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What is a Clustering?

A grouping of objects such that the objects in a group (cluster) are similar (or
related) to one another and different from (or unrelated to) the objects in other
groups (clusters)




Why Cluster Analysis
1 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
genes and proteins that have similar Natl-SemiconductDOWN, Orack DOWN.SGI-DOWN,

. 1 Discovered Clusters Industry Group
U n d erStan d I n g Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,
- Group related documents for browsing, DSC-Com-DOWN,INTEL-DOWN.LS-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
functionality, stocks with similar price
fluctuations, users with same behavior

Technologyl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN
- Summarization
- Reduce the size of large data sets

- Applications
- Recommendation systems
- Search Personalization

Clustering precipitation
in Australia



Early applications of cluster analysis

- John Snow, London 1854
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Figure 1.1: Plotting cholera cases on a map of London




e
Types of Clusterings

- Important distinction between hierarchical and partitional sets of
clusters

- Partitional Clustering

- A division data objects into subsets (clusters) such that each data object is in
exactly one subset

- Hierarchical clustering
- A set of nested clusters organized as a hierarchical tree



Partitional Clustering

Original Points A Partitional Clustering



Hierarchical Clustering
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Hierarchical Clustering dendrogram

Hierarchical Clustering



e
Other types of clustering

- Exclusive (or non-overlapping) versus non-exclusive (or
overlapping)

- In non-exclusive clusterings, points may belong to multiple clusters.
- Points that belong to multiple classes, or ‘border’ points

- Fuzzy (or soft) versus non-fuzzy (or hard)

- In fuzzy clustering, a point belongs to every cluster with some weight
between 0 and 1
- Weights usually must sum to 1 (often interpreted as probabilities)

- Partial versus complete
- In some cases, we only want to cluster some of the data



Clustering objectives

- Well-Separated Clusters:

- A cluster is a set of points such that any point in a cluster is closer (or
more similar) to every other point in the cluster than to any point not in the
cluster.

3 well-separated clusters



Clustering objectives

- Center-based Clusters:

- A cluster is a set of objects such that an object in a cluster is closer (more
similar) to the “center” of a cluster, than to the center of any other cluster

- The center of a cluster is often a centroid, the minimizer of distances from

all the points in the cluster, or a medoid, the most “representative” point of
a cluster

4 center-based clusters



Clustering objectives

- Contiguous Clusters (Nearest neighbor or Transitive)

- Acluster is a set of points such that a point in a cluster is closer (or more
similar) to one or more other points in the cluster than to any point not in the
cluster.

oo
........

8 contiguous clusters



Clustering Objectives

- Density-based clusters

- A cluster is a dense region of points, which is separated by low-density
regions, from other regions of high density.

- Used when the clusters are irregular or intertwined, and when noise and
outliers are present.

6 density-based clusters



-
Clustering objectives

- Shared Property or Conceptual Clusters

- Finds clusters that share some common property or represent a particular
concept.

A cluster is defined as a set of points that lie on a circle



-
Clustering objectives

Clustering as an optimization problem
- Finds clusters that minimize or maximize an objective function.

- Consider all possible ways of dividing the points into clusters and compute the
‘goodness' of each clustering using the objective function to find the best one.
Usually, finding the best is NP-hard (no polynomial algorithm).

- Can have global or local objectives.
Hierarchical clustering algorithms typically have local objectives
Partitional algorithms typically have global objectives

- A variation of the global objective function approach is to fit the data to a
parameterized (probabilistic) model.

The parameters for the model are determined from the data, and they determine the clustering
E.g., Mixture models assume that the data is a ‘mixture' of a number of statistical distributions.



-
Clustering Algorithms

- K-means and Its variants

- Hierarchical clustering

- DBSCAN



K-MEANS




K-means Clustering

- Partitional clustering approach

- Each cluster is associated with a centroid (center point)

- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified

- The objective Is to:
find K centroids and
the assignment of points to clusters/centroids

S0 as to minimize the sum of distances of the points to their respective
centroid



e
K-means Clustering as an optimization problem

Problem: Given a set X of n objects and an integer K, find a
grouping of the points into K clusters C = {C,,C,, ..., Cx} with

centroids {cq, ¢y, ..., i } that minimizes the cost function
K

_ ’ T Definition for a general
COSt(C) o 2 2 dlSt(x' Ci) distance function dist

=1 x€C;

Note: We need to find both the grouping into clusters and the
centroids per cluster.



K-means Clustering

Most common definition is with euclidean distance, minimizing the
sum of Squares Error (SSE) — distance function

- Sometimes K-means clustering is defined like that

Problem: Given a set X of n points in a d-dimensional space and an
iInteger K group the points into K clusters ¢ = {C,,C,, ..., Cx} such that

K
_ 1 | 2
Cost(C) = Z Z (x —¢;) Sum of Squares Error (SSE)

I=1 x€(;

IS minimized, where c; Is the mean of the points in cluster C,




e
Complexity of the k-means problem

NP-hard if the dimensionality of the data is at least 2 (d = 2)
- Finding the best solution in polynomial time is infeasible

For d = 1 the problem is solvable in polynomial time (how?)

A simple iterative algorithm works quite well in practice



e
K-means Algorithm

- Also known as Lloyd’s algorithm.
- K-means is sometimes synonymous with this algorithm

1. Select K points as the initial centroidsi

2. repeat
3. Form K clusters by assigning each point to the closest centroid
4. Compute the new centroid* of each cluster |

5. until The centroids do not change
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K-means Algorithm — Initialization

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Dealing with Initialization

- Do multiple runs and select the clustering with the smallest error

- Select original set of points by methods other than random.
E.g., pick the most distant (from each other) points as cluster
centers (K-means++ algorithm)



K-means Algorithm — Centroids

‘Closeness’ is measured by some similarity or distance function
- E.g., Euclidean distance (SSE), cosine similarity, correlation, etc.

The centroid depends on the distance function
- The minimizer for the distance function
Centroid:

- The mean of the points in the cluster for SSE, and cosine similarity
- The median for Manhattan distance.

Finding the centroid is not always easy

- It can be an NP-hard problem for some distance functions
E.g., median for multiple dimensions



K-means Algorithm — Convergence

K-means will converge for common similarity measures mentioned
above.
- Most of the convergence happens in the first few iterations.

- Often the stopping condition is changed to ‘Until relatively few points change
clusters’

ComplexityisO(n-K-1-d)

- n = number of points,

- K = number of clusters,

- I = number of iterations,

- d = dimensionality

In general, a fast and efficient algorithm



Limitations of K-means

- K-means has problems when clusters are of different:
- sizes
- densities
- non-globular shapes

- K-means has problems when the data contains outliers.
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Limitations of K-means: Differing Sizes
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Limitations of K-means: Differing Density
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iImitations of K-means: Non-globular Shapes
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.



e
Overcoming K-means Limitations
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vercoming
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Variations

K-medoids: Similar problem definition as in K-means, but the
centroid of the cluster is defined to be one of the points in the
cluster (the medoid).

K-centers: Similar problem definition as in K-means, but the goal
now Is to minimize the maximum diameter of the clusters

- diameter of a cluster is maximum distance between any two points in the
cluster.



HIERARCHICAL CLUSTERING




Hierarchical Clustering

Two main types of hierarchical clustering

- Agglomerative:
Start with the points as individual clusters
At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

- Divisive:
Start with one, all-inclusive cluster
At each step, split a cluster until each cluster contains a point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or distance
matrix

- Merge or split one cluster at a time



Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree

- Can be visualized as a dendrogram
- A tree like diagram that records the sequences of merges or splits
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Strengths of Hierarchical Clustering

Do not have to assume any particular number of clusters

- Any desired number of clusters can be obtained by ‘cutting’ the dendogram
at the proper level

Dendrograms may correspond to meaningful taxonomies

- Example in biological sciences (e.g., animal kingdom, phylogeny
reconstruction, ...)



e
Agglomerative Clustering Algorithm

Most popular hierarchical clustering technique

Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters
5

6

Update the proximity matrix
Until only a single cluster remains

Key operation is the computation of the proximity of two clusters

Different approaches to defining the distance between clusters distinguish
the different algorithms
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Starting Situation

- Start with single-point clusters and a proximity matrix between points
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Intermediate Situation

After some merging steps, we have some clusters and a proximity matrix between clusters

Cl[C2| C3]| C4[C5

C2
C3
C4
CS

Proximity Matrix
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Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

c1lc2| c3| calcs
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After Merging

The question is “How do we update the proximity matrix?”

C1l C4

C1i .

C20Cs ~» |2 | 2| »
@ C3 ?
C4 ?

@ Proximity Matrix
o

Mo i 5]

pl p2 p3 p4 p9 pl0 pll pl2




How to Define Inter-Cluster Similarity

pl| p2 | p3| p4|p5

Similarity? pl
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Distance Between Centroids

Other methods driven by an objective function
— Ward’'s Method uses squared error

Proximity Matrix
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How to Define Inter-Cluster Similarity

pl| p2 | p3| p4|p5
pl
p2
p3
p4
MIN =
MAX
Group Average

. . Proximity Matrix
Distance Between Centroids 4

Other methods driven by an objective function
— Ward’'s Method uses squared error

O O Oo O 0O



-
How to Define Inter-Cluster Similarity

pl| p2 | p3| p4|p5

0 MIN P>
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Other methods driven by an objective function
— Ward’'s Method uses squared error



How to Define Inter-Cluster Similarity

MIN

MAX

Group Average

Distance Between Centroids

pl| p2 | p3| p4d

p5

Other methods driven by an objective function

— Ward’'s Method uses squared error

Proximity Matrix

proximity( Cluster;, Cluster;) =

> proximity( p;,p;)

p;<Cluster;
pJ eCluste I‘j

|Cluster, | «|Cluster; |




How to Define Inter-Cluster Similarity

pl| p2 | p3 | p4|p5
pl
p2
p3
p4
MIN P>
MAX |
Group Average

Distance Between Centroids

Other methods driven by an objective function
— Ward’'s Method uses squared error

Proximity Matrix
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Single Link — Complete Link

Another way to view the processing of the hierarchical algorithm is
that we create links between the elements in order of increasing
distance

- The MIN — Single Link, will merge two clusters when a single pair of
elements between the two clusters is linked

- The MAX — Complete Linkage will merge two clusters when all pairs of
elements between the two clusters have been linked.



Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

0.2r

0.15-

1

N W w NN o
Ww N I N N

2

N

N BN R
a A~ O ol

3

N
.oo.
~

15

15
.28
A1

4

20 .
SICH

.29
22

5

© © 0 H~ b

o W N B NN
© N B U0 W

0.1~

0.051




-
Strength of MIN
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« Can handle non-elliptical shapes
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Limitations of MIN
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Hierarchical Clustering: MAX
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Strength of MAX

Original Points Two Clusters

* Less susceptible to noise and outliers



Limitations of MAX
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Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram
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Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

Strengths
Less susceptible to noise and outliers

Limitations
Biased towards globular clusters
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Cluster Similarity: Ward’s Method

Similarity of two clusters is based on the increase in squared error
(SSE) when two clusters are merged

- Similar to group average if distance between points is sum of squares
distance

Hierarchical analogue of K-means
- Can be used to initialize K-means

Less susceptible to noise and outliers

Biased towards globular cluster



Hierarchical Clustering: Comparison

Ward’s Method

Group Average




Hierarchical Clustering: Time and Space requirements

O(N?) space since it uses the proximity matrix.
- N is the number of points.

O(N?3) time in many cases
- There are N steps and at each step the size, N2, proximity matrix must be
updated and searched

- Complexity can be reduced to O(N? log(N) ) time for some approaches



Hierarchical Clustering: Problems and Limitations

Computational complexity in time and space

Once a decision Is made to combine two clusters, it cannot be undone
No objective function is directly minimized

Different schemes have problems with one or more of the following:
- Sensitivity to noise and outliers

- Difficulty handling different sized clusters and convex shapes

- Breaking large clusters



DBSCAN
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DBSCAN: Density-Based Clustering

DBSCAN is a Density-Based Clustering algorithm

Reminder: In density-based clustering we partition points into dense
regions separated by not-so-dense regions.

Important Questions:
- How do we measure density?
- What is a dense region?

DBSCAN:

- Density at point p: number of points within a circle of radius Eps
- Dense Region: A circle of radius Eps that contains at least MinPts points



e
DBSCAN

Characterization of points

- A point is a core point If it has more than a specified number of
points (MinPts) within Eps
These points belong in a dense region and are at the interior of a cluster

- A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point.

- A noise point is any point that is not a core point or a border point.
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DBSCAN: Core, Border, and Noise Points
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DBSCAN: Core, Border and Noise Points

Point types: core, border and noise

Eps =10, MinPts =4

Original Points



Density-Connected points

- Density edge

- We place an edge between two core
points g and p if they are within distance
Eps.

- Density-connected

- A point p Is density-connected to a point g
If there is a path of edges from p to g
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DBSCAN Algorithm

Label points as , border and noise

Eliminate noise points
For every point p that has not been assigned to a
cluster

- Create a new cluster with the point p and all the points
that are density-connected to

Assign border points to the cluster of the closest core
point.
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DBSCAN: Determining Eps and MinPts

Idea: for points in a cluster, their k™" nearest neighbors are at roughly
the same distance

Noise points have the ki nearest neighbor at farther distance
So, plot sorted distance of every point to its k' nearest neighbor

Find the distance d where there is a “knee” in the curve
- Eps =d, MinPts = k
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When DBSCAN Works Well

Original Points Clusters

* Resistant to Noise

« Can handle clusters of different shapes and sizes
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DBSCAN: Sensitive to Parameters

Figure 8. DBScan
results for DS1 with
MinPts at 4 and Eps at
(a)0.5and (b) 0.4.

Figure 9. DBScan
results for DS2 with
MinPts at 4 and Eps at
(a)5.0. (b) 3.5, and
fc) 3.0.

(a) (b) (c)



en DBSCAN

Original Points

* Varying densities

* High-dimensional data

Does NOT Work Well

(MinPts=4, Eps=9.92)




Other algorithms

PAM, CLARANS: Solutions for the k-medoids problem

BIRCH: Constructs a hierarchical tree that acts a summary of the
data, and then clusters the leaves.

MST: Clustering using the Minimum Spanning Tree.
ROCK: clustering categorical data by neighbor and link analysis

LIMBO, COOLCAT: Clustering categorical data using information
theoretic tools.

CURE: Hierarchical algorithm uses different representation of the
cluster

CHAMELEON: Hierarchical algorithm uses closeness and
Interconnectivity for merging



CLUSTERING EVALUATION




Clustering Evaluation

- We need to evaluate the “goodness” of the resulting clusters?

- But “clustering lies in the eye of the beholder™!



Quality of Clustering can be Ambiguous
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Clustering Evaluation

- Then why do we want to evaluate them?
- To avoid finding patterns in noise
- To compare clusterings, or clustering algorithms
- To compare against a “ground truth”



-
Different Aspects of Cluster Validation

Internal Evaluation: Evaluating how well the results of a cluster analysis fit the
data without reference to external information.
- Use only the data

Determining the clustering tendency of a set of data, I.e., distinguishing whether
non-random structure actually exists in the data.

Determining the ‘correct’ number of clusters.

External Evaluation: Comparing the results of a cluster analysis to externally
known results, e.g., to externally given class labels.



Metrics for cluster and clustering validity

For the following we will see some metrics for the clustering validity.

The metrics can be applied for the evaluation of either a cluster, or a
clustering

In cluster validity, we evaluate a group of points, as to whether they
were correctly placed together.

- We usually check if the group is homogeneous (for some notion of homogeneity)
In clustering validity, we evaluate a collection of clusters

- We often use the (weighted) average of cluster validity

- There are also metrics that look at the relationships between the clusters, e.g., how
well-separated the clusters are.



CLUSTER VALIDITY WITH
INTERNAL CRITERIA




e
Internal Measures

Internal Index: A metric used to measure the goodness of a
clustering structure without reference to external information

- Example: Sum of Square Errors (SSE)

SSE can be used to evaluate a cluster or a clustering:
- For a cluster of points C;, the SSE is:

SSE(C;) = z (x — ¢;)?, ¢; = centroid of cluster C;
X€C;

For a clustering C = {Cy, C, ..., Ci} , the SSE is:
SSE(C) = Z z (x — ¢;)*, ¢; = centroid of cluster C;

I X€C;

SSE can also be used to compare clusters, or clusterings



-
Cohesion and Separation

In general, we evaluate clusters and clusterings based on cohesion and separation
- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters

Example: Squared Error
- Cohesion is measured by the within cluster sum of squares (SSE)

WSS = z z (x — ¢;)? We want this to be small
I X€C;
- Separation is measured by the sum of square error of the centroids

BSS = z m;(c — ¢;)? We want this to be large
i

Where m;, is the size of cluster i , ¢ the overall mean. It also holds that:

BSS = z Z:(x—y)2

xX€C; yeCj
- Interesting observation: WSS+BSS = constant



Cohesion and Separation

A proximity-graph-based approach can also be used for cohesion
and separation.
- Cluster cohesion is the sum of the weight of all links within a cluster.

- Cluster separation is the sum of the weights between nodes in the cluster
and nodes outside the cluster.

cohesion separation



Silhouette Coefficient

Silhouette Coefficient combines ideas of both cohesion and separation, but
for individual points, as well as clusters and clusterings
For an individual point i
- Calculate a; = average distance of i to the points in its own cluster
- Calculate b; = min (over clusters) of the average distance of i to points in other clusters
- The silhouette coefficient for a point i is then given by

si = 1- a;/b;

- Typically, between 0 and 1, the closer to 1 the better.
- Can be less than 0 but this is a problematic case

We can calculate the Average Silhouette coefficient of the points for a
cluster, or for a clustering



Silhouette Coefficient Example
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Figure 8.29. Silhouette coefficients for points in ten clusters.
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Measuring Cluster Validity Via Correlation

B
i @ C
Two matrices A® ®
= Similarity or Distance Matrix 'D
One row and one column for each data point
An entry is the similarity or distance of the A B C D
associated pair of points 0 09 22 15]A
= “Incidence” Matrix p=109 0 12 17 B
One row and one column for each data point 2.2 12 0 11(C
1.5 1.7 11 0 |D

An entry is 1 if the associated pair of points belong
to the same cluster

An entry is O if the associated pair of points
belongs to different clusters
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Measuring Cluster Validity Via Correlation

_ 0 09 22 15]A
Compute the correlation between the two <_09 0o 12 17|B
matrices 122 12 0 1.1]cC
(xi — | — 5 17 1. D
CorrCoef f(X,Y) = 2i(xi — ) (Vi — #y) 1.5 17 11 0.
\/Z,;(xi — Ux)? \/Zi()’i — Uy)? A B C D
= Since the matrices are symmetric, only the correlation 1 1 0 0
between n(n-1) / 2 entries needs to be calculated. A
] = 1 1 0 0|B
0O 0 1 1|C
0 0 1 1]b

High correlation (positive for similarity, negative
for distance) indicates that points that belong to
the same cluster are close to each other. CorrCoeff([0.9,2.2,1.5. 1.2, 1.7, 1.1]

Not a good measure for some density or [1, 0, O 0 0, 1]
contiguity-based clusters. =-0.71



.
Using Similarity Matrix for Cluster Validation

- Order the similarity matrix with respect to cluster labels and inspect
visually.
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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« Clusters in more complicated figures are not well separated
« This technique can only be used for small datasets since it requires a

guadratic computation



Internal measures — caveats

Internal measures have the problem that the clustering algorithm
did not set out to optimize this measure, so it is will not necessarily
do well with respect to the measure.

- Essentially, we check whether one criterion correlates well with another

An internal measure can also be used as an objective function for
clustering
The algorithm that optimizes this criterion is expected to do well.



STATISTICAL FRAMEWORK FOR
CLUSTER(ING) VALIDITY




Framework for Cluster Validity

Need a framework to interpret any measure.
- For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?

Statistics provide a framework for cluster validity

- The more “non-random” a clustering result is, the more likely it represents valid structure in
the data

- Can compare the index value for a clustering with the values of the index that result from
clustering random data, or from random clusterings.

If the value of the index is unlikely, then the clustering results are valid

- Comparing against clustering of random data tells us if there is valid clustering structure in
the data

- Comparing against random clusterings tells us if the clustering algorithm is meaningful
Although a random clustering is a weak alternative.

For comparing the results of two different clusterings, a framework is less
necessary, but we may want to know whether the difference between two
Index values is significant



Statistical Framework for SSE

Example

- Compare SSE of 0.005 against three clusters in random data

- Histogram of SSE for three clusters in 500 random data sets of 100 random

points distributed in the range 0.2 — 0.8 for x and y
Value 0.005 is very unlikely
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Statistical Framework for Correlation

Correlation of incidence and proximity matrices for the K-means
clusterings of the following two data sets.

[J
Number of Points
S
[ )

04 06 08 1 -07 085 -08 -055 -05 -045 -04 -0.35
X Correlation

Corr =-0.9235 Corr = -0.5810



Empirical p-value

What we do is similar to a permutation test:
We have a measurement v (e.d., the SSE value)
We compute N measurements on random datasets

We compute the empirical p-value as the fraction of measurements in
the random data that have value less or equal than value v (or greater
or equal if we want to maximize)

- 1.e., the value in the random dataset is at least as good as that in the real data

We usually require that p-value < 0.05

Hard question: what is the right notion of a random dataset?



ESTIMATING THE "RIGHT"
NUMBER OF CLUSTERS




Estimating the “right” number of clusters

Typical approach: find a “knee” in an internal measure curve.

Al
Bl
oL
|

SSE

Question: why not the k that minimizes the SSE?

- Forward reference: minimize a measure, but with a “simple” clustering

Desirable property: the clustering algorithm does not require the
number of clusters to be specified (e.g., DBSCAN)



Estimating the “right” number of clusters

- SSE curve for a more complicated data set

12000
o Lo : S . 10000
'.. . . '6 A 2 . .
v Y v:v'e. ‘ s
e e
AR R 7 8000
EAE 3 & Fepiir
R 4 - gm%e
;"’w g¥¢¥é§tt
CLoWRe R Y o *,
. vs:vy:: . 3{% <% Eg%,‘ 4 G000
ha i PR
14 RN L 1
:};&3 . i?’i%%gggt o
Ay R o 4000
M- - e
At 3
R
5 TRt 2000
7 : .
oL | | | i | |
2 5 10 15 20 25 30

SSE of clusters found using K-means



Estimating the “right” number of clusters

A metric that is better suited for this

task is the average silhouette

coefficient which does not change o — "
monotonically with the number of _' —o— Silhouette coefficient| |
clusters

In this example 6 seems to be a
good number of clusters since it
has high silhouette coefficient and
low SSE

2 has the highest silhouette
coefficient but highest SSE. Clustering number

12 could be another alternative

- 0.7

Silhouette coefficient




EVALUATION WITH EXTERNAL
"GROUND TRUTH”




External Measures for Clustering Validity

Assume that the data iIs labeled with some class labels

- E.g., documents are classified into topics, people classified according to
their income, politicians classified according to the political party.

- This is called the “ground truth”

In this case we want the clusters to be homogeneous with respect
to classes

- Each cluster should contain elements of mostly one class

- Each class should ideally be assigned to a single cluster

This does not always make sense
- Clustering is not the same as classification
- ...but this is what people use most of the time



Confusion/Contingency matrix of
clusters and classes (counts)

Confusion/Contingency matrix -.
- Rows: clusters

- Columns: classes o | | o .
Entries: counts/probability of cluster-class pair

Cluster 3

n = number of points .
m; = points in cluster i ----.

- ¢; = points In class | Example
- n; ;= points in cluster i coming from class j --

. . . . . Cluster 1
- The confusion/contingency matrix is sometimes - -
used for evaluation as iIs 90 12 3 -

- It gives us the mapping between the clusters and ground
truth classes

Cluster 3




-.

Measures of cluster homogeneity X

- Compute probabilities: P21 P2z P23 .
nij

pij — _mi Cluster 3 |72

- The probability that a randomly selected point from cluster i ----.

comes from class j.

- Probabilities of rows sumto 1 --
0.82 0.11 0.07 -

- Of a clustering: p(C) = Y | m‘pl 0.08

- Entropy: L -----

- Purity:
- Of a cluster i: p; = maxp;;
J)

- Of acluster i: e; = — ¥7_; p;j logp;; .
- Highest when uniform, zero when single class Purity: (0.94, 0.8|1|’OO.8865)
ek M — overall 0.
Of a clustering: e = ).;_4 € Entropy: (0.33, 0.85, 0.76)

— overall 0.66



e
Precision-recall for cluster-class cobinations

- Precision of cluster i with respect to class j: Prec(i,j) = ; = Dpij
- Percentage of the cluster i that comes from class j
- Recall of cluster i with respect to class j: Rec(i,j) = %

J

- Percentage of class j that goes to cluster i

- O 02 . O 02 .

- 0.08 0.85 0.07 0.08 0.85 0.07
----- Precision Table Recall Table




Precision/Recall for clusters and clusterings

- Assign to cluster i the class k; such that k; = arg max iy

o5 (800

Nik;

- Of cluster i: Prec(i) =

- Of the clustering: Prec(C) = Zi%Prec(i) 70 12 | -
- Recall:

Cluster 3

- Of cluster i: Rec(i) = Riky

Ck; Precision: (0.94, 0.81, 0.85)
- Of the clustering: Rec(C) = %;~* Rec(i) — overall 0.86
Recall: (0.85, 0.9, 0.85)
- F-measure: - overall 0.87

- Harmonic Mean of Precision and Recall



Good and bad clustering

--
Cluster 1 -

--
Cluster 1 -

- 8. B - - 38.

----- -----
Purity: (0.94, 0.81, 0.85) Purity: (0.38, 0.38, 0.38)

— overall 0.86 — overall 0.38
Precision: (0.94, 0.81, 0.85) Precision: (0.38, 0.38, 0.38)
— overall 0.86 — overall 0.38

Recall: (0.85, 0.9, 0.85) Recall: (0.35, 0.42, 0.38)

- overall 0.87 — overall 0.39



Another clustering

oo fom [
Cluster 1:

50 165 Durity: 1
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External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474

2 4 7 280 29 39 2 1.1472 | 0.7756

3 1 1 1 7 4 671 0.1813 | 0.9796

4 10 162 3 119 73 2 1.7487 | 0.4390

5 331 22 5 70 13 23 1.3976 | 0.7134

6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
Pi; = méj/mj, where m; is the number of values in cluster 7 and m,;; is the number of values
of class ¢ in cluster 7. Then using this class distribution, the entropy of each cluster j is
calculated using the standard formula e; = Zf=1pij log, ps;, where the L is the number of

classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each

cluster weighted by the size of each cluster, i.e., e = Zfil e, where m; is the size of cluster

1, K 1s the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster 7, is given by purity; =
max p;; and the overall purity of a clustering by purity = Zfil L purity;.



Final Comment on Cluster Validity

“The validation of clustering structures is the most
difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to
those true believers who have experience and
great courage.”

Algorithms for Clustering Data, Jain and Dubes
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