
Models and Algorithms for
Complex Networks

Network models



What is a network model?

§ Informally, a network model is a process
(radomized or deterministic) for generating a
graph
§ Models of static graphs
§ input: a set of parameters , and the size of the

graph n
§ output: a graph G( ,n)

§ Models of evolving graphs
§ input: a set of parameters , and an initial graph G0

§ output: a graph Gt for each time t



Families of random graphs

§ A deterministic model D defines a single graph
for each value of n (or t)

§ A randomized model R defines a probability
space ‹Gn,P› where Gn is the set of all graphs of
size n, and P a probability distribution over the
set Gn (similarly for t)
§ we call this a family of random graphs R, or a random

graph R



Erdös-Renyi Random graphs

Paul Erdös (1913-1996)



Erdös-Renyi Random Graphs

§ The Gn,p model
§ input: the number of vertices n, and a

parameter p, 0 p 1
§ process: for each pair (i,j), generate the edge

(i,j) independently with probability p

§ Related, but not identical: The Gn,m model
§ process: select m edges uniformly at random



Graph properties

§ A property P holds almost surely (or for almost every
graph), if

§ Evolution of the graph: which properties hold as the
probability p increases?
§ different from the evolving graphs we saw before

§ Threshold phenomena: Many properties appear
suddenly. That is, there exist a probability pc such that
for p<pc the property does not hold a.s. and for p>pc
the property holds a.s.
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The giant component

§ Let z=np be the average degree
§ If z < 1, then almost surely, the largest

component has size at most O(ln n)
§ if z > 1, then almost surely, the largest

component has size (n). The second
largest component has size O(ln n)
§ if z = (ln n), then the graph is almost

surely connected.



The phase transition

§ When z=1, there is a phase transition
§ The largest component is O(n2/3)
§ The sizes of the components follow a power-

law distribution.



Random graphs degree distributions

§ The degree distribution follows a binomial

§ Assuming z=np is fixed, as n , B(n,k,p) is
approximated by a Poisson distribution

§ Highly concentrated around the mean, with a tail
that drops exponentially
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Other properties

§ Clustering coefficient
§ C = z/n

§ Diameter (maximum path)
§ L = log n / log z



Phase Transition

§ Starting from some vertex v perform a
BFS walk
§ At each step of the BFS a Poisson process

with mean z, gives birth to new nodes
§ When z<1 this process will stop after

O(logn) steps
§ When z>1, this process will continue for

(n) steps



Random graphs and real life

§ A beautiful and elegant theory studied
exhaustively

§ Random graphs had been used as
idealized network models

§ Unfortunately, they don’t capture reality…



Departing from the ER model

§ We need models that better capture the
characteristics of real graphs
§ degree sequences
§ clustering coefficient
§ short paths



Graphs with given degree sequences

§ The configuration model
§ input: the degree sequence [d1,d2,…,dn]
§ process:

• Create di copies of node i
• Take a random matching (pairing) of the copies
§ self-loops and multiple edges are allowed

§ Uniform distribution over the graphs with
the given degree sequence



Example

§ Suppose that the degree sequence is

§ Create multiple copies of the nodes

§ Pair the nodes uniformly at random
§ Generate the resulting network

4 1 3 2



Other properties

§ The giant component phase transition for this
model happens when

§ The clustering coefficient is given by

§ The diameter is logarithmic
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Power-law graphs

§ The critical value for the exponent is

§ The clustering coefficient is

§ When <7/3 the clustering coefficient
increases with n
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Graphs with given expected degree
seqences

§ Input: the degree sequence [d1, d2, … ,dn]
§ m = total number of edges

§ Process: generate edge (i,j) with
probability didj/m
§ preserves the expected degrees
§ easier to analyze



However…

§ The problem is that these models are too
contrived

§ It would be more interesting if the
network structure emerged as a side
product of a stochastic process rather than
fixing its properties in advance.



A randomly grown graph

§ A very simple model
§ essentially no input parameters
§ the process:

• at each time step add a new vertex
• with probability pick two vertices u,v and generate an edge

§ The degree distribution is exponential

§ The randomly grown graph
does not look “random”

pk ~ e-k



Preferential Attachment in Networks

§ First considered by [Price 65] as a model for
citation networks
§ each new paper is generated with m citations (mean)
§ new papers cite previous papers with probability

proportional to their indegree (citations)
§ what about papers without any citations?

• each paper is considered to have a “default” citation
• probability of citing a paper with degree k, proportional to

k+1

§ Power law with exponent = 2+1/m



Barabasi-Albert model

§ The BA model (undirected graph)
§ input: some initial subgraph G0, and m the number of

edges per new node
§ the process:

• nodes arrive one at the time
• each node connects to m other nodes selecting them with

probability proportional to their degree
• if [d1,…,dt] is the degree sequence at time t, the node t+1

links to node i with probability

§ Results in power-law with exponent = 3
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The mathematicians point of view
[Bollobas-Riordan]

§ Self loops and multiple edges are allowed
§ The m edges are inserted sequentially, thus the

problem reduces to studying the single edge
problem.
§ For the single edge problem:
§ At time t, a new vertex v, connects to an existing

vertex u with probability

§ it creates a self-loop with probability

1-2t
di

1-2t
1



The Linearized Chord Diagram (LCD)
model

§ Consider 2n nodes labeled {1,2,…,2n}
placed on a line in order.



Linearized Chord Diagram

§ Generate a random matching of the
nodes.



Linearized Chord Diagram

§ Starting from left to right identify all endpoints until the
first right endpoint. This is node 1. Then identify all
endpoints until the second right endpoint to obtain node
2, and so on.



Linearized Chord Diagram

§ Uniform distribution over matchings gives uniform
distribution over all graphs in the preferential attachment
model



Linearized Chord Diagram

§ Create a random matching with 2(n+1) nodes by adding to a
matching with 2n nodes a new cord with the right endpoint being in
the rightmost position and the left being placed uniformly



Linearized Chord Diagram

§ A new right endpoint creates a new graph node



Linearized Chord Diagram

§ The left endpoint may be placed within any of
the existing “supernodes”



Linearized Chord Diagram

§ The number of free positions within a supernode is equal
to the number of pairing nodes it contains

§ This is also equal to the degree



Linearized Chord Diagram

§ For example, the probability that the black graph
node links to the blue node is 4/11
§ di = 4,      t = 6,       di/(2t-1) = 4/11



Preferential attachment graphs

§ Expected diameter
§ if m = 1, the diameter is (log n)
§ if m > 1, the diameter is (log n/loglog n)

§ Expected clustering coefficient
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Weaknesses of the BA model

§ Technical issues:
§ It is not directed (not good as a model for the Web) and when directed

it gives acyclic graphs
§ It focuses mainly on the (in-) degree and does not take into account

other parameters (out-degree distribution, components, clustering
coefficient)

§ It correlates age with degree which is not always the case

§ Academic issues
§ the model rediscovers the wheel
§ preferential attachment is not the answer to every power-law
§ what does “scale-free” mean exactly?

§ Yet, it was a breakthrough in the network research, that popularized
the area



Variations of the BA model

§ Many variations have been considered
some in order to address the problems
with the vanilla BA model
§ edge rewiring, appearance and disappearance
§ fitness parameters
§ variable mean degree
§ non-linear preferential attachment

• surprisingly, only linear preferential attachment
yields power-law graphs



Empirical observations for the Web
graph

§ Such subgraphs are highly unlikely in random graphs
§ They are also unlikely in the BA model
§ Can we create a model that will have high concentration

of small cliques?

a K3,2 clique

§ In a large scale experimental study by
Kumar et al, they observed that the
Web contains a large number of
small bipartite cliques (cores)
§ the topical structure of the Web



Copying model

§ Input:
§ the out-degree d (constant) of each node
§ a parameter

§ The process:
§ Nodes arrive one at the time
§ A new node selects uniformly one of the existing

nodes as a prototype
§ The new node creates d outgoing links. For the ith link

• with probability it copies the i-th link of the prototype node
• with probability 1- it selects the target of the link uniformly

at random



An example



Copying model properties

§ Power law degree distribution with
exponent = (2- )/(1- )
§ Number of bipartite cliques of size i x d is

ne-i

§ The model has also found applications in
biological networks
§ copying mechanism in gene mutations



Other graph models

§ Cooper Frieze model
§ multiple parameters that allow for adding

vertices, edges, preferential attachment,
uniform linking

§ Directed graphs [Bollobas et al]
§ allow for preferential selection of both the

source and the destination
§ allow for edges from both new and old

vertices



Small world Phenomena

§ So far we focused on obtaining graphs
with power-law distributions on the
degrees. What about other properties?
§ Clustering coefficient: real-life networks tend

to have high clustering coefficient
§ Short paths: real-life networks are “small

worlds”
• this property is easy to generate

§ Can we combine these two properties?



Small-world Graphs

§ According to Watts [W99]
§ Large networks (n >> 1)
§ Sparse connectivity (avg degree z << n)
§ No central node (kmax << n)
§ Large clustering coefficient (larger than in

random graphs of same size)
§ Short average paths (~log n, close to those of

random graphs of the same size)



The Caveman Model [W99]

§ The random graph
§ edges are generated completely at random
§ low avg. path length L logn/logz
§ low clustering coefficient C ~ z/n

§ The Caveman model
§ edges follow a structure
§ high avg. path length L ~ n/z
§ high clustering coefficient C ~ 1-O(1/z)

§ Can we interpolate between the two?



Mixing order with randomness

§ Inspired by the work of Solmonoff and Rapoport
§ nodes that share neighbors should have higher probability to be

connected
§ Generate an edge between i and j with probability proportional to Rij

§ When = 0, edges are determined by common neighbors
§ When = edges are independent of common neighbors
§ For intermediate values we obtain a combination of order and

randomness
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Algorithm

§ Start with a ring
§ For i = 1 … n
§ Select a vertex j with probability proportional

to Rij and generate an edge (i,j)

§ Repeat until z edges are added to each
vertex



Clustering coefficient – Avg path length

small world graphs



Watts and Strogatz model [WS98]

§ Start with a ring, where every node is connected to the
next z nodes

§ With probability p, rewire every edge (or, add a
shortcut) to a uniformly chosen destination.
§ Granovetter, “The strength of weak ties”

order randomness

p = 0 p = 10 < p < 1



Clustering Coefficient –
Characteristic Path Length

log-scale in p

When p = 0, C = 3(k-2)/4(k-1) ~ ¾
L = n/k

For small p, C ~ ¾
L ~ logn



Graph Theory Results

§ Graph theorist failed to be impressed.
Most of these results were known.



Evolution of graphs

§ So far we looked at the properties of
graph snapshots. What if we have the
history of a graph?
§ e.g., citation networks, internet graphs



Measuring preferential attachment

§ Is it the case that the rich get richer?

§ Look at the network for an interval [t,t+dt]
§ For node i, present at time t, we compute

§ dki = increase in the degree
§ dk = number of edges added

§ Fraction of edges added to nodes of degree k

§ Cumulative: fraction of edges added to nodes of degree
at most k
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Measuring preferential attachment

§ We plot F(k) as a function
of k. If preferential
attachment exists we
expect that F(k) ~ kb

§ actually, it has to be b ~ 1

(a) citation network
(b) Internet
(c) scientific collaboration network
(d) actor collaboration network



Network models and temporal
evolution

§ For most of the existing models it is
assumed that
§ number of edges grows linearly with the

number of nodes
§ the diameter grows at rate logn, or loglogn

§ What about real graphs?
§ Leskovec, Kleinberg, Faloutsos 2005



Densification laws

§ In real-life networks the average degree
increases! – networks become denser!

= densification exponent

N(t)

E(t)

1.69

N(t)

E(t)

1.18
scientific
citation network

Internet



More examples

§ The densification exponent 1 2
§ = 1: linear growth – constant out degree
§ = 2: quadratic growth - clique

N(t)

E(t)

1.66

N(t)

E(t)

1.15

patent citation network movies affiliation network



What about diameter?

§ Effective diameter: the interpolated value
where 90% of node pairs are reachable

hops
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Diameter shrinks

scientific
citation network

Internet

patent citation networkaffiliation network



Densification – Possible Explanation

§ Existing graph generation models do not capture
the Densification Power Law and Shrinking
diameters
§ Can we find a simple model of local behavior,

which naturally leads to observed phenomena?

§ Two proposed models
§ Community Guided Attachment – obeys Densification
§ Forest Fire model – obeys Densification, Shrinking

diameter (and Power Law degree distribution)



Community structure

§ Let’s assume the
community structure
§ One expects many

within-group
friendships and
fewer cross-group
ones

§ How hard is it to
cross communities?

Self-similar university
community structure

CS Math Drama Music

Science Arts

University



§ If the cross-community linking probability of
nodes at tree-distance h is scale-free
§ We propose cross-community linking

probability:

where: c 1 … the Difficulty constant
h … tree-distance

Fundamental Assumption



Densification Power Law

§ Theorem: The Community Guided Attachment
leads to Densification Power Law with exponent

§ … densification exponent
§ b … community structure branching factor
§ c … difficulty constant



§ Theorem:

§ Gives any non-integer Densification
exponent
§ If c = 1: easy to cross communities
§ Then: = 2, quadratic growth of edges –

near clique
§ If c = b: hard to cross communities
§ Then: = 1, linear growth of edges –

constant out-degree

Difficulty Constant



Room for Improvement

§ Community Guided Attachment explains
Densification Power Law
§ Issues:
§ Requires explicit Community structure
§ Does not obey Shrinking Diameters

§ The ”Forrest Fire” model



“Forest Fire” model – Wish List

§ We want:
§ no explicit Community structure
§ Shrinking diameters
§ and:

• “Rich get richer” attachment process, to get
heavy-tailed in-degrees

• “Copying” model, to lead to communities
• Community Guided Attachment, to produce

Densification Power Law



“Forest Fire” model – Intuition

§ How do authors identify references?
1. Find first paper and cite it
2. Follow a few citations, make citations
3. Continue recursively
4. From time to time use bibliographic tools

(e.g. CiteSeer) and chase back-links



“Forest Fire” model – Intuition

§ How do people make friends in a new
environment?
1. Find first a person and make friends
2. From time to time get introduced to his friends
3. Continue recursively

§ Forest Fire model imitates exactly this process



“Forest Fire” – the Model

§ A node arrives
§ Randomly chooses an “ambassador”
§ Starts burning nodes (with probability p) and

adds links to burned nodes
§ “Fire” spreads recursively



Forest Fire in Action (1)

§ Forest Fire generates graphs that
Densify and have Shrinking Diameter

densification diameter
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Forest Fire in Action (2)

§ Forest Fire also generates graphs with
heavy-tailed degree distribution

in-degree out-degree

count vs. in-degree count vs. out-degree



Forest Fire model – Justification

§ Densification Power Law:
§ Similar to Community Guided Attachment
§ The probability of linking decays

exponentially with the distance –
Densification Power Law

§ Power law out-degrees:
§ From time to time we get large fires

§ Power law in-degrees:
§ The fire is more likely to reach hubs



Forest Fire model – Justification

§ Communities:
§ Newcomer copies neighbors’ links

§ Shrinking diameter
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