
1

Online Social Networks and
Media

Graph ML

2

Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings
Part III: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on:

 CS224W: Machine Learning with Graphs

 Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/

Edge (link) level

Community

(subgraph)

level

Graph-level

prediction,

Graph

generation

Node

level

Types of ML tasks in graphs

3

Example Tasks

Tasks we will be able to solve:

• Node classification

– Predict the type of a given node

• Link prediction

– Predict whether two nodes are linked

• Community detection

– Identify densely linked clusters of nodes

• Network similarity

– How similar are two (sub)networks

4

Recap: Node Embeddings

Intuition: Map nodes to 𝑑-dimensional
embeddings such that similar nodes in the graph
are embedded close together

f () =
Input graph 2D node embeddings

How to learn mapping function 𝒇?

Recap: Node Embeddings

6

Goal:

Need to define!

Input network d-dimensional

embedding space

similarity 𝑢, 𝑣 ≈ 𝐳𝑣
Τ𝐳𝑢

Recap: Two Key Components

• Encoder: Maps each node to a low-dimensional
vector

• Similarity function: Specifies how the
relationships in vector space map to the
relationships in the original network

7

Similarity of 𝑢 and 𝑣 in

the original network
dot product between node

embeddings

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣
Τ𝐳𝑢

node in the input graph

d-dimensional

embedding

Recap: “Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

8

Dimension/size

of embeddings

one column per node

embedding

matrix

embedding vector for a

specific node

𝐙 =

Recap: Shallow Encoders

Limitations of shallow embedding methods:
– 𝑶(|𝑽|𝒅) parameters are needed:

• No sharing of parameters between nodes

• Every node has its own unique embedding

– Inherently “transductive”:
• Cannot generate embeddings for nodes that are not

seen during training

– Do not incorporate node features:
• Nodes in many graphs have features that we can and

should leverage

9

Deep Graph Encoders

• Deep learning methods based on graph neural
networks (GNNs):

Note: All these deep encoders can be combined
with node similarity functions defined in
previous lectures

10

multiple layers of
non-linear transformations
based on graph structure

ENC 𝑣 =

11

Part III:
General Framework

A single GNN layer: Aggregation and Message
Layer connectivity: Stacking

Graph manipulations
Learning objectives

OVERVIEW AND GENERAL FRAMEWORK

12

Deep Graph Encoders

13

…

Output: Node embeddings.

Also, we can embed subgraphs,

and graphs

Basics of Deep Learning
• Loss function:

min
Θ

ℒ(𝒚, 𝑓Θ 𝒙)

• 𝑓 can be a simple linear layer, an MLP, or other neural
networks (e.g., a GNN)

• Sample a minibatch of input 𝒙

• Forward propagation: Compute ℒ given 𝒙

• Back-propagation: Obtain gradient ∇Θℒ using a chain
rule.

• Use stochastic gradient descent (SGD) to optimize
ℒ for Θ over many iterations.

14

Setup

Assume we have a graph 𝑮:
– 𝑉 is the set of nodes

– 𝑨 is the adjacency matrix (assume binary)

– 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.

𝑿 ∈ ℝ 𝑉 ×𝑚 is a matrix of node features

– Node features:

• Social networks: User profile, User image

• Biological networks: Gene expression profiles, gene
functional information

• When there is no node feature in the graph dataset:
– Indicator vectors (one-hot encoding of a node)

– Vector of constant 1: [1, 1, …, 1]

15

Idea: Convolutional Networks
CNN on an image:

16

Can we generalize convolutions beyond simple lattices?

Leverage node features/attributes (e.g., text, images)

Nice description of CNNs: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

Why is it hard?

17

vs.

Networks Images

Text

Graphs are far more complex!

▪ No fixed notion of (spatial) locality or sliding window on the graph
▪ No fixed node ordering or reference point
▪ Often dynamic and have multimodal features

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

What if our data looks like this?

or this:

Graphs look like this:

arbitrary size and complex
topological structure

A Naïve Approach

• Join adjacency matrix and features

• Feed them into a deep neural net:

• Issues with this idea:

• Issues with this idea:
– 𝑂(|𝑉|) parameters

– Not applicable to graphs of different sizes

– Sensitive to node ordering
18

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

Permutation Invariance
• Graph does not have a canonical order of the nodes!

• We can have many different order plans.

19

Permutation Invariance
• Graph does not have a canonical order of the nodes!

20

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

Permutation Invariance
• Graph does not have a canonical order of the nodes!

21

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2

Permutation Invariance
• Graph does not have a canonical order of the nodes!

22

A
C

B

E
F

D

A

B

C

D

E

F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2

Graph and node representations
should be the same for Order plan 1

and Order plan 2

Invariance and Equivariance

• Permutation-invariant

𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋

• Permutation-equivariant

𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

23

Permute the input, the output

stays the same.

Permute the input, output also

permutes accordingly.

Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

• No

24

Switching the order of the input
leads to different outputs!

Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

• No.

25

This explains why the naïve MLP approach
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

Graph Neural Network Overview
• Graph neural networks consist of multiple

permutation equivariant/invariant functions.

26

[Bronstein, ICLR 2021 keynote]

Graph Convolutional Networks
Idea: The neighborhood of a node defines a

computation graph

27

Determine node
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across the graph
to compute node features

[Kipf and Welling, ICLR 2017]

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on
local network neighborhoods

28

Idea: Aggregate Neighbors

• Intuition: Nodes aggregate information from
their neighbors using neural networks

29

Neural networks

Idea: Aggregate Neighbors

• Intuition: Network neighborhood defines a
computation graph

30

Every node defines a computation
graph based on its neighborhood!

Deep Model: Many Layers

• Model can be of arbitrary depth:
– Nodes have embeddings at each layer

– Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣

– Layer-𝑘 embedding gets information from nodes that
are 𝑘 hops away

31

Layer-2

Layer-1
Layer-0

Neighborhood Aggregation
• Neighborhood aggregation: Key distinctions

are in how different approaches aggregate
information across the layers

32

?

?

?

?

What is in the box?

Neighborhood Aggregation

• Basic approach: Average information from
neighbors and apply a neural network

33

(1) average messages
from neighbors

(2) apply neural network

The Math: Deep Encoder

• Basic approach: Average neighbor messages
and apply a neural network

34

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after K
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
𝑣 at layer 𝑘

h𝑣
0 = x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘 ෍

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0, … , 𝐾 − 1}

Notice summation is a permutation
invariant pooling/aggregation.

Model Parameters

We can feed these embeddings into any loss function and
run SGD to train the weight parameters

ℎ𝑣
𝑘: the hidden representation of node 𝑣 at layer 𝑘

• 𝑊𝑘: weight matrix for neighborhood aggregation

• 𝐵𝑘: weight matrix for transforming hidden vector of self
35

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h𝑣
(0)

= x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘 ෍

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0. . 𝐾 − 1}

weight matrices are
shared

GCN: Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?

• Given a node, the GCN that computes its
embedding is permutation invariant

36

A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer
embeddings - Permutation invariant

𝒛𝐴

Training the Model

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.

37

• Node embedding 𝒛𝑣 is a function of input graph
• Supervised setting: We want to minimize loss ℒ:

min
Θ

ℒ(𝒚, 𝑓Θ 𝒛𝑣)

– 𝒚: node label
– ℒ could be L2 if 𝒚 is real number, or cross entropy if 𝒚 is

categorical (loss in Maximum Likelihood Estimation)
• Cross entropy loss (CE):

– CE 𝒚, 𝑓 𝒙 = − σ𝑖=1
𝐶 (𝑦𝑖 log 𝑓Θ(𝑥)𝑖)

– 𝑦𝑖 and 𝑓Θ(𝑥)𝑖 are the actual and predicted values of the 𝑖-th class
– Intuition: the lower the loss, the closer the prediction is to one-hot

• Unsupervised setting:
– No node label available
– Use the graph structure as the supervision!

38

Unsupervised Training

One possible idea: “Similar” nodes have similar embeddings:

𝐦𝐢𝐧𝚯 ℒ = ෍

𝑧𝑢,𝑧𝑣

CE(𝑦𝑢,𝑣 , DEC 𝑧𝑢, 𝑧𝑣)

• where 𝑦𝑢,𝑣 = 1 when node 𝑢 and 𝑣 are similar

• 𝑧𝑢 = 𝑓Θ 𝑢 and DEC(⋅,⋅) is the dot product

Node similarity can be anything from embeddings, e.g., a
loss based on:

– Random walks (node2vec, DeepWalk, struc2vec)

– Matrix factorization

39

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

40

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

Supervised Training
Directly train the model for a supervised task
(e.g., node classification)

Use cross entropy loss

41

Encoder output:
node embedding

Classification
weights

Node class
label

Safe or toxic drug?

ℒ = − ෍

𝑣∈𝑉

𝑦𝑣log(𝜎(z𝑣
T𝜃)) + 1 − 𝑦𝑣 log(1 − 𝜎 z𝑣

T𝜃)

Model Design: Overview

42

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

𝒛𝐴

Model Design: Overview

43

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

Model Design: Overview

44

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

Inductive Capability

• The same aggregation parameters are shared
for all nodes:

– The number of model parameters is sublinear in
|𝑉| and we can generalize to unseen nodes!

45

𝑊𝑘 𝐵𝑘

Inductive Capability: New Graphs

46

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z𝑢

Inductive Capability: New Nodes

47

Train with snapshot New node arrives
Generate embedding

for new node

• Many application settings constantly encounter
previously unseen nodes:

• E.g., Reddit, YouTube, Google Scholar

• Need to generate new embeddings “on the fly”

z𝑢

Summary so far

▪ How to build CNNs for graphs

use local neighborhood of a node

▪ Next: more details using a general GNN
framework

48

49

(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

50

▪ General Framework
▪ A single GNN layer: Aggregation and

Message
▪ Layer Connectivity: Stacking
▪ Graph manipulations
▪ Learning objectives

Outline

A SINGLE GNN LAYER

51

A GNN Layer

52

(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

A Single GNN Layer

• Idea of a GNN Layer:

– Compress a set of vectors into a single vector

– Two-step process:

• (1) Message

• (2) Aggregation

53

Input node embedding 𝐡𝑣
𝑙−1

 , 𝐡𝑢∈𝑁(𝑣)
𝑙−1

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡𝑣
𝑙

(2) Aggregation

(1) Message

Node 𝒗

Message Computation

(1) Message computation

– Message function:

• Intuition: Each node will create a message, which will
be sent to other nodes

• Example: A Linear layer 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

– Multiply node features with weight matrix 𝐖 𝑙

54

(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

(2) Aggregation
• Intuition: Node 𝑣 will aggregate the messages from its

neighbors 𝑢:

• Example: Sum(⋅), Mean ⋅ , or Max(⋅) aggregator

– 𝐡𝑣
𝑙

= Sum({𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙 , 𝑢 ∈ 𝑁 𝑣

Message Aggregation

55

(2) Aggregation

(1) Message

Node 𝒗

𝐡𝑣
𝑙

= CONCAT AGG 𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁 𝑣 , 𝐦𝑣
𝑙

Message Aggregation: Issue
Issue: Information from node 𝑣 itself could get lost

– Computation of 𝐡𝑣
(𝑙)

 does not directly depend on 𝐡𝑣
(𝑙−1)

Solution: Include 𝐡𝑣
(𝑙−1)

 when computing 𝐡𝑣
(𝑙)

– (1) Message: compute message from node 𝒗 itself

• Usually, a different message computation will be performed

– (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node 𝒗 itself

• Via concatenation or summation

56

𝐦𝑣
(𝑙)

= 𝐁 𝑙 𝐡𝑣
𝑙−1

𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

First aggregate from neighbors

Then aggregate from node itself

(2) Aggregation

(1) Message

A Single GNN Layer

Putting things together:

– (1) Message: each node computes a message

– (2) Aggregation: aggregate messages from neighbors

– Nonlinearity (activation): Adds expressiveness

• Often written as 𝜎(⋅). Examples: ReLU(⋅), Sigmoid(⋅), …

• Can be added to message or aggregation

57

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

, 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁 𝑣 , 𝐦𝑣
𝑙

Classical GNN Layers: GCN (1)
(1) Graph Convolutional Networks (GCN)

• How to write this as Message + Aggregation?

58

𝐡𝑣
(𝑙)

= 𝜎 𝐖 𝑙 ෍

𝑢∈𝑁 𝑣

𝐡𝑢
𝑙−1

𝑁 𝑣

𝐡𝑣
(𝑙)

= 𝜎 ෍

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf

Classical GNN Layers: GCN (2)
(1) Graph Convolutional Networks (GCN)

• Message:

– Each Neighbor: 𝐦𝑢
(𝑙)

=
1

𝑁 𝑣
𝐖 𝑙 𝐡𝑢

𝑙−1

• Aggregation:

– Sum over messages from neighbors, then apply activation

– 𝐡𝑣
𝑙

= 𝜎 Sum 𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁 𝑣
59

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

𝐡𝑣
(𝑙)

= 𝜎 ෍

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣

(2) Aggregation

(1) Message

In GCN the input graph is

assumed to have self-edges that

are included in the summation.

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

• How to write this as Message + Aggregation?

– Message is computed within the AGG ⋅

– Two-stage aggregation
• Stage 1: Aggregate from node neighbors

• Stage 2: Further aggregate over the node itself

60

𝐡𝑣
(𝑙)

= 𝜎 𝐖(𝑙) ∙ CONCAT 𝐡𝑣
𝑙−1

, AGG 𝐡𝑢
𝑙−1

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑁(𝑣)
(𝑙)

← AGG 𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑣
(𝑙)

← 𝜎 𝐖(𝑙) ⋅ CONCAT(𝐡𝑣
𝑙−1

, 𝐡𝑁(𝑣)
(𝑙)

)

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

• Mean: Take a weighted average of neighbors

• Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

• LSTM: Apply LSTM to reshuffled of neighbors

AGG = ෍

𝑢∈𝑁(𝑣)

𝐡𝑢
(𝑙−1)

𝑁(𝑣)

GraphSAGE Neighbor Aggregation

61

AGG = Mean({MLP(𝐡𝑢
(𝑙−1)

), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝝅 𝑁 𝑣])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

applied to a
random
permutation

GraphSAGE: L2 Normalization

ℓ2 Normalization:

– Optional: Apply ℓ2 normalization to 𝐡𝑣
(𝑙)

 at every layer

– 𝐡𝑣
(𝑙)

←
𝐡𝑣

(𝑙)

𝐡𝑣
(𝑙)

2

 ∀𝑣 ∈ 𝑉 where 𝑢 2 = σ𝑖 𝑢𝑖
2 (ℓ2-

norm)

• Without ℓ2 normalization, the embedding vectors have
different scales (ℓ2-norm) for vectors

• In some cases (not always), normalization of embedding
results in performance improvement

62

(3) Graph Attention Networks

▪ weighting factor (importance) of the message of node 𝑢 to
node 𝑣

▪ In GCN and GraphSAGE:

– 𝛼𝑣𝑢 =
1

𝑁 𝑣
 defined explicitly based on the structural properties of the

graph (node degree)

– All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important to node 𝑣

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

Classical GNN Layers: GAT (1)

63

Attention weights

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

(3) Graph Attention Networks

Not all node’s neighbors are equally important
– Attention is inspired by cognitive attention.

– The attention 𝜶𝒗𝒖 focuses on the important parts of
the input data and fades out the rest.
• Idea: the NN should devote more computing power on that

small but important part of the data.

• Which part of the data is more important depends on the
context and is learned through training.

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

Classical GNN Layers: GAT (2)

64

Attention weights

Graph Attention Networks

Can weighting factors 𝛼𝑣𝑢 be learned?

• Goal: Specify arbitrary importance to different
neighbors of each node in the graph

• Idea: Compute embedding 𝒉𝑣
(𝑙)

 of each node in
the graph following an attention strategy:

– Nodes attend over their neighborhoods’ message

– Implicitly specifying different weights to different
nodes in a neighborhood

65

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Attention Mechanism (1)
Let 𝛼𝑣𝑢 be computed as a byproduct of an
attention mechanism 𝒂:

– (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across
pairs of nodes 𝑢, 𝑣 based on their messages:

𝑒𝑣𝑢 = 𝑎(𝐖(𝑙)𝐡𝑢
(𝑙−1)

, 𝐖(𝑙)𝒉𝑣
(𝑙−1)

)

• 𝒆𝒗𝒖 indicates the importance of 𝒖′𝐬 message to node 𝒗

66

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

𝑒𝐴𝐵

𝑒𝐴𝐵 = 𝑎(𝐖(𝑙)𝐡𝐴
(𝑙−1)

, 𝐖(𝑙)𝐡𝐵
(𝑙−1)

)

Attention Mechanism (2)
– Normalize 𝑒𝑣𝑢 into the final attention weight 𝜶𝒗𝒖

• Use the softmax function, so that σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢 = 1:

𝛼𝑣𝑢 =
exp(𝑒𝑣𝑢)

σ𝑘∈𝑁 𝑣 exp(𝑒𝑣𝑘)

– Weighted sum based on the final attention weight
𝜶𝒗𝒖:

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

67

𝛼𝐴𝐵

Weighted sum using 𝛼𝐴𝐵, 𝛼𝐴𝐶, 𝛼𝐴𝐷:

𝐡𝐴
(𝑙)

= 𝜎(𝛼𝐴𝐵𝐖(𝑙)𝐡𝐵
(𝑙−1)

+𝛼𝐴𝐶𝐖(𝑙)𝐡𝐶
(𝑙−1)

+

𝛼𝐴𝐷𝐖(𝑙)𝐡𝐷
(𝑙−1)

)

𝐡𝐵
(𝑙−1)

𝐡𝐶
(𝑙−1)

𝛼𝐴𝐶

𝛼𝐴𝐷

Attention Mechanism (3)
What is the form of attention mechanism 𝒂?

– The approach is agnostic to the choice of 𝑎

• E.g., use a simple single-layer neural network
– 𝑎 have trainable parameters (weights in the Linear layer)

– Parameters of 𝑎 are trained jointly:

• Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net 𝐖(𝑙)) in an end-to-end
fashion

68

𝑒𝐴𝐵 = 𝑎 𝐖(𝑙)𝐡𝐴
(𝑙−1)

, 𝐖(𝑙)𝐡𝐵
(𝑙−1)

= Linear Concat 𝐖(𝑙)𝐡𝐴
(𝑙−1)

, 𝐖(𝑙)𝐡𝐵
(𝑙−1)

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

Concatenate Linear
𝑒𝐴𝐵

Attention Mechanism (4)

• Multi-head attention: Stabilizes the learning process of
attention mechanism
– Create multiple attention scores (each replica with a

different set of parameters):

– 0utputs are aggregated:
• By concatenation or summation

• 𝐡𝑣
(𝑙)

= AGG(𝐡𝑣
(𝑙)

1 , 𝐡𝑣
(𝑙)

2 , 𝐡𝑣
(𝑙)

3)

69

𝐡𝑣
(𝑙)

[1] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢
1 𝐖(𝑙)𝐡𝑢

(𝑙−1)
)

𝐡𝑣
(𝑙)

[2] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢
2 𝐖(𝑙)𝐡𝑢

(𝑙−1)
)

𝐡𝑣
(𝑙)

[3] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢
3 𝐖(𝑙)𝐡𝑢

(𝑙−1)
)

Benefits of Attention Mechanism

• Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

• Computationally efficient:
– Computation of attentional coefficients can be parallelized across all

edges of the graph
– Aggregation may be parallelized across all nodes

• Storage efficient:
– Sparse matrix operations do not require more than

𝑂(𝑉 + 𝐸) entries to be stored
– Fixed number of parameters, irrespective of graph size

• Localized:
– Only attends over local network neighborhoods

• Inductive capability:
– It is a shared edge-wise mechanism
– It does not depend on the global graph structure

70

GNN Layer in Practice

• In practice, these classic GNN
layers are a great starting point

– We can often get better
performance by considering a
general GNN layer design

– Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

71

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

GNN Layer in Practice

• Many modern deep learning modules can be
incorporated into a GNN layer

– Attention/Gating:
• Control the importance of a message

– Batch Normalization:
• Stabilize neural network training

– Dropout:
• Prevent overfitting

– More:
• Any other useful deep learning modules

72

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

Batch Normalization
• Goal: Stabilize neural networks training

• Idea: Given a batch of inputs (node embeddings)

– Re-center the node embeddings into zero mean

– Re-scale the variance into unit variance

𝛍𝑗 =
1

𝑁
෍

𝑖=1

𝑁

𝐗𝑖,𝑗Input: 𝐗 ∈ ℝ𝑁×𝑑

𝑁 node embeddings

Trainable Parameters:
𝛄, 𝛃 ∈ ℝ𝐷

Output: 𝐘 ∈ ℝ𝑁×𝑑

Normalized node embeddings

𝛔𝑗
2 =

1

𝑁
෍

𝑖=1

𝑁

𝐗𝑖,𝑗 − 𝛍𝑗
2

෡𝐗𝑖,𝑗 =
𝐗𝑖,𝑗 − 𝛍𝑗

𝛔𝑗
2 + 𝜖

𝐘𝑖,𝑗 = 𝛄𝑗
෡𝐗𝑖,𝑗 + 𝛃𝑗

Step 1:
Compute the
mean and variance
over 𝑵 embeddings

Step 2:
Normalize the feature
using computed mean
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf

Dropout
• Goal: Regularize a neural net to prevent overfitting.

• Idea:

– During training: with some probability 𝑝, randomly set
neurons to zero (turn off)

– During testing: Use all the neurons for computation

74

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com

Dropout for GNNs
• In GNN, Dropout is applied to the

linear layer in the message function

– A simple message function with linear

layer: 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

75

Dropout
𝐡𝑢

𝑙−1
𝐦𝑢

(𝑙)

𝐖 𝑙

Visualization of a linear layer

(2) Aggregation

(1) Message

Activation (Non-linearity)

Apply activation to 𝒊-th dimension of
embedding 𝐱

• Rectified linear unit (ReLU)
 ReLU 𝐱𝑖 = max(𝐱𝑖 , 0)

– Most commonly used

• Sigmoid

𝜎 𝐱𝑖 =
1

1 + 𝑒−𝐱𝑖

– Used only when you want to restrict the
range of your embeddings

• Parametric ReLU
PReLU 𝐱𝑖 = max 𝐱𝑖 , 0 + 𝑎𝑖min(𝐱𝑖 , 0)

 𝑎𝑖 is a trainable parameter

– Empirically performs better than ReLU 76

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒−𝑥

GNN Layer in Practice

• Summary: Modern deep learning
modules can be included into a GNN
layer for better performance

• Designing novel GNN layers is still
an active research frontier

• You can explore diverse GNN designs
or try out your own ideas in
GraphGym

77

A GNN Layer

https://github.com/snap-stanford/GraphGym

Summary

▪ Single GNN layer:
▪ Message

▪ Aggregation

Apply ML modules
▪ Attention

▪ Drop out

▪ Normalization

▪ Non-linearity

78

79

▪ General Framework
▪ A single GNN layer: Aggregation and

Message
▪ Layer Connectivity: Stacking
▪ Graph manipulations
▪ Learning objectives

Outline

STACKING LAYERS

80

Stacking GNN Layers

81

GNN Layer 2

GNN Layer 1

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

Stacking GNN Layers

• How to construct a Graph Neural Network?

– The standard way: Stack GNN layers sequentially

– Input: Initial raw node feature 𝐱𝑣

– Output: Node embeddings 𝐡𝑣
(𝐿)

 after 𝐿 GNN layers

82

𝐡𝑣
(0)

= 𝐱𝑣

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

The Over-Smoothing Problem

• The issue of stacking many GNN layers

– GNN suffers from the over-smoothing problem

• The over-smoothing problem: all the node
embeddings converge to the same value

– This is bad because we want to use node
embeddings to differentiate nodes

• Why does the over-smoothing problem
happen?

83

Receptive Field of a GNN

• Receptive field: the set of nodes that determine
the embedding of a node of interest

– In a 𝑲-layer GNN, each node has a receptive field
of 𝑲-hop neighborhood

84

Receptive field for
1-layer GNN

Receptive field for
2-layer GNN

Receptive field for
3-layer GNN

Receptive Field of a GNN

• Receptive field overlap for two nodes

– The shared neighbors quickly grows when we
increase the number of hops (num of GNN layers)

85

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

Receptive Field & Over-smoothing

• We can explain over-smoothing via the notion
of the receptive field
– We know the embedding of a node is determined

by its receptive field
• If two nodes have highly-overlapped receptive fields,

then their embeddings are highly similar

– Stack many GNN layers → nodes will have highly-
overlapped receptive fields → node embeddings
will be highly similar → suffer from the over-
smoothing problem

How do we overcome over-smoothing problem?

86

Design GNN Layer Connectivity
What do we learn from the over-smoothing problem?

• Lesson 1: Be cautious when adding GNN layers

– Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

– Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

– Step 2: Set number of GNN layers 𝐿 to be a bit more than the
receptive field we like. Do not set 𝑳 to be unnecessarily
large!

Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

87

Expressive Power for Shallow GNNs

• How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within each
GNN layer

– In our previous examples, each transformation or
aggregation function only include one linear layer

– We can make aggregation/transformation become a deep
neural network!

88

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

Expressive Power for Shallow GNNs
• How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

– A GNN does not necessarily only contain GNN layers
• E.g., we can add MLP layers (applied to each node) before and

after GNN layers, as pre-process layers and post-process layers

89

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning/transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity
• What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

– Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

– Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

12/12/2023 90

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Idea of Skip Connections
• Why do skip connections work?

– Intuition: Skip connections create a mixture of models

– 𝑁 skip connections → 2𝑁 possible paths

– Each path could have up to 𝑁 modules

91Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

▪ We automatically get a mixture
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431

Example: GCN with Skip Connections

• A standard GCN layer

• 𝐡𝑣
(𝑙)

= 𝜎 σ𝑢∈𝑁 𝑣 𝐖 𝑙 𝐡𝑢
𝑙−1

𝑁 𝑣

• A GCN layer with skip connection

• 𝐡𝑣
(𝑙)

= 𝜎 σ𝑢∈𝑁 𝑣 𝐖 𝑙 𝐡𝑢
𝑙−1

𝑁 𝑣
 + 𝐡𝑣

(𝑙−1)

92

This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱

Other Options of Skip Connections

• Other options: Directly
skip to the last layer

– The final layer directly
aggregates from the all
the node embeddings in
the previous layers

93

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

Input: 𝐡𝑣
(0)

Output: 𝐡𝑣
(𝑓𝑖𝑛𝑎𝑙)

https://arxiv.org/abs/1806.03536

Summary so far

A general perspective for GNNs

– GNN Layer:

• Transformation + Aggregation

• Classic GNN layers: GCN, GraphSAGE, GAT

– Layer connectivity:

• Deciding number of layers

• Skip connections

94

95

▪ General Framework
▪ A single GNN layer: Aggregation and

Message
▪ Layer Connectivity: Stacking
▪ Graph manipulations
▪ Learning objectives

Outline

GRAPH MANIPULATIONS

96

General GNN Framework

97
(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

https://arxiv.org/pdf/2011.08843.pdf

Why Manipulate Graphs
Our assumption so far has been

• Raw input graph = computational graph

Reasons for breaking this assumption
– Feature level:

• The input graph lacks features → feature augmentation

– Structure level:
• The graph is too sparse → inefficient message passing

• The graph is too dense → message passing is too costly

• The graph is too large → cannot fit the computational
graph into a GPU

– It is just unlikely that the input graph happens to be
the optimal computation graph for embeddings

98

Graph Manipulation Approaches
• Graph Feature manipulation

– The input graph lacks features → feature
augmentation

• Graph Structure manipulation

– The graph is too sparse → Add virtual nodes/edges

– The graph is too dense → Sample neighbors when
doing message passing

– The graph is too large → Sample subgraphs to
compute embeddings

99

Feature Augmentation on Graphs

Why do we need feature augmentation?

• (1) Input graph does not have node features

– This is common when we only have the adjacency
matrix

Standard approaches:

(a) Assign constant values to nodes

100

1

1

1

1

1

1

Feature Augmentation on Graphs

(b) Assign unique IDs to nodes

– These IDs are converted into one-hot vectors

101

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5

One-hot vector for node with ID=5

Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. High dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Feature Augmentation on Graphs

Why do we need feature augmentation?

(2) Certain structures are hard to learn by GNN

• Example: Cycle count feature

– Can GNN learn the length of a cycle that 𝑣1 resides in?

– Unfortunately, no

103

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

Feature Augmentation on Graphs

Why do we need feature augmentation?

• (2) Certain structures are hard to learn by GNN

• Solution:

– We can use cycle count as augmented node features

104

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

Feature Augmentation on Graphs

Why do we need feature augmentation?

• (2) Certain structures are hard to learn by GNN

• Other commonly used augmented features:
– Clustering coefficient

– PageRank

– Centrality

– …

• Any feature we have introduced when we talked
about traditional ML approaches

105

Add Virtual Nodes / Edges

Motivation: Augment sparse graphs

• (1) Add virtual edges

– Common approach: Connect 2-hop neighbors via
virtual edges

– Intuition: Instead of using adjacency matrix 𝐴 for
GNN computation, use 𝐴 + 𝐴2

106

A

B

C

D

E

Authors Papers

▪ Use cases: Bipartite graphs

▪ Author-to-papers (they authored)

▪ 2-hop virtual edges make an author-author
collaboration graph

Add Virtual Nodes / Edges
Motivation: Augment sparse graphs

(2) Add virtual nodes

– The virtual node will connect to all the
nodes in the graph

• Suppose in a sparse graph, two nodes have
shortest path distance of 10

• After adding the virtual node, all the nodes
will have a distance of 2
– Node A – Virtual node – Node B

– Benefits: Greatly improves message
passing in sparse graphs

107

The virtual
node

Node Neighborhood Sampling
Our approach so far:

– All the neighbors are used for message passing

• Problem: Dense/large graphs, high-degree nodes

New idea: (Randomly) determine a node’s
neighborhood for message passing

108

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

Neighborhood Sampling Example

For example, we can randomly choose 2
neighbors to pass messages

– Only nodes 𝐵 and 𝐷 will pass message to 𝐴

109

Neighborhood Sampling Example

Next time when we compute the embeddings,
we can sample different neighbors

– Only nodes 𝐶 and 𝐷 will pass message to 𝐴

110

Neighborhood Sampling Example

In expectation, we can get embeddings similar to
the case where all the neighbors are used

– Benefits: Greatly reduce computational cost

– And in practice it works great!

111

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

112

▪ General Framework
▪ A single GNN layer: Aggregation and

Message
▪ Layer Connectivity: Stacking
▪ Graph augmentation
▪ Learning objectives

Outline

LEARNING WITH GNNS

113

A General GNN Framework

114

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf

GNN Training Pipeline

115

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

So far what we have covered

Output of a GNN: set of node embeddings

{𝐡𝑣
𝐿

, ∀𝑣 ∈ 𝐺}

GNN Prediction Heads

Idea: Different task levels require different
prediction heads

116

Node-level

prediction

Edge-level

prediction

Graph-level

prediction

GNN Training Pipeline (1)

117

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks

Prediction Heads: Node-level
Node-level prediction: We can directly make
prediction using node embeddings

• After GNN computation, we have 𝑑-dim node

embeddings: {𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺}

• Suppose we want to make 𝑘-way prediction

– Classification: classify among 𝑘 categories

– Regression: regress on 𝑘 targets

• ෝ𝒚𝒗 = Headnode(𝐡𝑣
𝐿) = 𝐖(𝐻)𝐡𝑣

(𝐿)

– 𝐖(𝐻) ∈ ℝ𝑘×𝑑 : We map node embeddings from 𝐡𝑣
(𝐿)

∈
ℝ𝑑 to ෝ𝒚𝑣 ∈ ℝ𝑘 so that we can compute the loss

118

Output of the
classifier

Prediction Heads: Edge-level

Edge-level prediction: Make prediction using pairs
of node embeddings

• Suppose we want to make 𝑘-way prediction

ෝ𝒚𝒖𝒗 = Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

)

• What are the options for Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

)?
119

?
𝐡𝑢

𝐿

𝐡𝑣
𝐿

Prediction Heads: Edge-level

• Options for Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

):

(1) Concatenation + Linear

– We have seen this in graph attention

– ෝ𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

))

– Here Linear(⋅) will map 2𝑑-dimensional
embeddings (since we concatenated embeddings)
to 𝑘-dim embeddings (𝑘-way prediction)

120

𝐡𝑢
(𝑙−1)

𝐡𝑣
(𝑙−1)

Concatenate Linear
ෞ𝒚𝑢𝑣

Prediction Heads: Edge-level

Options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿):

(2) Dot product

– ෝ𝒚𝒖𝒗 = (𝐡𝑢
𝐿

)𝑇𝐡𝑣
𝐿

– This approach only applies to 𝟏-way prediction (e.g.,
link prediction: predict the existence of an edge)

– Applying to 𝒌-way prediction:
• Similar to multi-head attention: 𝐖(1), … , 𝐖(𝑘) trainable

ෝ𝒚𝒖𝒗
(𝟏)

= (𝐡𝑢
𝐿

)𝑇𝐖(1)𝐡𝑣
𝐿

…

ෝ𝒚𝒖𝒗
(𝒌)

= (𝐡𝑢
𝐿

)𝑇𝐖(𝑘)𝐡𝑣
𝐿

 ෝ𝒚𝑢𝑣 = Concat(ෝ𝒚𝒖𝒗
(𝟏)

, … , ෝ𝒚𝒖𝒗
(𝒌)

) ∈ ℝ𝑘

121

Prediction Heads: Graph-level

Graph-level prediction: Make prediction using all
the node embeddings in our graph

• Suppose we want to make 𝑘-way prediction

• ෝ𝒚𝐺 = Headgraph({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

122

Graph-level prediction

(2) Aggregation

(1) Message

 Headgraph(⋅) is similar to

AGG(⋅) in a GNN layer!

Prediction Heads: Graph-level
Options for Headgraph({𝐡𝑣

𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• (1) Global mean pooling

ෝ𝒚𝐺 = Mean({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• (2) Global max pooling

ෝ𝒚𝐺 = Max({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• (3) Global sum pooling

ෝ𝒚𝐺 = Sum({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• These options work great for small graphs

For large graphs, hierarchical aggregation
123

K. Xu, W. Hu, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf

GNN Training Pipeline (2)

124

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(2) Where does ground-truth come from?
- Supervised labels
- Unsupervised signals

Supervised vs Unsupervised
• Supervised learning on graphs

– Labels come from external sources
• E.g., predict drug likeness of a molecular graph

• Unsupervised learning on graphs
– Signals come from graphs themselves

• E.g., link prediction: predict if two nodes are connected

• Sometimes the differences are blurry
– We still have “supervision” in unsupervised learning

• E.g., train a GNN to predict node clustering coefficient

– An alternative name for “unsupervised” is “self-
supervised”

125

Supervised Labels on Graphs
• Supervised labels come from the specific use

cases. For example:
– Node labels 𝒚𝒗: in a citation network, which subject

area does a node belong to

– Edge labels 𝒚𝒖𝒗: in a transaction network, whether an
edge is dishonest

– Graph labels 𝒚𝐺: among molecular graphs, the drug
likeness of graphs

• Advice: Reduce your task to node / edge / graph
labels, since they are easy to work with
– E.g., we knew some nodes form a cluster. We can treat

the cluster that a node belongs to as a node label

126

Unsupervised Signals on Graphs

• The problem: sometimes we only have a graph,
without any external labels

• The solution: “self-supervised learning”, we can find
supervision signals within the graph.
For example, we can let GNN predict the following:
– Node-level 𝒚𝑣. Node statistics: such as clustering

coefficient, PageRank, …
– Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge between

two nodes, predict if there should be a link
– Graph-level 𝒚𝐺. Graph statistics: for example, predict if

two graphs are isomorphic
– These tasks do not require any external labels!

127

GNN Training Pipeline (3)

128

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(3) How do we compute the final loss?
- Classification loss
- Regression loss

Settings for GNN Training

• The setting: We have 𝑁 data points

– Each data point can be a node/edge/graph

– Node-level: prediction ෝ𝒚𝑣
(𝑖)

, label 𝒚𝑣
(𝑖)

– Edge-level: prediction ෝ𝒚𝑢𝑣
(𝑖)

, label 𝒚𝑢𝑣
(𝑖)

– Graph-level: prediction ෝ𝒚𝐺
(𝑖)

, label 𝒚𝐺
(𝑖)

– We will use prediction ෝ𝒚(𝑖), label 𝒚 𝑖 to refer
predictions at all levels

129

Classification or Regression

• Classification: labels 𝒚 𝑖 with discrete value

– E.g., Node classification: which category does a
node belong to

• Regression: labels 𝒚 𝑖 with continuous value

– E.g., predict the drug likeness of a molecular graph

• GNNs can be applied to both settings

• Differences: loss function & evaluation
metrics

130

Classification Loss
Cross entropy (CE) is a very common loss function
in classification

• 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(𝑖), ෝ𝒚(𝑖) = − ෍
𝑗=1

𝐾

𝒚𝑗
(𝑖)

 log(ෝ𝒚𝒋
(𝒊)

)

where:

𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding

ෝ𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

• Total loss over all 𝑁 training examples

Loss = ෍
𝑖=1

𝑁

CE 𝒚(𝑖), ෝ𝒚(𝑖)

131

Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g.

E.g.

Regression Loss
• For regression tasks we often use Mean Squared

Error (MSE) a.k.a. L2 loss
• 𝐾-way regression for data point (i):

MSE 𝒚(𝑖), ෝ𝒚(𝑖) = ෍
𝑗=1

𝐾

(𝒚𝑗
(𝑖)

− ෝ𝒚𝑗
𝑖

)2

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets
ෝ𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

• Total loss over all 𝑁 training examples

Loss = ෍

𝑖=1

𝑁

MSE 𝒚(𝑖), ෝ𝒚(𝑖)

132

1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g.

E.g.

𝒊-th data point

𝒋-th target

GNN Training Pipeline (4)

133

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC

Evaluation Metrics: Regression

• We use standard evaluation metrics for GNN

– In practice we will use sklearn for implementation

– Suppose we make predictions for 𝑁 data points

• Evaluate regression tasks on graphs:

– Root mean square error (RMSE)

෍
𝑖=1

𝑁 𝒚(𝑖) − ෝ𝒚(𝑖) 2

𝑁

– Mean absolute error (MAE)
σ𝑖=1

𝑁 𝒚(𝑖) − ෝ𝒚(𝑖)

𝑁
134

https://scikit-learn.org/stable/modules/model_evaluation.html

Evaluation Metrics: Classification
• Evaluate classification tasks on graphs:
• (1) Multi-class classification

– We simply report the accuracy

1 argmax ෝ𝒚(𝑖) = 𝒚(𝑖)

𝑁
• (2) Binary classification

– Metrics sensitive to classification threshold
• Accuracy
• Precision / Recall
• If the range of prediction is [0,1], we will use 0.5 as

threshold

– Metric Agnostic to classification threshold
• OC AUC

135

Metrics for Binary Classification

• Accuracy:
TP + TN

TP + TN + FP + FN
=

TP + TN

|Dataset|

• Precision (P):
TP

TP + FP

• Recall (R):
TP

TP + FN

• F1-Score:
2P ∗ R

P + R

136Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

(4) Evaluation Metrics
• ROC Curve: Captures the tradeoff in TPR and

FPR as the classification threshold is varied
for a binary classifier.

137

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line
represents performance of
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

(4) Evaluation Metrics

• ROC AUC: Area under the ROC Curve.
• Intuition: The probability that a classifier will rank a

randomly chosen positive instance higher than a
randomly chosen negative one

138

Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

GNN Training Pipeline (5)

139

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

Dataset Split: Fixed/Random Split
• Fixed split: We will split our dataset once

– Training set: used for optimizing GNN parameters

– Validation set: develop model/hyperparameters

– Test set: held out until we report final performance

• Random split: we will randomly split our
dataset into training/validation/test

– We report average performance over different
random seeds

140

Why Splitting Graphs is Special
• Suppose we want to split an image dataset

– Image classification: Each data point is an image

– Here data points are independent

• Image 5 will not affect our prediction on image 1

141

Training

Validation

Test

3
2

45

1

6

Why Splitting Graphs is Special
• Splitting a graph dataset is different!

– Node classification: Each data point is a node

– Here data points are NOT independent
• Node 5 will affect our prediction on node 1, because it will

participate in message passing → affect node 1’s
embedding

• What are our options?
142

Training

Validation

Test

3
2

45

1

6

Why Splitting Graphs is Special
Solution 1 (Transductive setting): The input graph
can be observed in all the dataset splits (training,
validation and test set).

• We will only split the (node) labels
– At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels

– At validation time, we compute embeddings using
the entire graph, and evaluate on node 3&4’s labels

143

Training

Validation

Test

3
2

45

1

6

Why Splitting Graphs is Special
Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs

– Now we have 3 graphs that are independent. Node 5
will not affect our prediction on node 1 any more

– At training time, we compute embeddings using the
graph over node 1&2, and train using node 1&2’s labels

– At validation time, we compute embeddings using the
graph over node 3&4, and evaluate on node 3&4’s labels

144

Training

Validation

Test

3
2

45

1

6

Transductive/Inductive Settings
• Transductive setting: training/validation/test sets

are on the same graph
– The dataset consists of one graph

– The entire graph can be observed in all dataset splits,
we only split the labels

– Only applicable to node/edge prediction tasks

• Inductive setting: training/validation/test sets are
on different graphs
– The dataset consists of multiple graphs

– Each split can only observe the graph(s) within the split.
A successful model should generalize to unseen graphs

– Applicable to node/edge/graph tasks
145

Example: Node Classification
• Transductive node classification

– All the splits can observe the entire graph structure, but
can only observe the labels of their respective nodes

146

Training

Validation

Test

Training

Validation

Test

 Inductive node classification
▪ Suppose we have a dataset of 3 graphs
▪ Each split contains an independent graph

Example: Graph Classification

• Only the inductive setting is well defined for
graph classification

– Because we have to test on unseen graphs

– Suppose we have a dataset of 5 graphs. Each split
will contain independent graph(s).

147

Training Validation Test

Example: Link Prediction

• Goal of link prediction: predict missing edges

• Setting up link prediction is tricky:

– Link prediction is an unsupervised/self-supervised
task. We need to create the labels and dataset
splits on our own

– Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

148

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

Setting up Link Prediction

For link prediction, we will split edges twice

Step 1: Assign 2 types of edges in the original graph

– Message edges: Used for GNN message passing

– Supervision edges: Use for computing objectives

149

3
2

45

1

Original graph

Message edges Supervision edges

Setting up Link Prediction

• Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

– Suppose we have a dataset of 3 graphs. Each
inductive split will contain an independent graph

150

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺1 𝐺2 𝐺3

Setting up Link Prediction
• Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

– Suppose we have a dataset of 3 graphs. Each
inductive split will contain an independent graph

– In train or val or test set, each graph will have 2
types of edges: message edges + supervision edges

• Supervision edges are not the input to GNN

151
Training set Validation set

Message

edge

Supervision

edge
Test set

𝐺1 𝐺2 𝐺3

3
2

45

1 8
7

910

6 13
12

1415

11

Setting up Link Prediction
Option 2: Transductive link prediction split:

– This is the default setting when people talk about
link prediction

– Suppose we have a dataset of 1 graph

152

3
2

45

1

Setting up Link Prediction
Option 2: Transductive link prediction split:

– By definition of “transductive”, the entire graph can
be observed in all dataset splits

• But since edges are both part of graph structure and the
supervision, we need to hold out validation/test edges

• To train the training set, we further need to hold out
supervision edges for the training set

153

3
2

45

1

Setting up Link Prediction
Option 2: Transductive link prediction split:

154

After training, supervision edges are known to GNN. Therefore, an ideal
model should use supervision edges in message passing at validation time.
The same applies to the test time.

3
2

45

1

(1) At training time:

Use training message

edges to predict training

supervision edges

(2) At validation time:

Use training message

edges & training

supervision edges to

predict validation edges

(3) At test time:

Use training message

edges & training

supervision edges &

validation edges to

predict test edges

3
2

45

13
2

45

1

GNN Training Pipeline

155

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/GraphGym

Summary
• We introduce a general GNN framework:

– GNN Layer:
• Transformation + Aggregation

• Classic GNN layers: GCN, GraphSAGE, GAT

– Layer connectivity:
• The over-smoothing problem

• Solution: skip connections

– Graph Augmentation:
• Feature augmentation

• Structure augmentation

– Learning Objectives
• The full training pipeline of a GNN

156

157

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford

University, http://cs224w.stanford.edu

http://cs224w.stanford.edu/

	Slide 1: Online Social Networks and Media
	Slide 2
	Slide 3
	Slide 4: Example Tasks
	Slide 5: Recap: Node Embeddings
	Slide 6: Recap: Node Embeddings
	Slide 7: Recap: Two Key Components
	Slide 8: Recap: “Shallow” Encoding
	Slide 9: Recap: Shallow Encoders
	Slide 10: Deep Graph Encoders
	Slide 11: Part III: General Framework A single GNN layer: Aggregation and Message Layer connectivity: Stacking Graph manipulations Learning objectives
	Slide 12: Overview and general framework
	Slide 13: Deep Graph Encoders
	Slide 14: Basics of Deep Learning
	Slide 15: Setup
	Slide 16: Idea: Convolutional Networks
	Slide 17: Why is it hard?
	Slide 18: A Naïve Approach
	Slide 19: Permutation Invariance
	Slide 20: Permutation Invariance
	Slide 21: Permutation Invariance
	Slide 22: Permutation Invariance
	Slide 23: Invariance and Equivariance
	Slide 24: Graph Neural Network Overview
	Slide 25: Graph Neural Network Overview
	Slide 26: Graph Neural Network Overview
	Slide 27: Graph Convolutional Networks
	Slide 28: Idea: Aggregate Neighbors
	Slide 29: Idea: Aggregate Neighbors
	Slide 30: Idea: Aggregate Neighbors
	Slide 31: Deep Model: Many Layers
	Slide 32: Neighborhood Aggregation
	Slide 33: Neighborhood Aggregation
	Slide 34: The Math: Deep Encoder
	Slide 35: Model Parameters
	Slide 36: GCN: Invariance and Equivariance
	Slide 37: Training the Model
	Slide 38: How to Train A GNN
	Slide 39: Unsupervised Training
	Slide 40: Supervised Training
	Slide 41: Supervised Training
	Slide 42: Model Design: Overview
	Slide 43: Model Design: Overview
	Slide 44: Model Design: Overview
	Slide 45: Inductive Capability
	Slide 46: Inductive Capability: New Graphs
	Slide 47: Inductive Capability: New Nodes
	Slide 48: Summary so far
	Slide 49: A General GNN Framework
	Slide 50
	Slide 51: A single gnn layer
	Slide 52: A GNN Layer
	Slide 53: A Single GNN Layer
	Slide 54: Message Computation
	Slide 55: Message Aggregation
	Slide 56: Message Aggregation: Issue
	Slide 57: A Single GNN Layer
	Slide 58: Classical GNN Layers: GCN (1)
	Slide 59: Classical GNN Layers: GCN (2)
	Slide 60: Classical GNN Layers: GraphSAGE
	Slide 61: GraphSAGE Neighbor Aggregation
	Slide 62: GraphSAGE: L2 Normalization
	Slide 63: Classical GNN Layers: GAT (1)
	Slide 64: Classical GNN Layers: GAT (2)
	Slide 65: Graph Attention Networks
	Slide 66: Attention Mechanism (1)
	Slide 67: Attention Mechanism (2)
	Slide 68: Attention Mechanism (3)
	Slide 69: Attention Mechanism (4)
	Slide 70: Benefits of Attention Mechanism
	Slide 71: GNN Layer in Practice
	Slide 72: GNN Layer in Practice
	Slide 73: Batch Normalization
	Slide 74: Dropout
	Slide 75: Dropout for GNNs
	Slide 76: Activation (Non-linearity)
	Slide 77: GNN Layer in Practice
	Slide 78: Summary
	Slide 79
	Slide 80: Stacking layers
	Slide 81: Stacking GNN Layers
	Slide 82: Stacking GNN Layers
	Slide 83: The Over-Smoothing Problem
	Slide 84: Receptive Field of a GNN
	Slide 85: Receptive Field of a GNN
	Slide 86: Receptive Field & Over-smoothing
	Slide 87: Design GNN Layer Connectivity
	Slide 88: Expressive Power for Shallow GNNs
	Slide 89: Expressive Power for Shallow GNNs
	Slide 90: Design GNN Layer Connectivity
	Slide 91: Idea of Skip Connections
	Slide 92: Example: GCN with Skip Connections
	Slide 93: Other Options of Skip Connections
	Slide 94: Summary so far
	Slide 95
	Slide 96: Graph manipulations
	Slide 97: General GNN Framework
	Slide 98: Why Manipulate Graphs
	Slide 99: Graph Manipulation Approaches
	Slide 100: Feature Augmentation on Graphs
	Slide 101: Feature Augmentation on Graphs
	Slide 102: Feature Augmentation on Graphs
	Slide 103: Feature Augmentation on Graphs
	Slide 104: Feature Augmentation on Graphs
	Slide 105: Feature Augmentation on Graphs
	Slide 106: Add Virtual Nodes / Edges
	Slide 107: Add Virtual Nodes / Edges
	Slide 108: Node Neighborhood Sampling
	Slide 109: Neighborhood Sampling Example
	Slide 110: Neighborhood Sampling Example
	Slide 111: Neighborhood Sampling Example
	Slide 112
	Slide 113: Learning with gnns
	Slide 114: A General GNN Framework
	Slide 115: GNN Training Pipeline
	Slide 116: GNN Prediction Heads
	Slide 117: GNN Training Pipeline (1)
	Slide 118: Prediction Heads: Node-level
	Slide 119: Prediction Heads: Edge-level
	Slide 120: Prediction Heads: Edge-level
	Slide 121: Prediction Heads: Edge-level
	Slide 122: Prediction Heads: Graph-level
	Slide 123: Prediction Heads: Graph-level
	Slide 124: GNN Training Pipeline (2)
	Slide 125: Supervised vs Unsupervised
	Slide 126: Supervised Labels on Graphs
	Slide 127: Unsupervised Signals on Graphs
	Slide 128: GNN Training Pipeline (3)
	Slide 129: Settings for GNN Training
	Slide 130: Classification or Regression
	Slide 131: Classification Loss
	Slide 132: Regression Loss
	Slide 133: GNN Training Pipeline (4)
	Slide 134: Evaluation Metrics: Regression
	Slide 135: Evaluation Metrics: Classification
	Slide 136: Metrics for Binary Classification
	Slide 137: (4) Evaluation Metrics
	Slide 138: (4) Evaluation Metrics
	Slide 139: GNN Training Pipeline (5)
	Slide 140: Dataset Split: Fixed/Random Split
	Slide 141: Why Splitting Graphs is Special
	Slide 142: Why Splitting Graphs is Special
	Slide 143: Why Splitting Graphs is Special
	Slide 144: Why Splitting Graphs is Special
	Slide 145: Transductive/Inductive Settings
	Slide 146: Example: Node Classification
	Slide 147: Example: Graph Classification
	Slide 148: Example: Link Prediction
	Slide 149: Setting up Link Prediction
	Slide 150: Setting up Link Prediction
	Slide 151: Setting up Link Prediction
	Slide 152: Setting up Link Prediction
	Slide 153: Setting up Link Prediction
	Slide 154: Setting up Link Prediction
	Slide 155: GNN Training Pipeline
	Slide 156: Summary
	Slide 157

