Models and Algorithms for
Complex Networks

Graph Clustering and Network
Communities




§ Given a set of objects V, and a notion of
similarity (or distance) between them,
partition the objects into disjoint sets
S.1,5,,...,5,, such that objects within the
each set are similar, while objects across
different sets are dissimilar



ﬁ%/ﬁ Graph Clustering

§ Input: a graph G=(V,E)

§ edge (u,v) denotes between u and v
§ weighted graphs: weight of edge captures the degree
of similarity

§ Clustering: Partition the nodes in the graph such
that nodes within clusters are well
Interconnected (high edge weights), and nodes
across clusters are sparsely interconnected (low
edge weights)

§ most graph partitioning problems are NP hard



Measuring connectivity

§ What does it mean that a set of nodes are well or
sparsely interconnected?

8 . the min number of edges such that when
removed cause the graph to become disconnected
§ small min-cut implies sparse connectivity
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Measuring connectivity

§ What does it mean that a set of nodes are well
Interconnected?

§ min-cut: the min number of edges such that when
removed cause the graph to become disconnected
§ not always a good idea!




, Graph expansion

§ Normalize the cut by the size of the smallest
component

§ : o= E(U,V-U)
min(ul. [V - U

§ (U,v-U)
_ oo E(UV-U

=M U -

§ We will now see how the graph expansion
relates to the eigenvalue of the adjacency matrix
A



Spectral analysis

§ The Laplacian matrix L = D — A where

§ A = the adjacency matrix
§ D = diag(d,,d,,...,d,)

d; = degree of node i

§ Therefore
§ L(I,I) = d,
8 L(I,)) = -1, If there is an edge (i,])



M Laplacian Matrix properties

§ The matrix L IS and

§ all eigenvalues of L are positive

§ The matrix L has 0 as an eigenvalue, and
corresponding eigenvector w, = (1,1,...,1)
§ A, = O Is the smallest eigenvalue



, The second smallest eigenvalue

§ The second smallest eigenvalue (also

known as ) A, satisfies
A, = min x'Lx

XA wy || x|=1

§ The vector that minimizes A, is called the
. It minimizes

o 2
a (Xi ) Xj) o)
A, =min &2 where @ X;=0
X0 a X
i



8 The values of x minimize

2
a (Xi' Xj) o
min L8 ax =0
X0 a X

§ For weighted matrices
é A[i’j](xi B Xj)2
min&— —
x10 a Xi
§ The ordering according to the x; values will group similar
(connected) nodes together

éixi:O

§ Physical interpretation: The stable state of springs
placed on the edges of the graph



"*@ Spectral partition

§ Partition the nodes according to the ordering
Induced by the Fielder vector

§ If u=(uyu,,...,u,) Is the Fielder vector, then
split nodes according to a value
§ bisection: s is the median value in u
§ ratio cut: s is the value that minimizes o
§ sign: separate positive and negative values (s=0)
§ gap: separate according to the largest gap in the
values of u

§ This works well (provably for special cases)



) Fielder Value

§ The value A, is a good approximation of the graph expansion

a(G)®

£A, £2a(G
. £20(6) d = maximum degree

%EG(G) £ /A, (2d- A,)

§ For the of the Fielder vector we have that

2

a
—£E N, £2a(G
- £A, £20(G)

§ If the max degree d is bounded we obtain a good approximation of
the minimum expansion cut



ﬁw Conductance

§ The expansion does not capture the inter-
cluster similarity well

8 The nodes with high degree are more
Important

j (6)=min mm{i((%’),vd_(LvJ)- U)

§ d(U)=3 a A[i,j] weighted degrees of nodes in U
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M\ Conductance and random walks
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§ Consider the normalized stochastic matrix M = D1A

§ The conductance of the Markov Chain M is
a a n(MIi, j]
. — mi U jiu
/M) T min{n(U),n(V - U)}
§ the probability that the random walk escapes set U

§ The conductance of the graph is the same as that of the
Markov Chain, ®(A) = ®(M)

§ Conductance @ is related to the second eigenvalue of

the matrix M -

%u-pz £j



N\ Interpretation of conductance

§ Low conductance means that there iIs
some In the graph

§ a subset of nodes not well connected with the
rest of the graph.

§ High conductance means that the graph is
well connected



A Clustering Conductance

§8 The conductance of a clustering is defined
as the minimum conductance over all
clusters in the clustering.

§ Maximizing conductance of clustering
seems like a natural choice

§ ...but it does not handle well outliers



f@ A clustering bi-criterion

§ Maximize the conductance, but at the
same time minimize the inter-cluster
(between clusters) edges

§ A clustering C = {C,,C,,...,.C } IS a
(c,e)-clustering If
§ The conductance of each C, is at least

§ The total number of inter-cluster edges is at
most a fraction e of the total edges



) The clustering problem

§ Problem 1: Given c, find a (c,e)-clustering
that minimizes e

§ Problem 2: Given e, find a (c,e)-clustering
that maximizes

§ Both problems are NP-hard



ﬁ» A spectral algorithm

§ Create matrix M = DA
§ Find the second largest eigenvector v

§ Find the best ratio-cut (minimum
conductance cut) with respect to v

§ Recurse on the pieces induced by the cut.

§8 The algorithm has provable guarantees



A A divide and merge methodology

8 phase:

§ Recursively partition the input into two pieces
until singletons are produced

§ output: a tree hierarchy

§ Merge phase:

§ use dynamic programming to merge the leafs
In order to produce a tree-respecting flat
clustering
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M Details

§ The phase
§8 use the spectral algorithm described before

§ The merge phase

§ pick an optimization criterion
e.g. k-means

s Ci}) =) ) d(u,pi)*.

T uel]

§ perform dynamic programming

&) when 1 = 1

CFT = { argming ;.; g(OPT(Cy, j) UOPT(C, 2 — j)) otherwise



, Applications to web search

http://eigencluster.csail.mit.edu
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M Discovering communities

. a set of nodes S, where the
number of edges within the community is
larger than the number of edges outside
of the community.



ﬂﬁ/ﬁ Min-cut Max-flow

§ Given a graph G=(V,E), where each edge has
some capacity c(u,v), a source node s, and a
destination node t, find the maximum amount of
flow that can be sent from s to t, without
violating the capacity constraints

§ The max-flow is equal to the min-cut in the
graph (weighted min-cut)

§ Solvable in polynomial time



A seeded community

§ The community of node s with respect to
node t, IS the set of hodes reachable from
In the min-cut that contains

§ this set defines a community




) Discovering Web communities

Start with a set of
seed nodes

Add a virtual source s

Find neighbors a few
links away

Create a virtual sink t

Find the community
of s with respect to t

Figure 2: Focused community crawling and the
graph induced: (a) The virtual source vertex; (b)
vertices of seed web sites; (¢) vertices of web sites
one link away from any seed site; (d) references to
sites not in (b) or (¢); and (e) the virtual sink vertex.



. A more structured approach

§ Add a virtual source t in the graph, and connect
all nodes to t, with edges of capacity a

§ Let S be the community of node s with respect
to t. For every partition P,Q of S we have

c(S,Vv-S) 9 ¢(P,Q)
vos - F minfpl o)

§ Surprisingly, this simple algorithm gives
guarantees for the expansion and the inter-
community density




ﬁw Min-Cut Trees

§ Given a graph G=(V,E), the min-cut tree T
for graph G Is defined as a tree over the
set of vertices V, where

§ the edges are weighted

§ the min-cut between nodes u and v Is the
smallest weight among the edges in the path
from u to v.

§ removing this edge from T gives the same
partition as removing the min-cut in G



c(W,U2) < c(U1,U2)

C2<C3




c(W,U) =C1+C2

if C2 > C3 then
Cl+C3<Cl+C2




c(W,U) =C1+C2

if C2 > C3 then
Cl+C3<Cl+C2

this would be a
better cut: contradiction!



M\ Lemma 2

§ Let S be the community of the node s with
respect to the artificial sink t. For any partition

P.Q of S we have
P e)
min{P|Ql

0
N @

| | NS
if c(P,Q) < min{a |P|, a|Q|[} a P
then we would split

differently

P




A Lemma 3

)

8§ Let S be the community of node s with
respect to t. Then we have
c(S,V-S)

£q
V-9

§ Follows from Lemma 1:
8§ W =S
§ U, = V-S
8 U, = {t}



- Algorithm for finding

¥ communities

§ Add a virtual sink t to the graph G and
connect all nodes with capacity a a graph

G!
§ Create the min-cut tree T’ of graph G’
§ Remove t from T’

§ Return the disconnected components as
clusters



8

wn

’*% Effect of o

When a is too small, the algorithm returns a single
cluster (the easy thing to do is to remove the sink t)

When a is too large, the algorithm returns singletons
(the tree Is a star with t in the middle)

In between is the interesting area.
We can explore for the right value of a
We can run the algorithm hierarchically

§ start with small a and increase it gradually ————— o,
§ the clusters returned are nested Rl e .
C -5 P L
C_ D DD V/K}ﬁ) o

Figure 4: Hierarchical tree of clusters.



Some experiments
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