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Abstract— High reliability requirements in many modern 
applications make soft errors an extremely important design 
aspect and pose new challenges in nanometer technologies. In 
addition, timing faults that may escape fabrication tests 
become a real concern in high complexity, high frequency 
designs. To confront this situation, a concurrent error 
detection and correction circuit and technique are presented in 
this work. Their application in pipeline architectures is 
analyzed and the pipeline error recovery mechanism is 
illustrated. The proposed scheme is characterized by low 
silicon area requirements, compared to earlier approaches, 
and the need of only a single clock cycle for pipeline recovery.  

I. INTRODUCTION 
As modern CMOS nanometer technologies scale down 

and the complexity of integrated circuits increases, an 
ongoing difficulty to achieve adequate reliability levels and 
keep the cost of testing within acceptable bounds is reported 
[1-2]. The device size scaling, the increase of the operating 
frequency and the power supply reduction affect circuit's 
noise margins and reliability. The probability of transient 
faults generation increases and many times it is hard to 
achieve the soft error rate (SER) specifications.   

Single event upsets (SEUs) and single event transients 
(SETs), due to alpha particles and cosmic neutrons, play an 
important role to transient fault and consequently soft error 
generation in nanometer IC technologies. In addition, timing 
related transient faults due to crosstalk, power supply 
disturbance or ground bounce are known mechanisms for 
soft error generation. Important problems also arise due to 
timing faults. The increased path delay deviations, due to 
process variations, and the manufacturing defects that affect 
circuit speed may result in timing errors that are not easily 
detectable (in terms of test cost) in high frequency and high 
device count ICs. Considering also the huge number of paths 
in modern circuit designs along with the complexity of 
testing, it is easy to realize that a significant number of 
defective ICs may pass the fabrication tests. Furthermore, 
modern systems running at multiple frequency and voltage 
levels may suffer from timing errors generated by numerous 
environmental and process related (and many times data 
dependent) variabilities that can affect circuit performance 

[3]. Consequently, concurrent testing techniques for error 
detection and correction are becoming mandatory in order to 
achieve acceptable levels of error robustness and meet 
reliability requirements.  

Duplication and triplication techniques and self-checking 
design [4] are widely used to achieve systems reliability. In 
addition, soft and/or timing error detection techniques have 
been proposed in the open literature [5-8] that are based on 
the temporal nature of the transient faults or the delayed 
response of timing faults to provide error tolerance using 
time redundancy.  

Soft error protection techniques for special purpose, scan 
based, microprocessor Flip-Flops have been proposed in [2]. 
These techniques refer to designs where each system Flip-
Flop consists of two distinct Flip-Flops (the main Flip-Flop 
and the scan Flip-Flop). The scan Flip-Flop is modified to 
operate as a shadow of the main Flip-Flop, latching the same 
data. According to the first technique, a C-element and a 
keeper, based on a cross couple inverter pair, are added at the 
output of each system Flip-Flop to ensure that any soft error 
that may affect the main Flip-Flop will not be propagated to 
the logic stage that follows. This way a 20 times reduction in 
SER is reported. An alternative technique is based on the use 
of a XOR gate to compare the outputs of the Flip-Flop pair 
and detect possible soft errors in the system Flip-Flop. Then, 
three extra logic gates are exploited to enable the trapping of 
any error indication signal in the scan Flip-Flop. This error 
indication signal is shifted out using the existing scan path in 
order to activate system recovery through re-execution. The 
main drawback of these techniques is the high silicon area 
cost even in case of microprocessors where pairs of Flip-
Flops are incorporated in the standard design. Furthermore, 
in the second technique, although the global routing of error 
signals is reduced reusing the scan facilities, there is an extra 
high cost in error detection latency.  

Recently, a pipeline architecture (named Razor) with 
timing error detection/correction for low power operation of 
systems exploiting dynamic voltage scaling has been 
proposed in [3]. Fig. 1 illustrates the Razor Flip-Flop that is 
the basic element of the architecture in the construction of 
the stage registers. It consists of the main Flip-Flop, an 
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assistant shadow latch, a multiplexer (MUX) and a XOR gate 
as comparator. As in [7], a delayed clock D_CLK, with 
respect to the circuit clock CLK, is used to control the 
shadow latch and capture the response of the combinational 
logic.  

 

Figure 1.  The Razor Flip-Flop 

In the error free case both the main Flip-Flop and the 
shadow latch will capture the same data. The XOR gate 
compares the outputs of the main Flip-Flop and the shadow 
latch and remains low while the pipeline operation continues 
in the normal mode. In case of a delay in the evaluation of 
the logic stage Sj that exceeds circuit specifications, 
erroneous data are latched in the main Flip-Flop while the 
shadow latch will capture the correct (delayed) data, since it 
operates with a delayed clock. Consequently, the XOR 
output will rise to high indicating the detection of an error. 
The generation of a timing error in a clock cycle i+1 at a 
pipeline stage Sj implies that the data of stage Sj+1 in the 
following cycle i+2 are incorrect and must be flushed. This 
action is quiet easy to be accomplished since the shadow 
latch contains the correct data without the need to re-execute 
them through the failing stage. These correct data are 
injected into the pipeline in the next cycle i+3 allowing stage 
Sj+1 to compute the correct responses.  

In the Razor architecture two possible approaches for 
pipeline error recovery have been adopted. The first one is 
the clock gating where in case of an error detection the entire 
pipeline stalls by gating the next global clock edge for one 
cycle. This period is exploited by each stage to re-compute 
its result using the correct data of the shadow latch. The 
second approach used in Razor is the counterflow pipelining 
which is based on the namesake processor architecture [9]. 
Note that in the Razor case there is a high silicon area cost 
mainly associated with the use of an extra latch for each 
system Flip-Flop.  

In this paper, we present a low-cost pipeline architecture 
that incorporates concurrent soft and timing error detection 
and correction capabilities with the minimum error detection 
latency and a single clock cycle penalty for error recovery. 
The proposed approach requires only a XOR gate, for error 
detection, and a multiplexer, in latch configuration for error 
correction, per system Flip-Flop. Thus, the silicon area 
requirements are reduced drastically, compared to earlier 
techniques. The paper is organized as follows. In Section II 
the proposed (Blade) error detection/correction architecture 
is presented and the pipeline recovery mechanism is 

analyzed. In Section III experimental results from electrical 
simulations on a pipeline structure are presented to 
demonstrate the proposed approach and explore its 
efficiency. Finally, the conclusions are drawn in Section IV.  

II. THE BLADE PIPELINE ARCHITECTURE 

A. Error detection and correction 
Fig. 2a presents the proposed Blade Flip-Flop for the 

register of a pipeline stage. Compared to the Razor Flip-Flop 
the shadow latch has been eliminated. Instead, the 
multiplexer with its output connected to one of its inputs 
plays the role of the extra memory element (latch), while the 
XOR gate directly compares the data from the input M and 
the output Q of the main Flip-Flop.  

 

 
Figure 2:     a) The Blade Flip-Flop and b) Blade Flip-Flop operation with a 

timing fault in cycle i+1 and recovery in cycle i+3. 

The memory state of the multiplexer is activated by the 
Capture signal which in the error free case is controlled by 
the Cap_CLK signal, a delayed version of the clock signal 
CLK with a lower duty cycle. An OR gate is used to provide 
the register error indication signal Error_Rj from the local 
error signals (Error_L) of the XOR gates in the Blade Flip-
Flops of a register. Finally, the error indication signal 
Error_Rj is captured in a single Flip-Flop (error Flip-Flop) at 
the falling edge of the Cap_CLK signal. When the Cap_CLK 
signal is high the Capture signal is activated (turns also to 
high) and the MUX latch enters the memory state; else the 
MUX latch is transparent. The time interval that the Capture 
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signal is active must coincide with the time interval where 
the D inputs of the Blade Flip-Flops, in all stage registers, 
change values due to an earlier evaluation of the pertinent 
logic stages according to the circuit specifications. Any 
signal transition at the D inputs of the Blade Flip-Flops, 
outside this time interval, is considered as violation of the 
timing specifications and must be detected. Obviously, the 
deactivation of the Capture signal (its falling edge), and 
consequently of the Cap_CLK signal, must take place before 
the main Flip-Flop’s setup time plus the MUX delay so that 
valid data are present at the inputs M of the main Flip-Flops 
at the triggering edge of the clock CLK.  

In Fig. 2b the operation of the Blade Flip-Flop is 
presented. In clock cycle i, the response of the logic stage Sj 
is within the timing specifications of the circuit. 
Consequently, after the triggering edge of the clock CLK 
both the data input M and the output Q of the main Flip-Flop 
will carry the same value up to the falling edge of the 
Capture signal. Thus, the XOR output Error_L as well as the 
subsequent signal Error_Rj will be both zero at the triggering 
edge of the Cap_CLK signal on the error Flip-Flop. In that 
case, the pipeline’s operation remains unaltered (Error=low). 
In the next cycle i+1 a timing fault occurs due to a delayed 
response of the stage Sj. Thus, a timing error is generated at 
the next  triggering edge of the clock CLK and a transition 
occurs at the D input of a Blade Flip-Flop, inside cycle i+2, 
after this triggering edge and before the activation of the 
Capture signal. Since the MUX latch is transparent during 
this time interval, this transition passes to the M line. In that 
case, the comparison by the XOR gate of the MUX latch 
valid data with the erroneous data of the main Flip-Flop turns 
the local error signal Error_L to high and generates a register 
error indication signal Error_Rj. Thus, the triggering (falling) 
edge of the Cap_CLK signal captures a high value at the 
output of the error Flip-Flop. This high value extends the 
active duration of the Capture signal beyond its original 
falling edge, keeping all MUX latches in the memory state. 
At this point the error has been detected. In addition, all the 
MUX latches hold the correct (valid) responses of the Sj 
logic state for the cycle i+1. The new responses of Sj at the 
cycle i+2 are blocked at the D inputs of the Blade Flip-Flops. 
Entering the next cycle i+3, the triggering edge of the clock 
CLK moves the valid data of the MUX latch to the main 
Flip-Flop and makes them available to the next pipeline 
stage Sj+1. Consequently, the error is corrected.  

According to the above analysis, if a timing error occurs 
in a pipeline stage Sj during a particular clock cycle, then the 
data in the subsequent stage Sj+1 are incorrect, during the 
next clock cycle, and must be flushed from the pipeline. 
However, the MUX latch contains the correct data without 
the need to re-execute the operation in the Sj stage. Thus, the 
Sj+1 stage re-executes the operation using the correct input 
data with only one-cycle penalty.  

The speed penalty introduced by the proposed topology 
is equal to the delay of the MUX at the input of the Blade 
Flip-Flop. However, this cost is also present in the case of 
the Razor topology. Moreover, the silicon area requirements 

of the Blade Flip-Flop are drastically reduced due to the 
elimination of the shadow latch used in the Razor Flip-Flop. 
Finally, taking a closer look at the Razor circuit it is easy to 
see that the error Flip-Flop must be also present; however in 
Fig. 1 it is omitted for simplification reasons.  

B. Pipeline recovery 
In case of error detection a pipeline state recovery action 

must follow. Fig. 3 illustrates the pipeline recovery 
mechanism. The event of a timing error in a logic stage (lets 
say ID) generates an error indication signal Error_R2 at the 
following Blade register. This means that the results of the 
next stage are incorrect (as indicated in Fig. 3b) since its 
input data are not valid.  
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Figure 3.  a) Pipeline organization and b) Pipeline recoverυ 

The error indication signal is latched by the error Flip-
Flop and the Capture signal remains high keeping all the 
MUX latches of the Blade Flip-Flops in all stage registers in 
the memory state. Thus, in the next clock cycle every stage is 
allowed to re-compute its result using the correct data stored 
in the MUX latches. Note here that there is no need for the 
failing stage to re-compute the response of the cycle where 
the failure occurred since the correct responses are already 
available in the MUX latches that follow. The Blade Flip-
Flop based pipeline architecture can tolerate any number of 
errors in a clock cycle since all stages re-evaluate their 
results with correct data at their inputs. In case that one or 
more stages fail in each clock cycle, the pipeline will 
continue to run at half of the normal speed.  

Referring to the analysis of the Blade architecture, there 
is no need to apply main clock gating to accomplish pipeline 
recovery. Moreover, although the counterflow pipeline 
approach can be also applied in the Blade architecture, there 
is no need to proceed with it. This is due to the fact that the 
pipeline performance is not affected by the recovery 
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mechanism since there is not any prohibitive delay in the 
feedback path from the error indication signal generation to 
the redirection of the MUXs’ inputs. The MUXs in the Blade 
Flip-Flops of every register are set, by the Capture signal, to 
the memory state independently of the error signal 
generation. Thus, at the time an error indication signal Error 
is latched in the error Flip-Flop, the Capture signal is already 
active (high) keeping the MUX latches in the memory state. 
The error indication signal simply extends the active state of 
the Capture signal until the next triggering (falling) edge of 
the Cap_CLK signal, that is for a time duration equal to a 
clock period. Consequently, the following triggering edge of 
the clock CLK injects the correct data from the MUX latch 
into the pipeline, allowing the “swerved” instruction to 
continue. Later instructions inside the pipeline are not 
flushed and continue to run after recovery. Hence, only a 
single cycle is required in the Blade architecture for pipeline 
recovery as it is shown in Fig. 3b.  

III. DESIGN ISSUES – SIMULATION RESULTS 
The proposed Blade error detection and correction 

approach was implemented in a 64-bit four stages pipeline 
structure, in a 0.18µm CMOS technology (VDD=1.8V), with 
200MHz clock frequency. The delay of the Cap_CLK signal 
is 2.5ns and its on-time duration is equal to 2ns.  

In Fig. 4 simulated waveforms are presented. A timing 
error is injected at the second stage of the pipeline. As result, 
a delayed response appears at the D input of the blade Flip-
Flop, after the triggering edge of the CLK. This response is 
propagated to the M input of the main Flip-Flop since the 
MUX latch is transparent (Capture=low) in this time 
interval. Next, the Capture signal is activated and the MUX 
latch captures the correct data on M. The XOR gate detects 
the difference between M and Q (due to the erroneous data 
on Q) and raises signal Error_R2 (not shown) to high. 
Consequently, the triggering edge of Cap_CLK raises the 
global Error signal to high that holds the Capture signal 
active and the MUX latch in the memory state within the 
next clock cycle. In this cycle the pipeline re-executes the 
response with the correct data that are available in the MUX 
latch. After that the pipeline continues its operation with only 
one cycle penalty. Note that the use of the delayed Cap_CLK 
signal may result in the corruption of the data in the MUX 
latch due to short paths in the combinational logic. To 
prevent data corruption a minimum path delay constraint is 
considered in the design. In order to meet this constraint 
buffers may be added (like in the Razor case) and/or 
minimum size plus high-threshold voltage transistors may be 
used during logic synthesis to slow down fast paths. The 
minimum path delay constraint is equal to the delay of the 
Capture signal, with respect to the system clock, plus the 
hold time of the MUX latch. A trade-off arises. A large value 
for the minimum path delay constraint may increase the 
number of the required buffers in the design and 
consequently the silicon area penalty. On the other side, a 
small value for this delay constraint reduces the error 
tolerance due to the reduction of the maximum detectable 
signal delay or transient pulse duration.  

Figure 4:      Simulated waveforms from a pipeline stage error detection 
and correction. 

IV. CONCLUSIONS 
In this paper we propose an error detection/correction 

circuit and an architecture for pipeline recovery after an error 
occurrence. This approach is characterized by low silicon 
area requirements (lower than earlier approaches in the open 
literature), small performance penalty (lower or equivalent to 
this of earlier approaches) and the minimum cost, of only 
one clock cycle, for pipeline recovery. Although the 
proposed technique has been presented for Flip-Flop based 
pipeline architectures it can be also easily adapted in latch 
based ones. In general, it can be applied to any sequential 
circuit. Finally, the proposed topology can be used to support 
architectures that exploit dynamic voltage scaling for low 
power operation.  
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