Chapter 1

QUALITY ANALYSIS OF DEPENDABLE
INFORMATION SYSTEMS

Apostolos Zarras and Valerie Issarny
INRIA UR Rocquencourt

Domaine de Voluceau

78153 Le Chesnay

France

{Apostolos.Zarras. Valerie.Issarny}@inria.fr

Abstract

Large industrial organizations strongly depend on the use of enterprise
information systems for the application of their complex business pro-
cesses. Typically, an enterprise information system (EIS) consists of
a set of autonomous distributed components providing basic services.
Business processes can be realized as workflows consisting of: (1) tasks
combining basic services provided by EIS components and (2) synchro-
nization dependencies among tasks. EIS users have ever-increasing non-
functional requirements (e.g. performance, reliability, availability, etc.)
on the quality of those systems. To satisfy those requirements, EIS
engineers must perform quality analysis and evaluation, which involves
analytically solving, or simulating quality models of the system (e.g.
Markov chains, Queuing-nets, Petri-nets etc).

Good quality models are hard to build and require lots of experience
and effort, which are not always available. A possible solution to the
previous issue is to build automated procedures for quality model gen-
eration. Such procedures shall encapsulate previous existing knowledge
on quality modeling and their use shall decrease the cost of developing
quality models. In this paper, we concentrate on the performance and
reliability of EISs and we investigate the automated generation of qual-
ity models from EIS architectural descriptions comprising additional
information related to the aspects that affect the quality of the EIS.

Keywords: Performance, Quality, Reliability, Software Architecture, Workflow.

P. Ezhilchelvan and A. Romanovsky (eds.), Concurrency in Dependable Computing.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands

[y

2 CHAPTER 1

1. Introduction

Today’s industrial organizations use large scale enterprise information
systems for performing and managing their complex business processes.
An enterprise information system (EIS) typically is built of numerous,
disparate, autonomous subsystems, named EIS components hereafter.
Business processes can then be realized as workflows. A workflow con-
sists of: (1) tasks combining basic services provided by EIS components
and (2) synchronization dependencies among tasks [11, 7, 10]. The busi-
ness processes that need to be supported by an EIS serve as the primary
functional requirements for developing and maintaining the EIS. How-
ever, nowadays, non-functional requirements on the quality of the EIS
(c.g. performance, reliability, availability) are also of significant impor-
tance. EIS architects, designers and developers are supposed to design,
implement and maintain the EIS while taking into account the user’s
non-functional requirements. Consequently, quality analysis is required
during the life-cycle of the EIS.

The analysis of certain quality attributes (e.g. performance, relia-
bility, availability) is not a new challenge since a variety of techniques
have been proposed and used for several years [4, 5]. Those techniques
are supported by an underlying modeling formalism, which allows to
specify structural and behavioral aspects of the inspected system that
affect the system’s quality. Well known examples of such formalisms are
block diagrams, graphs, Markov chains, Petri-nets, Queuing-nets, log-
ics, etc. The resulting models are then analytically solved, or simulated.
Based on the above, the challenge nowadays becomes to make existing
techniques more tractable to the end users. The main problem today
is that building good quality models, which when solved or simulated,
give accurate predictions on the quality of the system, requires lots of
experience and effort. EIS architects, designers and developers use ar-
chitecture description languages (ADLs) and object oriented notations
(e.g. OMT, UML) to design the EIS architecture. It is a common case
that they are not keen on building quality models using Markov chains,
Petri-nets, Queuing-nets etc.

Hence, the ideal approach would be to provide the EIS architects,
designers and developers with an environment, which enables the speci-
fication of EIS architectures and further provides adequate tool support
for the automated generation of models suitable for the quality analysis
of the system. In this paper, we investigate this issue. More specifically,
we focus on the automated performance and reliability analysis of EIS
and our main objectives are summarized in the following two points:

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 3

s The provision of support for modeling at the architectural level,
aspects that affect the performance and reliability of EIS.

m The design and realization of automated procedures for generating
traditional performance and reliability models starting from EIS
architectural descriptions. The key to achieve this point is to for-
mally specify the mapping between EIS architectural models and
traditional models for performance and reliability analysis.

The remainder of this paper is structured as follows. Section 2 presents
previous work related to the quality analysis of systems and identifies
problems that are addressed by the approach proposed in this paper.
Section 3 provides the definition of a base architectural style for specify-
ing EIS architectures. Sections 4 and 5 detail the automated procedures
for the generation of traditional performance and reliability models. Fi-
nally, section 6 concludes this paper with a summary of our contribution.

2. Background and Related Work

Pioneer work on modeling and analyzing the quality of software sys-
tems at the architectural level includes attribute-based architectural
styles proposed in [3]. In general, an architectural style includes the
specification of types of basic architectural elements (e.g. pipe and fil-
ter) that can be used for specifying a software architecture. Morecover,
an architectural style includes the specification of constraints on using
those basic architectural elements and patterns describing the data and
control interaction among them. An attribute-based architectural style
(ABAS) is an architectural style, which additionally provides modeling
support for the analysis of a particular quality attribute (e.g. perfor-
mance, reliability, availability). More specifically, an ABAS provides
support for specifying:

» Quality attribute measures characterizing the quality attribute (e.g.
the probability that the system correctly provides a service for a
given duration, mean response time).

m Quality attribute stimuli, i.c., events affecting the quality attribute
of the system (e.g. failures, service requests).

m Quality attribute parameters, i.e., architectural properties affecting
quality attribute of the system (e.g. faults, redundancy, thread

policy).
m Quality attribute models, i.c., traditional models that formally re-

late the above elements (e.g. a Markov model that predicts reliabil-
ity based on the failure rates and the redundancy used, a Queuing

4 CHAPTER 1

network that enables predicting the system’s response time given
the rate of service requests and based on the performance param-
eters).

In [2] the authors propose an architecture tradeoff analysis method
(ATAM) where the use of an ABAS is coupled with the specification
of a set of scenarios, which roughly constitutes the specification of a
service profile. ATAM has been tested for analyzing qualities like per-
formance, availability, modifiability, and real-time. In all those cases,
quality attribute models (e.g. Markov models, queuing networks etc.)
are manually built given the specification of a set of scenarios and the
ABAS-based architectural description. However, in [2], the authors rec-
ognize the complexity of the aforementioned task. Moreover, it is our
opinion that the need to manually produce quality attribute models
significantly decreases the benefits of using a disciplined method such
as ATAM for analyzing the quality of software systems. ATAM is a
promising approach for doing things right. Nowadays, however, there is
a constant additional requirement for doing things fast and easy. Asking
EIS engineers to build performance and reliability models from scratch
is certainly a drawback towards achieving this objective. To deal with
this drawback, this paper proposes automating the generation of qual-
ity attribute models from architectural descriptions. To accomplish this
goal, there is a need for specifying the mapping between architectural
descriptions and quality attribute models. Hence, we need more formal
definitions of ABAS. Indeed, it is not feasible to generate traditional
quality attribute models starting from scenarios described in natural
language and architectural descriptions within which the relationships
among basic architectural elements and quality attribute measures, pa-
rameters and stimuli are not precisely defined.

Based on the previous remarks, in the following section we present the
definition of a base architectural style for the specification of EIS archi-
tectures. Then, in sections 4 and 5 we detail the mapping between EIS
architectural models and performance and reliability quality attribute
models.

3. A Base EIS Architectural Style

Figure 1(a) gives the UML definitions of the meta-elements used for
the specification of EIS architectural models. The semantics and the use
of those elements are further discussed in the remainder of this section.
Morcover, Figure 1(b) gives the graphical representations of the EIS
meta-elements.

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 5

ElSService EISNode

1.* +provid

’ EISSoftwareArchitecture

1

1.4 A

EISComponent EISResourceRef
= 1 g [k

Notification

T or)

EISSeniceProfile ElSWorkﬂow

*requires
1

5 IOSe(L

lo]
B 1 N
1 //
{xor} +requires
EISDependancy

(a) UML definitions of meta-elements for the specification of EIS architectures.

DI'OV\UES
ElSTask N {

{xor} +provides

EIS Task

- EIS Component i
s alternative
................ 10 Sets 4
@ 4 Il

EIS Node

EIS Resource Ref/ Notification

EIS Synchronization Dependency

(b) Graphical representations of the EIS meta-elements.

Figure 1. The structure and representation of an EIS architectural model.

3.1. Basic EIS architectural elements

An EIS software architecture comprises the specification of a non
empty set of EIS components and the specification of a non empty set
of EIS services. An EIS component provides one, or more of the EIS
services, and an EIS service is provided by at least one EIS component.
Every EIS component is associated with an EIS node, representing the
execution platform on top of which it is deployed. Technically, EIS com-
ponents and services are specified textually using Darwin-like notations.
Darwin is among the first and most popular ADLs (for more information
see [8]).

6 CHAPTER 1

An EIS architectural description further includes the specification of a
service profile. A service profile is a non-empty set of EIS workflows de-
scribing how the EIS is used. An EIS workflow is a model that specifies
the coordination of a set of EIS tasks. The workflow model we use is in-
spired by the one proposed in [11], which has recently become an OMG
standard [10]. Tasks combine basic EIS services provided by compo-
nents. More specifically, a task requires using a set of alternative input-
sets. An input-set consists of inputs, which may be either references to
EIS components, or notifications from other tasks. While executing, a
task uses one of the alternative input-sets to produce an output-set (i.e.
a set of references to components, or notifications to other tasks). By
definition, a set of alternative output-sets may be produced by the task.
Task coordination is specified in terms of synchronization dependencies
among inputs and outputs. A task may be compound representing a
workflow model. More specifically, a compound task consists of sub-
tasks and synchronization dependencies between sub-tasks. The input
and output sets of a compound task are mapped on input and output
sets of the sub-tasks.

Technically, tasks and synchronization dependencies among them are
specified textually using the language detailed in [11]. Morcover, textual
specification of tasks describe the way different alternative input sets are
used to produce the corresponding alternative output sets.

To facilitate the specification and quality analysis of EIS architec-
tures, we developed a prototype tool whose use is demonstrated in the
following subsection. The tool allows both the graphical and textual
specification of EIS architectures. Already existing parsers for the Dar-
win and the workflow specification languages are then used for verifying
the correctness of those specifications.

3.2. Example

The use of the tool for the specification and quality analysis of EISs
has been tested with a real world case study, part of which we use here
as an example. The goal of case study is the quality analysis of an EIS
used for managing the Bull SA organization. The basic EIS architecture
consists of a variety of autonomous and disparate components including;:

m The Log component, which provides access to log files produced
by a firewall system used by Bull.

s The Billing component, which provides billing services for Bull
employees and customers.

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 7

m The Department component, which provides access to the personal
records of Bull employees and customers.

The EIS service profile includes, among others, a workflow which com-
bines services provided by the aforementioned EIS components into a
complex billing service. The workflow consists of the following tasks:

m The Bill task, which uses services of the Log and the Department
server to produce per-customer bills.

m The Payment task, which takes as input a bill produced by the
Bill task and a reference to the Department server, and checks
whether the bill is accepted, or not.

m The Transfer task, which is activated for all accepted bills and
eventually uses the Billing server to transfer money from the
account of the customer to a bank.

m The Claim task, which is activated for all rejected bills and uses
the Billing server to cancel them.

Figure 2, gives a snapshot of the tool we developed showing the spec-
ification of the complex billing service workflow.

4. Automated Performance Analysis

The basic performance measures used to characterize the execution
of EIS workflows and tasks are given in Table .1. Moreover, the basic
stimuli that causes changes on the values of those measures is the initia-
tion of workflows. Hence, an EIS workflows is further associated with an
attribute whose value gives the statistical pattern by which the workflow
is initiated. Finally, EIS components are characterized by their thread
and scheduling policies, their capacity and the work demands needed for
providing the associated EIS services. In the remainder, we present how
EIS architectural descriptions including the specification of the previous
properties can be mapped to traditional performance models.

4.1. Mapping EIS models on traditional
performance models

For EIS performance analysis, we use a tool-set, called QNAP2 !,
providing a variety of both analytic and simulation techniques. QNAP2
accepts as input a queuing network model of the system that is to be
analyzed.

The general structure of a queuing network model is given in Figure 3.
A queuing network model consists of a set of stations providing services

8 CHAPTER 1

File Eit Tools Window Help

3
[~}

ok

)

¥
-

1
[
O

e

T
g

0 @

)
o)
7

/

Name of the Task: Payment

Inputsets: |: ol

- =

02

Edit ” Cancel ‘

Figure 2. The specification of the complex billing service.

requested by customers. A service is associated with a set of transi-
tion rules describing what happens to a customer after the customer is
served. A station is further associated with queues that store requesting
customers. In a queuing network, we may have special stations, called
source stations, whose purpose is to create new customers. Those sta-
tions are characterized by a statistical pattern according to which they
generate customers.

Given an EIS architectural description the steps for mapping it to
the corresponding queuing network are the following. First, a set of
stations is generated, corresponding to EIS nodes on top of which EIS
components and workflows are deployed. Moreover, for every workflow
specified in the EIS service profile, a source station, characterized by
the corresponding statistical pattern, is generated. Formally, the follow-
ing OCL 2 constraint gives the post condition of the first step of the
generation procedure.

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS

Measure Type
mean-service-time Real
mean-waiting-time Real
mean-execution-time Real

mean-system-throughput | Real

Stimuli Type

statistical-pattern Real |

exp : Real -> Real |

hexp : Real, Real -> Real |
erlang : Real, Integer -> Real

Parameter Type

thread-policy Enum{single, multi, pool}

scheduling-policy Enumf{fifo, lifo, quantum, priority,
order-preserving, sharing}

capacity Integer | infinite

work-demands Real |

exp : Real -> Real |
hexp : Real, Real -> Real |
erlang : Real, Integer -> Real

Table .1. EIS performance measures, stimuli and parameters

QueungNetworkModel
)
. J; e
+child

N F /1= PO e O el v

" ¢capacity : Real
[LottreacPolcy : Eru ETTJ oscheduingPolicy : Enum — 1
1.* 1 * +sourceCustomer

\
e

Figure 3. Basic meta-elements used for the specification of queuing networks.

EISSoftwareArchitecture:

self.eisNode->forall(

node |self.queuingNetworkModel.station->exists (
st |st.name = node.name)) and
self.eisServiceProfile.eisWorkflow->forall(

wf |self.queuingNetworkModel.station->exists (

st |st.name = wf.name->concat(’SourceStation’) and
st.statistical-pattern = wf.statistical-pattern)

9

10 CHAPTER 1

Then, for every EIS component, a queue is generated and associated
with the appropriate station. Performance parameters related to the
capacity and scheduling policy of the component are used to define the
corresponding properties that characterize the queue. In addition, a
service is generated for every EIS service provided by the component.
The generated service is characterized by the work-demands required for
the corresponding EIS service. Formally, the post condition of this step
is:

EISSoftwareArchitecture:
self.eisComponent->forall(
res |self.queuingNetworkModel.station->select(
st | st.name = res.eisNode.name).queue->exists(

q | q.name = res.name and q.scheduling-policy =
res.scheduling-policy and q.capacity = res.capacity
) and
res.eisService->forall(
eisserv Iself.queuingNetworkModel.station—>select(
st | st.name = res.eisNode.name
) .service->exists(
serv | serv.name = eisserv.name and
serv.work-demands = eisserv.work-demands)))

Technically, up to this point, the parsers for the Darwin and the work-
flow specification languages are used to parse the EIS architectural de-
scriptions and to generate the queuing network stations. In the next
step, for every workflow in the service profile and for every task t in
this workflow, a queue, tQueue, is generated and associated with the
corresponding station. The generated queue is used to synchronize the
execution of tasks that depend on t. tQueue queues customers sent by
tasks that depend on t, requesting t’s activation. Moreover, the service
tService provided to customers queued in tQueue is generated and as-
sociated with the corresponding station. The post condition of this step
is:

EISSoftwareArchitecture:
self.eisServiceProfile.eisWorkflow->forall(
wf | wf.eisTask->forall(
t |self.queuingNetworkModel.station->select(
st | st.name = t.eisNode.name).queue->exists(
q | q.name = t.name->concat(’Queue’))) and
wf.eisTask->forall(
t |self.queuingNetworkModel.station->select(
st | st.name = t.eisNode.name
) .service->exists(
serv | serv.name = t.name->concat(’Service’))))

The code of tService follows the pattern described below:

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 11

m The initiation of the workflow causes the creation of customers
initc sent to the queue of each task t.

m Serving initc causes the generation of new sets of customers, one
per alternative input set required by task t. FEach new set of
customers is sent to the stations that host queues of the tasks
providing the corresponding outputs.

®m initc waits until one of the new customer sets is served. Then,
another set of customers is created and sent to the queues that
correspond to the EIS components used by t. The exact code
generated here depends on the way tasks use EIS services provided
by EIS components.

m initc remains blocked until all of the created customers are served
by the EIS components. Then, an output set is produced and
customers waiting on stations for this particular output set are
unblocked. Finally, customer initc is unblocked and destroyed.

Technically, to generate the queues and the services, used for the
synchronization of tasks, we use the parsers for the Darwin and the
workflow specification languages.

4.2, Example

Getting back to our example, the three components used by the tasks
of the BillingServiceWorkflow are multi-threaded and are modeled to
have an unlimited capacity. The policy according to which they serve re-
quests is FIFO. Finally, the work demands for providing the EIS services
associated with them are constant (we do not provide further details here
due to the lack of space). Hence, for all three components we have:

EISComponent :
self.thread-policy = multi and
self.scheduling-policy = fifo and
self.capacity = infinite

The BillingServiceWorkflowis initiated regularly at the end of each
month. Hence we have:

BillingServiceWorkflow:
self.statistical-pattern = 30%24+%3600

A queuing network for QNAP2 is then generated simply, using the tool
functionality, and according to the mapping defined in the previous sub-
section. In particular, the following elements are generated: 3 stations
and the corresponding queues representing the components; 4 stations

12 CHAPTER 1

1 /STATION/
2 NAME = PaymentQueue;
3 TYPE = INFINITE;

4 SERVICE =
5 BEGIN

6 IF(Payment-H(CUSTOMER.wfid, 4).STATE <> TRUE) THEN

7 BEGIN

8 SET (Payment-H(CUSTOMER.wfid, 4));

9 PRINT("Payment serving workflow", CUSTOMER.wfid);

10 tmp-Bil11(1) := NEW(CUSTOMER) ;

11 tmp-Bill(1) .wfid:= CUSTOMER.wfid;

12 tmp-Bill(1) .Bill-I0S :=1;

13 tmp-Bill(1) .all-avai:= NEW(FLAG);

14 TRANSIT(tmp-Bill(1), BillStation, Payment-CL);

15 WAITOR (tmp-Bill(1).all-avai);

16 TRANSIT(NEW(CUSTOMER) , Department);

17 JOIN;

18 res_H := HISTOGR(s_pay, (0. 4,0. 4,0. 4))
19 IF ((res_H >0.0) AND (res_H <= 0.33333334)) THEN

20 BEGIN

21 SET(pay_H(CUSTOMER.wfid, 1));

22 END

23 ELSE

24 IF ((res_H >0.33333334) AND (res_H <= 0.6666667)) THEN
25 BEGIN

26 SET(pay_H(CUSTOMER.wfid, 2));

27 END

28 ELSE

29 IF ((res_H >0.6666667) AND (res_H <= 1.0)) THEN

30 BEGIN

31 SET(pay_H(CUSTOMER.wfid, 3));

32 END;

33 TRANSIT(OUT) ;

2

56 IF(0OK-fin AND OK-Transfer AND OK-Payment AND OK-Bill AND OK-rec AND OK-Claim) THEN
57 SET(CUSTOMER.all-avai);

58 END; & of ELSE CLAUSE

59 END; & of service

Figure 4. Part of the code of the service provided to customers used for the synchro-
nization of task Payment with task Bill.

hosting queues used for the synchronization of tasks; a source station
whose statistical pattern equals to the one of the BillingServiceWorkflow.

Figure 4 gives part of the model of the station that hosts the queue
used to synchronize the Payment task with the rest of the tasks of the
BillingServiceWorkflow workflow. During the initiation of the work-
flow, an initiation customer is sent to the PaymentQueue. As shown in
Figure 2, the Payment task depends on the completion of the Bill task.
Consequently, serving the initiation customer results in the creation of
a synchronization customer, which is sent to BillQueue requesting the
initiation of the Bill task (Figure 4, lines 10-14). The initiation cus-
tomer is blocked until the newly created synchronization customer is
properly served (Figure 4, line 15). Then, a new customer is sent to the
station that hosts DepartmentQueue, asking for a basic service. Once
this customer is served, Payment completes and the initiation customer
is destroyed (Figure 4, lines 16-33).

To give an idea of the complexity of the resulting model, its total size
for the complex billing service workflow is 490 lines.

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 13

Measure Type
reliability 0..1

Stimuli Properties
. domain Enumf{time, value}
Failure
perception | Enumf{consistent, inconsistent }

Parameter | Properties

nature Enumf{intentional, accidental}
phase Enum{design, operational}
causes Enum{physical, human}

Fault boundaries | Enum{internal, external}

persistence Enum{permanent,temporary}
arrival-rate | Real

Table .2. EIS reliability measures, stimuli and parameters

5. Automated Reliability Analysis

The basic reliability measure for EIS is the probability that a work-
flow successfully completes during the lifetime of the EIS. Getting to
the reliability parameters, EIS components, tasks and nodes may fail
because of faults causing errors in their state. The manifestations of
errors are failures [5]. Hence, faults are the basic parameters that affect
the reliability of an EIS, while failures are the stimuli causing changes
in the value of the reliability measure. Faults and failures are further
characterized by properties given in Table .2. Different combinations
of the values of those properties lead to the definition of fault and fail-
ure taxonomies (e.g. see [5]), facilitating the automated generation of
traditional reliability models. Except for faults and errors, another pa-
rameter affecting reliability is design diversity. Frequently, more than
one components provide similar services, which can be exploited towards
achieving a particular objective. Such cases can be specified using the
workflow specification language. In particular, EIS tasks may require
one, or more alternative input-sets and may provide one, or more alter-
native output-sets. Hence, tasks representing N-Version-Parallel (NVP)
and Recovery Block (RB) schemas [6] can be defined and taken into
account for the generation of traditional reliability models.

5.1. Mapping EIS models on traditional
reliability models

Reliability analysis techniques are typically based on state space models
whose overall structure is given in Figure 5. A state space model consists

14 CHAPTER 1

StateSpaceModel | ’W‘
~ 1. EnERen R RS 1.

+dest

+soury
\ State |_
:

e &
/1 L
/

e

SubState

+constrainted 1

DeathStateConstraint

/
+constrainted 1
SubStateConstraint

_| StateConstraint
FCI

1.7 +sourceState
+destState
\ \
\ \
\
\

i \
\ \

StateRange | tdg¢fned \

1 \1

Oq.» \
SubStateRange TransitionRule +constrainted
transitionRate : Real

Figure 5. Basic meta-elements used for the specification of state space models.

of a set of transitions between states of the system. A state describes
a situation where either the system operates correctly, or not. In the
latter case the system is said to be in a death state. The state of the
system depends on the state of its constituent elements. Hence, it can be
seen as a composition of sub states, each one representing the situation
of a constituent element. A state is constrained by the range of all
possible situations that may occur. A state range can be modeled as a
composition of sub state ranges, constraining the state of the elements
that constitute the system. A transition is characterized by the rate
by which the source situation changes into the target situation. If, for
instance, the difference between the source and the target situation is
the failure of a component, the transition rate equals to the failure rate
of the component.

The specification of large state-space models is often too complex and
error-prone. The approach proposed in [1] alleviates this problem. In
particular, instead of specifying all possible state transitions, the authors
propose specifying the state range of the system, a death state constraint,
and transition rules between sets of states of the system. In a transition
rule, the source and the target set of states are identified by constraints
on the state range (e.g. if the system is in a state where more than
2 components are operational, then the system may get into a state
where the number of components is reduced by one). Given the previous
information, a complete state space model can be generated using the
algorithm described in [1]. Briefly, the algorithm takes as input an initial
state and recursively applies the set of the transition rules. During a

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 15

recursive step, the algorithm produces a transition to a state derived
from the initial one. If the death state constraint holds for the resulting
state, the recursion stops.

Based on the above, in the remainder we detail how to exploit the
EIS architectural description to generate the information needed for the
generation of a corresponding complete state space model. The first
step towards that goal is to generate a state range definition for each
workflow belonging to a given service profile. The state of a workflow
is composed of the states of the tasks making up the workflow and the
states of the nodes on top of which tasks and components are deployed.

The state of a task consists of a state representing the situation of the
task itself and states representing the situations of the task’s alternative
input and output sets. The situation of a task depends on the kinds of
faults that may cause the failure of this task. For instance, if the task
fails due to permanent faults, its state may be Waiting, Busy, Complete,
or Failed. If the task fails due to intermittent faults, its state may be
Waiting, Busy, Complete, FailedActive, or FailedPassive.

The state of an input (resp. output) set, ioset, is composed of the
states of the individual inputs io (resp. outputs) included in the set. If
io is a notification, its state may be either Available, NotYetAvailable,
or NeverAvailable; io is NeverAvailable if the task that provides it
has failed, or completed by producing an output set that does not in-
clude io. If io is a reference to a component c, its state depends on the
kind of faults that may cause the failure of c.

Based on the previous, the post condition of the generation of a state
range is given below:

EISSoftwareArchitecture:
self.eisServiceProfile.eisWorkflow->forall(
wf |wf.eisTask->forall(
t | wf.stateRange.subStateRange->exists(
str, strNode | strNode.name =
t.eisNode.name->concat (’StateRange’) and
str.name = t.name->concat(’StateRange’) and
t.requires->union(t.provides)->forall(
ioSet |str.stateRange.subStateRange->exists(
str’ |str’.name = ioSet.name->concat(’StateRange’) and
ioSet->forall(
io | str’.subStateRange->exists(
str’’, strNode’’ | str’’.name =
io.name->concat (’StateRange’) and
strNode’’ .name = io.eisNode.name->concat(’StateRange’)

1))

After generating the state range definition for a workflow wf, the step
that follows comprises the generation of transition rules for every task t

16 CHAPTER 1

of wf and for the EIS nodes. Those rules depend on the kind of faults
that may cause the failure of t. For permanent faults, the rules for task
t follow the pattern below:

m [f wf is in a state where t is Waiting then:

— If an alternative input set ioset is available then wf may get
into a state where t is Busy.

— If none of the alternative input sets ioset may eventually
become available then wf may get into a state where all tasks
depending on t are aware about the fact that its output sets
will never be available.

The previous are, typically, fast transitions, i.e. the probability
that they take place is close to 1.

m [f wf is in a state where t is Busy due to the availability of ioset
then wf may get into a state where:

— t is Complete. Again, this is a fast transition.

— tis Failed and all tasks depending on t are aware about the
fact that its output sets will never be available. The rate of
getting into this state equals to the arrival rate of the fault
that caused the failure of t, i.e. t.fault.arrival-rate.

— t is Waiting and io belonging to ioset is Failed. All EIS
references io’ used by other tasks of wf, for which io’ .eisComponent
= io.eisComponent holds, get into a Failed state. The rate
of this transition equals to the arrival rate of the fault that
caused the failure of io, i.e. io.eisComponent.fault.arrival-rate.

The rules for a node n are more obvious, and are not given here
due to the lack of space. Finally, a death state constraint must be
generated. In general, wf is in a death state if none of its output sets
may eventually become available due to the unsuccessful termination of
the tasks providing the corresponding outputs.

Technically, the generation of the information discussed in this section
requires using the parsers for the Darwin and the workflow specification
languages.

5.2. Example

Getting back to our example, from the workflow specification given in
Figure 2 we can generate the necessary information that serves as input
to the algorithm presented in [1]. More specifically, both the tasks of

QUALITY ANALYSIS OF DEPENDABLE INFORMATION SYSTEMS 17

the BillingServiceWorkflow and the components used by those tasks
may fail due to permanent faults. Hence,

BillingServiceWorkflow:

self.eisResource->forall(

res | res.fault.persistence = permanent
) and
self.eisServiceProfile.eisTask->forall(
res | res.fault.persistence = permanent

)

The state of the workflow is composed of the states of the Bill,
Payment, Transfer, and Claim tasks, and the states of the nodes on
top of which tasks and components are deployed. The range of each of
those states is Enum{Waiting, Busy, Complete, Failed}.

Figure 6 gives the transition rules generated for the Payment task and
used as input to the realization of the algorithm [1]. In particular, if
the workflow is in a state where Payment is Waiting and its input set is
available, then the workflow may get to a state where Payment is Busy
(lines 1-4). If the workflow is in a state where Payment is in a Busy
state, the workflow may get into a state where Payment is Complete
(lines 18-29). Alternatively, the workflow may get into a state where
Payment is Failed and the Claim and Transfer tasks are aware about
the fact that the Payment outputs will never become available. (lines
30-37). The workflow reaches a death state if neither of its output sets
may eventually become available.

The overall size of the model used as input for the algorithm [1], is
325 lines of code. Moreover, the generated Markov model contains 616
states. 282 out the 616 are death states. Finally, the model contains
2092 transitions.

6. Conclusion

In this paper, we presented an approach for automating the perfor-
mance and reliability analysis of EIS systems. The approach is based
on the formal definition of mappings between EIS architectural models
and traditional performance and reliability models. The benefits of the
proposed approach are both qualitative and quantitative. In particular,
the quality of traditional performance and reliability models is assured
since the required experience for building them is encapsulated in auto-
mated model generation procedures. Moreover, the cost of performing
performance and reliability is minimized since the development of the
corresponding traditional models is achieved automatically. It is worth-
noticing that according to the authors of [2], 25% of the time required for
performing architecture tradeoff analysis of software systems is actually

18 CHAPTER 1

1 IF (Payment = WAITING) THEN

2 IF (PaymentInsetOO = AVAILABLE AND

3 PaymentInsetO1 = AVAILABLE) THEN

4 TRANTO Payment = BUSY BY INPUT_AVAILABLE;

5 ELSE

6 IF (PaymentInsetO0 = NEVERAVAILABLE OR PaymentInset00 = FAILED OR
7 PaymentInsetOl = NEVERAVAILABLE OR PaymentInsetOl = FAILED) THEN
8 TRANTO

9 Payment = COMPLETE ,

10 PaymentOutsetO00 = NEVERAVAILABLE,

11 PaymentOutset10 = NEVERAVAILABLE,

12 TransferInset02 = NEVERAVAILABLE,

13 ClaimInsetO1 = NEVERAVAILABLE BY

14 INPUT_AVAILABLE;

15 ENDIF;

16 ENDIF;

17 ENDIF;

18 IF (Payment = BUSY) THEN

19 TRANTO Payment = COMPLETE,

20 PaymentOutsetO0 = AVAILABLE,
21 TransferInset02 = AVAILABLE BY
22 INPUT_AVAILABLE;

23 ENDIF;

24 IF (Payment = BUSY) THEN

25 TRANTO Payment = WAITING,

26 PaymentInset00 = FAILED BY
27 LAMBDA;
28 ENDIF;

29 IF (Payment = BUSY) THEN
30 TRANTO Payment = WAITING,

31 PaymentInsetO1 = FAILED BY
32 LAMBDA;
33 ENDIF;

34 IF (Payment = BUSY) THEN
35 TRANTO Payment = COMPLETE,

36 PaymentOutset10 = AVATLABLE,
37 ClaimInsetO1 = AVAILABLE BY
38 INPUT_AVAILABLE;

39 ENDIF;

40 IF (Payment = BUSY) THEN

41 TRANTO Payment = FAILED,

42 PaymentOutsetO0 = NEVERAVAILABLE,
43 PaymentOutset10 = NEVERAVAILABLE,
44 TransferInset02 = NEVERAVAILABLE,
45 ClaimInsetO1 = NEVERAVAILABLE BY
46 LAMBDA;

47 ENDIF;

Figure 6. Transition rules for the Payment task, used for the generation of a complete
state space model for the BillingServiceWorkflow.

spent on building traditional quality models. The approach proposed in
this paper enables decreasing this cost.

The approach presented here can be applied for automating the qual-
ity analysis of EISs regarding several other attributes. More specifically,
the case of availability is pretty similar to the one of reliability. From
our point of view, an interesting perspective is to extend this work to-
wards the analysis of EISs regarding qualities attributes like openness
and scalability.

Notes

1. www.simulog.com

2. OCL is a first order logic notation used for specifying constraints on UML models.
OCL supports the basic logical operators (e.g. and, or, forall, exists, implies). Morcover,
the . operator allows to navigate through associations defined in the UML model. For more
details see [9]

REFERENCES 19

References

[1]

2]

[10]

[11]

S. C. Johnson. Reliability Analysis of Large Complex Systems Us-
ing ASSIST. In Proceedings of the 8th Digital Avionics Systems
Conference, pages 227-234. ATAA/IEEE, 1988.

R. Kazman, S. J. Carriere, and S. G. Woods. Toward a discipline
of scenario-based architectural engineering. Annals of Software En-
gineering, 9:5-33, 2000.

M. Klein, R. Kazman, L. Bass, S. J. Carriercand M. Barbacci, and
H. Lipson. Attribute-Based Architectural Styles. In Proceedings of
the First Working Conference on Software Architecture (WICSAT),
pages 225-243. TFIP, Feb 1999.

H. Kobayashi. Modeling and Analysis : An Introduction to System
Performance FEvaluation Methodology. Addison-Wesley, 1978.

J-C. Laprie. Dependable Computing and Fault Tolerance : Con-
cepts and Terminology. In Proceedings of the 15th International
Symposium on Fault-Tolerant Computing (FTCS-15), pages 2-11,
1985.

J-C. Laprie, J. Arlat, C. Béounes, and K. Kanoun. Definition and
analysis of hardware and software fault-tolerant architectures. IEFEE
Computer, 23(7):39-51, July 1990.

H. Ludwig and K. Whittigham. Virtual Enterprise Co-ordinator
- Agreement-Driven Gateways for Cross Organizational Workflow
Management. In Proceedings of the Interantional Joint Conference
on Work Activities Coordination and Collaboration (WACC’99),
Software Engineering Notes, pages 29-38. ACM, 1999.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Dis-
tributed Software Architectures. In Proceedings of the 5th European
Software Engineering Conference (ESEC’95), number 989 in LNCS,
pages 137-153. Springer Verlag, 1995.

OMG. Object Constraint Language Specification, 1.1 edition, Sept
1997.

OMG. UML Profile for Enterprise Distributed Object Computing,.
Technical report, OMG, 2000.

S.M. Wheater, S.K. Shrivastava, and F. Ranno. A CORBA Com-
pliant Transactional Workflow System for Internet Applications.

In Proceedings of MIDDLEWARE’9S, pages 3-18. IFIP, Septem-
ber 1998.

