
A Pipeline Architecture Incorporating a Low-Cost
Error Detection and Correction Mechanism

A. Floros and Y. Tsiatouhas

Dept. of Computer Science
University of Ioannina

Ioannina, Greece
{afloros, tsiatouhas}@cs.uoi.gr

A. Arapoyanni
Dept. of Informatics & Telecom.

University of Athens
Athens, Greece

arapoyanni@di.uoa.gr

Th. Haniotakis
Dept. of Electrical & Computer Eng.

Southern Illinois University
Carbondale, USA
haniotak@siu.edu

Abstract— High reliability requirements in many modern
applications make soft errors an extremely important design
aspect and pose new challenges in nanometer technologies. In
addition, timing faults that may escape fabrication tests
become a real concern in high complexity, high frequency
designs. To confront this situation, a concurrent error
detection and correction circuit and technique are presented in
this work. Their application in pipeline architectures is
analyzed and the pipeline error recovery mechanism is
illustrated. The proposed scheme is characterized by low
silicon area requirements, compared to earlier approaches,
and the need of only a single clock cycle for pipeline recovery.

I. INTRODUCTION
As modern CMOS nanometer technologies scale down

and the complexity of integrated circuits increases, an
ongoing difficulty to achieve adequate reliability levels and
keep the cost of testing within acceptable bounds is reported
[1-2]. The device size scaling, the increase of the operating
frequency and the power supply reduction affect circuit's
noise margins and reliability. The probability of transient
faults generation increases and many times it is hard to
achieve the soft error rate (SER) specifications.

Single event upsets (SEUs) and single event transients
(SETs), due to alpha particles and cosmic neutrons, play an
important role to transient fault and consequently soft error
generation in nanometer IC technologies. In addition, timing
related transient faults due to crosstalk, power supply
disturbance or ground bounce are known mechanisms for
soft error generation. Important problems also arise due to
timing faults. The increased path delay deviations, due to
process variations, and the manufacturing defects that affect
circuit speed may result in timing errors that are not easily
detectable (in terms of test cost) in high frequency and high
device count ICs. Considering also the huge number of paths
in modern circuit designs along with the complexity of
testing, it is easy to realize that a significant number of
defective ICs may pass the fabrication tests. Furthermore,
modern systems running at multiple frequency and voltage
levels may suffer from timing errors generated by numerous
environmental and process related (and many times data
dependent) variabilities that can affect circuit performance

[3]. Consequently, concurrent testing techniques for error
detection and correction are becoming mandatory in order to
achieve acceptable levels of error robustness and meet
reliability requirements.

Duplication and triplication techniques and self-checking
design [4] are widely used to achieve systems reliability. In
addition, soft and/or timing error detection techniques have
been proposed in the open literature [5-8] that are based on
the temporal nature of the transient faults or the delayed
response of timing faults to provide error tolerance using
time redundancy.

Soft error protection techniques for special purpose, scan
based, microprocessor Flip-Flops have been proposed in [2].
These techniques refer to designs where each system Flip-
Flop consists of two distinct Flip-Flops (the main Flip-Flop
and the scan Flip-Flop). The scan Flip-Flop is modified to
operate as a shadow of the main Flip-Flop, latching the same
data. According to the first technique, a C-element and a
keeper, based on a cross couple inverter pair, are added at the
output of each system Flip-Flop to ensure that any soft error
that may affect the main Flip-Flop will not be propagated to
the logic stage that follows. This way a 20 times reduction in
SER is reported. An alternative technique is based on the use
of a XOR gate to compare the outputs of the Flip-Flop pair
and detect possible soft errors in the system Flip-Flop. Then,
three extra logic gates are exploited to enable the trapping of
any error indication signal in the scan Flip-Flop. This error
indication signal is shifted out using the existing scan path in
order to activate system recovery through re-execution. The
main drawback of these techniques is the high silicon area
cost even in case of microprocessors where pairs of Flip-
Flops are incorporated in the standard design. Furthermore,
in the second technique, although the global routing of error
signals is reduced reusing the scan facilities, there is an extra
high cost in error detection latency.

Recently, a pipeline architecture (named Razor) with
timing error detection/correction for low power operation of
systems exploiting dynamic voltage scaling has been
proposed in [3]. Fig. 1 illustrates the Razor Flip-Flop that is
the basic element of the architecture in the construction of
the stage registers. It consists of the main Flip-Flop, an

This work is co-funded by the European Union in the framework of the program
“Pythagoras II” of the Hellenic Ministry of Education (funded by 25% from national
sources and 75% from the European Social Fund – ESF).

1-4244-0395-2/06/$20.00 ©2006 IEEE. 692

XOR Error_Rj

Razor Flip-Flop

CLK

Logic

Stage Sj+1
0

1

D_CLK

Error_L

Main
Flip-

Shadow
Latch

MUX

Logic

Stage Sj

assistant shadow latch, a multiplexer (MUX) and a XOR gate
as comparator. As in [7], a delayed clock D_CLK, with
respect to the circuit clock CLK, is used to control the
shadow latch and capture the response of the combinational
logic.

Figure 1. The Razor Flip-Flop

In the error free case both the main Flip-Flop and the
shadow latch will capture the same data. The XOR gate
compares the outputs of the main Flip-Flop and the shadow
latch and remains low while the pipeline operation continues
in the normal mode. In case of a delay in the evaluation of
the logic stage Sj that exceeds circuit specifications,
erroneous data are latched in the main Flip-Flop while the
shadow latch will capture the correct (delayed) data, since it
operates with a delayed clock. Consequently, the XOR
output will rise to high indicating the detection of an error.
The generation of a timing error in a clock cycle i+1 at a
pipeline stage Sj implies that the data of stage Sj+1 in the
following cycle i+2 are incorrect and must be flushed. This
action is quiet easy to be accomplished since the shadow
latch contains the correct data without the need to re-execute
them through the failing stage. These correct data are
injected into the pipeline in the next cycle i+3 allowing stage
Sj+1 to compute the correct responses.

In the Razor architecture two possible approaches for
pipeline error recovery have been adopted. The first one is
the clock gating where in case of an error detection the entire
pipeline stalls by gating the next global clock edge for one
cycle. This period is exploited by each stage to re-compute
its result using the correct data of the shadow latch. The
second approach used in Razor is the counterflow pipelining
which is based on the namesake processor architecture [9].
Note that in the Razor case there is a high silicon area cost
mainly associated with the use of an extra latch for each
system Flip-Flop.

In this paper, we present a low-cost pipeline architecture
that incorporates concurrent soft and timing error detection
and correction capabilities with the minimum error detection
latency and a single clock cycle penalty for error recovery.
The proposed approach requires only a XOR gate, for error
detection, and a multiplexer, in latch configuration for error
correction, per system Flip-Flop. Thus, the silicon area
requirements are reduced drastically, compared to earlier
techniques. The paper is organized as follows. In Section II
the proposed (Blade) error detection/correction architecture
is presented and the pipeline recovery mechanism is

analyzed. In Section III experimental results from electrical
simulations on a pipeline structure are presented to
demonstrate the proposed approach and explore its
efficiency. Finally, the conclusions are drawn in Section IV.

II. THE BLADE PIPELINE ARCHITECTURE

A. Error detection and correction
Fig. 2a presents the proposed Blade Flip-Flop for the

register of a pipeline stage. Compared to the Razor Flip-Flop
the shadow latch has been eliminated. Instead, the
multiplexer with its output connected to one of its inputs
plays the role of the extra memory element (latch), while the
XOR gate directly compares the data from the input M and
the output Q of the main Flip-Flop.

Figure 2: a) The Blade Flip-Flop and b) Blade Flip-Flop operation with a

timing fault in cycle i+1 and recovery in cycle i+3.

The memory state of the multiplexer is activated by the
Capture signal which in the error free case is controlled by
the Cap_CLK signal, a delayed version of the clock signal
CLK with a lower duty cycle. An OR gate is used to provide
the register error indication signal Error_Rj from the local
error signals (Error_L) of the XOR gates in the Blade Flip-
Flops of a register. Finally, the error indication signal
Error_Rj is captured in a single Flip-Flop (error Flip-Flop) at
the falling edge of the Cap_CLK signal. When the Cap_CLK
signal is high the Capture signal is activated (turns also to
high) and the MUX latch enters the memory state; else the
MUX latch is transparent. The time interval that the Capture

XOR Error_Rj

Blade Flip-Flop

CLK

Logic
Stage
Sj+1

0

1

Cap_CLK

Error_L

Main
Flip-Flop

Capture

Blade Register

D
Q M

MUX

Error
Flip-Flop

Delay

Logic

Stage Sj

Error

Cap_CLK

Capture

Data i Data i+1

Data i Data i+1

CLK

D

Error

Q

Cycle i Cycle i+1 Cycle i+2 Cycle i+3

Timing Fault

Timing Error Error Correction

693

signal is active must coincide with the time interval where
the D inputs of the Blade Flip-Flops, in all stage registers,
change values due to an earlier evaluation of the pertinent
logic stages according to the circuit specifications. Any
signal transition at the D inputs of the Blade Flip-Flops,
outside this time interval, is considered as violation of the
timing specifications and must be detected. Obviously, the
deactivation of the Capture signal (its falling edge), and
consequently of the Cap_CLK signal, must take place before
the main Flip-Flop’s setup time plus the MUX delay so that
valid data are present at the inputs M of the main Flip-Flops
at the triggering edge of the clock CLK.

In Fig. 2b the operation of the Blade Flip-Flop is
presented. In clock cycle i, the response of the logic stage Sj
is within the timing specifications of the circuit.
Consequently, after the triggering edge of the clock CLK
both the data input M and the output Q of the main Flip-Flop
will carry the same value up to the falling edge of the
Capture signal. Thus, the XOR output Error_L as well as the
subsequent signal Error_Rj will be both zero at the triggering
edge of the Cap_CLK signal on the error Flip-Flop. In that
case, the pipeline’s operation remains unaltered (Error=low).
In the next cycle i+1 a timing fault occurs due to a delayed
response of the stage Sj. Thus, a timing error is generated at
the next triggering edge of the clock CLK and a transition
occurs at the D input of a Blade Flip-Flop, inside cycle i+2,
after this triggering edge and before the activation of the
Capture signal. Since the MUX latch is transparent during
this time interval, this transition passes to the M line. In that
case, the comparison by the XOR gate of the MUX latch
valid data with the erroneous data of the main Flip-Flop turns
the local error signal Error_L to high and generates a register
error indication signal Error_Rj. Thus, the triggering (falling)
edge of the Cap_CLK signal captures a high value at the
output of the error Flip-Flop. This high value extends the
active duration of the Capture signal beyond its original
falling edge, keeping all MUX latches in the memory state.
At this point the error has been detected. In addition, all the
MUX latches hold the correct (valid) responses of the Sj
logic state for the cycle i+1. The new responses of Sj at the
cycle i+2 are blocked at the D inputs of the Blade Flip-Flops.
Entering the next cycle i+3, the triggering edge of the clock
CLK moves the valid data of the MUX latch to the main
Flip-Flop and makes them available to the next pipeline
stage Sj+1. Consequently, the error is corrected.

According to the above analysis, if a timing error occurs
in a pipeline stage Sj during a particular clock cycle, then the
data in the subsequent stage Sj+1 are incorrect, during the
next clock cycle, and must be flushed from the pipeline.
However, the MUX latch contains the correct data without
the need to re-execute the operation in the Sj stage. Thus, the
Sj+1 stage re-executes the operation using the correct input
data with only one-cycle penalty.

The speed penalty introduced by the proposed topology
is equal to the delay of the MUX at the input of the Blade
Flip-Flop. However, this cost is also present in the case of
the Razor topology. Moreover, the silicon area requirements

of the Blade Flip-Flop are drastically reduced due to the
elimination of the shadow latch used in the Razor Flip-Flop.
Finally, taking a closer look at the Razor circuit it is easy to
see that the error Flip-Flop must be also present; however in
Fig. 1 it is omitted for simplification reasons.

B. Pipeline recovery
In case of error detection a pipeline state recovery action

must follow. Fig. 3 illustrates the pipeline recovery
mechanism. The event of a timing error in a logic stage (lets
say ID) generates an error indication signal Error_R2 at the
following Blade register. This means that the results of the
next stage are incorrect (as indicated in Fig. 3b) since its
input data are not valid.

Bl
ad

e
FF

 R
eg

. Logic
Stage

IF

Bl
ad

e
FF

 R
eg

. Logic
Stage

ID

Bl
ad

e
FF

 R
eg

. Logic
Stage
EX

Bl
ad

e
FF

 R
eg

. Logic
Stage
MEM

Bl
ad

e
FF

 R
eg

.

Error_R0 Error_R1 Error_R2 Error_R3 Error_R4

Capture

CLK

Cap_CLK

Error
FF

Dela

D0 D1 D2 D3 D4 Q0 Q1 Q2 Q3 Q4

Error

Time in cycles
In

st
ru

ct
io

ns

IF ID EX MEM

IF ID ~EX EX MEM

MEM

IF ID ID EX MEM

IF IF ID EX

IF ID
Re-execution with

correct values at stage
inputs

Erroneous stage Failing stage

Figure 3. a) Pipeline organization and b) Pipeline recoverυ

The error indication signal is latched by the error Flip-
Flop and the Capture signal remains high keeping all the
MUX latches of the Blade Flip-Flops in all stage registers in
the memory state. Thus, in the next clock cycle every stage is
allowed to re-compute its result using the correct data stored
in the MUX latches. Note here that there is no need for the
failing stage to re-compute the response of the cycle where
the failure occurred since the correct responses are already
available in the MUX latches that follow. The Blade Flip-
Flop based pipeline architecture can tolerate any number of
errors in a clock cycle since all stages re-evaluate their
results with correct data at their inputs. In case that one or
more stages fail in each clock cycle, the pipeline will
continue to run at half of the normal speed.

Referring to the analysis of the Blade architecture, there
is no need to apply main clock gating to accomplish pipeline
recovery. Moreover, although the counterflow pipeline
approach can be also applied in the Blade architecture, there
is no need to proceed with it. This is due to the fact that the
pipeline performance is not affected by the recovery

694

mechanism since there is not any prohibitive delay in the
feedback path from the error indication signal generation to
the redirection of the MUXs’ inputs. The MUXs in the Blade
Flip-Flops of every register are set, by the Capture signal, to
the memory state independently of the error signal
generation. Thus, at the time an error indication signal Error
is latched in the error Flip-Flop, the Capture signal is already
active (high) keeping the MUX latches in the memory state.
The error indication signal simply extends the active state of
the Capture signal until the next triggering (falling) edge of
the Cap_CLK signal, that is for a time duration equal to a
clock period. Consequently, the following triggering edge of
the clock CLK injects the correct data from the MUX latch
into the pipeline, allowing the “swerved” instruction to
continue. Later instructions inside the pipeline are not
flushed and continue to run after recovery. Hence, only a
single cycle is required in the Blade architecture for pipeline
recovery as it is shown in Fig. 3b.

III. DESIGN ISSUES – SIMULATION RESULTS
The proposed Blade error detection and correction

approach was implemented in a 64-bit four stages pipeline
structure, in a 0.18µm CMOS technology (VDD=1.8V), with
200MHz clock frequency. The delay of the Cap_CLK signal
is 2.5ns and its on-time duration is equal to 2ns.

In Fig. 4 simulated waveforms are presented. A timing
error is injected at the second stage of the pipeline. As result,
a delayed response appears at the D input of the blade Flip-
Flop, after the triggering edge of the CLK. This response is
propagated to the M input of the main Flip-Flop since the
MUX latch is transparent (Capture=low) in this time
interval. Next, the Capture signal is activated and the MUX
latch captures the correct data on M. The XOR gate detects
the difference between M and Q (due to the erroneous data
on Q) and raises signal Error_R2 (not shown) to high.
Consequently, the triggering edge of Cap_CLK raises the
global Error signal to high that holds the Capture signal
active and the MUX latch in the memory state within the
next clock cycle. In this cycle the pipeline re-executes the
response with the correct data that are available in the MUX
latch. After that the pipeline continues its operation with only
one cycle penalty. Note that the use of the delayed Cap_CLK
signal may result in the corruption of the data in the MUX
latch due to short paths in the combinational logic. To
prevent data corruption a minimum path delay constraint is
considered in the design. In order to meet this constraint
buffers may be added (like in the Razor case) and/or
minimum size plus high-threshold voltage transistors may be
used during logic synthesis to slow down fast paths. The
minimum path delay constraint is equal to the delay of the
Capture signal, with respect to the system clock, plus the
hold time of the MUX latch. A trade-off arises. A large value
for the minimum path delay constraint may increase the
number of the required buffers in the design and
consequently the silicon area penalty. On the other side, a
small value for this delay constraint reduces the error
tolerance due to the reduction of the maximum detectable
signal delay or transient pulse duration.

Figure 4: Simulated waveforms from a pipeline stage error detection
and correction.

IV. CONCLUSIONS
In this paper we propose an error detection/correction

circuit and an architecture for pipeline recovery after an error
occurrence. This approach is characterized by low silicon
area requirements (lower than earlier approaches in the open
literature), small performance penalty (lower or equivalent to
this of earlier approaches) and the minimum cost, of only
one clock cycle, for pipeline recovery. Although the
proposed technique has been presented for Flip-Flop based
pipeline architectures it can be also easily adapted in latch
based ones. In general, it can be applied to any sequential
circuit. Finally, the proposed topology can be used to support
architectures that exploit dynamic voltage scaling for low
power operation.

REFERENCES
[1] R. Wilson and D. Lammers, “Soft Errors Become Hard Truth for

Logic,” EE Times, 3 May 2004 (available at http://www.eetimes.com/
news/latest/showArticle.jhtml?articleID=19400052).

[2] S. Mitra, N. Seifert, M. Zhang, Q. Shi and K. S. Kim, “Robust System
Design with Built-In Soft-Error Resilience,” IEEE Computer, vol. 38,
no. 2, pp. 43–52, 2005.

[3] T. Austin, D. Blaauw, T. Mudge and K. Flautner, “Making Typical
Silicon Matter with Razor,” IEEE Computer, vol. 37, no. 3, pp. 57–
65, 2004.

[4] M. Nicolaidis and Y. Zorian, “On-Line Testing for VLSI – A
Compendium of Approaches,” Journal of Electronic Testing: Theory
and Applications, vol. 12, no. 1-2, pp. 7-20, 1998.

[5] C. Metra, R. Degiampietro, M. Favalli and B. Ricco, “Concurrent
Detection and Diagnosis Scheme for Transient, Delay and Crosstalk
Faults,” 5th IEEE On-Line Testing Workshop, pp. 66-70, 1999.

[6] M. Nicolaidis, “Time Redundancy Based Soft-Error Tolerance to
Rescue Nanometer Technologies,” VLSI Test Symp., pp. 86-94, 1999.

[7] L. Anghel and M. Nicolaidis, “Cost Reduction and Evaluation of
Temporary Faults Detecting Technique,” Design Automation and Test
in Europe Conference, pp. 591-598, 2000.

[8] S. Matakias, Y. Tsiatouhas, A. Arapoyanni, and Th. Haniotakis, “A
Circuit for Concurrent Detection of Soft and Timing Errors in Digital
CMOS ICs,” Journal of Electronic Testing: Theory and Applications,
vol. 20, no. 5, pp. 523-531, 2004.

[9] R.F. Sproull, I.E. Sutherland and C.E. Molnar, “The Counterflow
Pipeline Processor Architecture,” IEEE Design and Test of
Computers, vol. 11, no. 4, pp. 48-59, 1994.

Erroneous
Data

Error
Detection

Delayed
Response

Timing
Fault

Corrected
Data

Next Valid
Response

Re-execution

MUX-Latch
Memory State

Valid
Response

Valid
Response

Cap_CLK

D

M

Error

Capture

CLK

Q

695

	Print
	View Full Page
	Zoom In
	Zoom Out

