DATA MINING
THE EM ALGORITHM
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MIXTURE MODELS AND THE EM
ALGORITHM




Model-based clustering

In order to understand our data, we will assume that there is a
generative process (a model) that creates/describes the data.

The model is described by a set of parameters, and we will try to find
the parameters (model) that best fits the data.

Models of different complexity can be defined, but we will assume that
our model is a distribution from which data points are sampled

- Example: the data is the height of all adults in Greece

In most cases, a single distribution is not good enough to describe all
data points: different parts of the data follow a different distribution

- Example: the data is the height of all adults and children in Greece

- We need a mixture model
- Different distributions correspond to different clusters in the data.



Gaussian Distribution

- Example: the data is the height of all adults in Greece
- Experience has shown that this data follows a Gaussian (Normal) distribution
- Reminder: Normal distribution:
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- 4 = mean, o = standard deviation



Gaussian Model

-What iIs a model?

- A Gaussian distribution is fully defined by the mean u and the standard
deviation o

- We define our model as the pair of parameters 6 = (u, o)

- This is a general principle: a model is defined as a vector of
parameters 6



e
Fitting the model

- We want to find the normal distribution that best fits our data
- Find the best values for y and o
- But what does best fit mean?



-
Maximum Likelihood Estimation (MLE)

Find the most likely parameters given the data. Given the data
observations X, find 6 that maximizes P(6|X)

- Problem: We do not know how to compute P(0|X)

Using Bayes Rule:
P(X|6)P(6)

P(X)

P(O|X) =

If we have no prior information about &, or X, we can assume
uniform. Maximizing P(6|X) is now the same as maximizing P(X|6)



-
Maximum Likelihood Estimation (MLE)

We have a vector X = (x4, ..., x,,) of values and we want to fit a
Gaussian N(u, o) model to the data

- Our parameter setis 8 = (1, 0)
Probabllity of observing point x; given the parameters 6
We cheated a little here.
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Probability of observing all points (assume independence)
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We want to find the parameters ¢ = (u, o) that maximize the probability
P(X160)

P(x;]6) =




-
Maximum Likelihood Estimation (MLE)

- The probabillity P(X|0) as a function of 6 Is called the Likelihood
function
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- It is usually easier to work with the Log-Likelihood function
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- Maximum Likelihood Estlmatlon
- Find parameters pu, o that maximize LL(6)
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(a) Histogram of 200 points from a (b) Log likelihood plot of the 200 points for
(Gaussian distribution. different values of the mean and standard

deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.



Mixture of Gaussians

- Suppose that you have the heights of adults and children, and the
distribution looks like the figure below
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

- In this case the data is the result of the mixture of two Gaussians
- One for Adults, and one for Children

- Identifying for each value which Gaussian is most likely to have generated it
will give us a clustering.
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture model

- Avalue x; Is generated according to the following process:

- First select the age group
- With probability 7, select Adult, with probability = select Child (7, + 7, = 1)

- Given the age group, generate the point from the corresponding Gaussian
P(xl|9A) N(,LlA O-A) if Adult
P(xllec) N(,Llc Uc) if Child




e
Mixture Model

- Our model has the following parameters

O = (14, ¢, ks O HENGE)
Mixture probabilties {6 parameters of the Adult distrbution




e
Mixture Model

- Our model has the following parameters
0 = (T[A,TL'C, Ha, 04, He, O-C)

Mixture probabilities Distribution Parameters

- For value x;, we have:
P(x;|0) = myP(x;|64) + mcP(x;]0¢)
- For all values X = (x4, ...,x5)

Pexie) = | [Peule)

- We want to estimate the parameters that maximize the Likelihood of the
data



Mixture Models

- Once we have the parameters © = (14, ¢, Ua, e, 4, Oc) WE CAN
estimate the membership probabilities P(4|x;) and P(C|x;) for
each point x;:

- This is the probability that point x; belongs to the Adult or the Child
population (cluster)

- Using Bayes Rule: Given from the Gaussian

distribution N (ug, o) for Greek

P(x;|A)P(A)

P(Alx;) =

P(x;|A)P(A) + P(x;|C)P(C)
P(x;|604)m,

 P(x;164)ma + P(x160)mc




EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in ® to some random values

Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership probabilities
P(Alx;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation) maximize the
data likelihood LL(0) = X, log(cP(x;10¢) + maP(x;10,4))
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Relationship to K-means

E-Step: Assignment of points to clusters
- K-means: hard assignment, EM: soft assignment

M-Step: Computation of centroids
- K-means assumes common fixed variance (spherical clusters)

- EM: can change the variance for different clusters or different dimensions
(ellipsoid clusters)

If the variance is fixed then both minimize the same error function
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Figure 9.4. EM clustering of a two-dimensional point set with three clusters.
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Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.
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