challenge is to introduce
a principled patterns-based method that allows the developers of Web service
applications to assess the healthiness of the Web services’ that they use.

Acknowledgments. We would like to thank the reviewers of the paper for their
helpful comments. This work was supported from the European Community’s
FP7/2007-2013 under grant agreement number 257178.

References

1. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: On the Evolution of Services.
IEEE Transactions on Software Engineering 38(3), 609–628 (2012)



Insights on the Evolution of Amazon Services 15

2. Athanasopoulos, D., Zarras, A., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-
Driven Decomposition of Service Interfaces Without Access to Source Code. IEEE
Transactions on Services Computing 8(4), 550–562 (2015)

3. Belady, L.A., Lehman, M.M.: A Model of Large Program Development. IBM Sys-
tems Journal 15(3), 225–252 (1976)

4. Espinha, T., Zaidman, A., Gross, H.G.: Web API Growing Pains: Loosely Coupled
Yet Strongly Tied. Journal of Systems and Software 100, 27–43 (2015)

5. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An Empirical Study
on Web Service Evolution. In: Proceedings of the 18th IEEE International Confer-
ence on Web Services (ICWS). pp. 49–56 (2011)

6. Fokaefs, M., Stroulia, E.: Using WADL Specifications to Develop and Maintain
REST Client Applications. In: Proceedings of the 22nd IEEE International Con-
ference on Web Services (ICWS). pp. 81–88 (2015)

7. Godfrey, M.W., Tu, Q.: Evolution in Open Source Software: A Case Study. In:
Proceedings of the 16th IEEE International Conference on Software Maintenance
(ICSM). pp. 131–142 (2000)

8. Herraiz, I., Robles, G., Gonzalez-Barahona, J.M., Capiluppi, A., Ramil, J.F.: Com-
parison Between SLOCs and Number of Files As Size Metrics for Software Evolu-
tion Analysis. In: Proceedings of the 10th IEEE European Conference on Software
Maintenance and Reengineering (CSMR). pp. 206–213 (2006)

9. Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M.: The Evolution of
the Laws of Software Evolution: A Discussion Based on a Systematic Literature
Review. ACM Computing Surveys 46(2), 1–28 (2013)

10. Koch, S.: Software Evolution in Open Source Projects: a Large-scale Investigation.
Journal on Software Maintenance and Evolution 19(6), 361–382 (2007)

11. Lehman, M.M., Fernandez-Ramil, J.C.: Software Evolution and Feedback: Theory
and Practice, chap. Rules and Tools for Software Evolution Planning and Manage-
ment. Wiley (2006)

12. Lehman, M.M., Fernandez-Ramil, J.C., Perry, D.E.: On Evidence Supporting the
FEAST Hypothesis and the Laws of Software Evolution. In: Proceedings of the 5th
IEEE International Software Metrics Symposium (METRICS). pp. 84–88 (1998)

13. Martin, R.C.: Clean Code. Prentice Hall (2009)
14. Perepletchikov, M., Ryan, C., Tari, Z.: The Impact of Service Cohesion on the Ana-

lyzability of Service-Oriented Software. IEEE Transactions on Services Computing
3(2), 89–103 (2010)

15. Romano, D., Pinzger, M.: Analyzing the Evolution of Web Services Using Fine-
Grained Changes. In: Proceedings of the 19th IEEE International Conference on
Web Services (ICWS). pp. 392–399 (2012)

16. Siebel, N.T., Cook, S., Satpathy, M., Rodŕıguez, D.: Latitudinal and longitudinal
process diversity. Journal of Software Maintenance 15(1) (2003)

17. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-Source Databases: Within, Outside,
or Beyond Lehman’s Laws of Software Evolution? In: Proceedings of the 26th
International Conference on Advanced Information Systems Engineering (CAiSE).
pp. 379–393 (2014)

18. Xie, G., Chen, J., Neamtiu, I.: Towards a Better Understanding of Software Evo-
lution: An Empirical Study on Open Source Software. In: Proceedings of the 25th
IEEE International Conference on Software Maintenance (ICSM). pp. 51–60 (2009)


