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Model-based clustering

• In order to understand our data, we will assume that there is a 
generative process (a model) that creates/describes the data.

• The model is described by a set of parameters, and we will try to find 
the parameters (model) that best fits the data.

• Models of different complexity can be defined, but we will assume that 
our model is a distribution from which data points are sampled
• Example: the data is the height of all adults in Greece

• In most cases, a single distribution is not good enough to describe all 
data points: different parts of the data follow a different distribution
• Example: the data is the height of all adults and children in Greece

• We need a mixture model

• Different distributions correspond to different clusters in the data.



Gaussian Distribution

• Example: the data is the height of all adults in Greece

• Experience has shown that this data follows a Gaussian (Normal) distribution

• Reminder: Normal distribution:

• 𝜇 = mean, 𝜎 = standard deviation
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Gaussian Model

• What is a model?

• A Gaussian distribution is fully defined by the mean 𝜇 and the standard 

deviation 𝜎

• We define our model as the pair of parameters 𝜃 = (𝜇, 𝜎)

• This is a general principle: a model is defined as a vector of 

parameters 𝜃



Fitting the model

• We want to find the normal distribution that best fits our data

• Find the best values for 𝜇 and 𝜎

• But what does best fit mean?



Maximum Likelihood Estimation (MLE)

• Find the most likely parameters given the data. Given the data 

observations 𝑋, find 𝜃 that maximizes 𝑃(𝜃|𝑋)

• Problem: We do not know how to compute 𝑃 𝜃 𝑋

• Using Bayes Rule:

𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃)

𝑃(𝑋)

• If we have no prior information about 𝜃, or X, we can assume 

uniform. Maximizing 𝑃 𝜃 𝑋 is now the same as maximizing 𝑃 𝑋 𝜃



Maximum Likelihood Estimation (MLE)

• We have a vector 𝑋 = (𝑥1, … , 𝑥𝑛) of values and we want to fit a 
Gaussian 𝑁(𝜇, 𝜎) model to the data
• Our parameter set is 𝜃 = (𝜇, 𝜎)

• Probability of observing point 𝑥𝑖 given the parameters 𝜃

• Probability of observing all points (assume independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that maximize the probability 
𝑃(𝑋|𝜃)
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We cheated a little here.

More accurately we look at: 

𝑃(𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖 + 𝑑𝑥)



Maximum Likelihood Estimation (MLE)

• The probability 𝑃(𝑋|𝜃) as a function of 𝜃 is called the Likelihood
function

• It is usually easier to work with the Log-Likelihood function

• Maximum Likelihood Estimation
• Find parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)
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Mixture of Gaussians

• Suppose that you have the heights of adults and children, and the 

distribution looks like the figure below



Mixture of Gaussians

• In this case the data is the result of the mixture of two Gaussians 

• One for Adults, and one for Children

• Identifying for each value which Gaussian is most likely to have generated it 

will give us a clustering.



Mixture model

• A value 𝑥𝑖 is generated according to the following process:

• First select the age group

• With probability 𝜋𝐴 select Adult, with probability 𝜋𝐶 select Child (𝜋𝐴 + 𝜋𝐶 = 1)

• Given the age group, generate the point from the corresponding Gaussian

• 𝑃 𝑥𝑖 𝜃𝐴 ~ 𝑁 𝜇𝐴, 𝜎𝐴 if Adult

• 𝑃 𝑥𝑖 𝜃𝐶 ~ 𝑁 𝜇𝐶 , 𝜎𝐶 if Child

We can also think of this as a Hidden Variable Z that takes two values: Adult and Child

𝜋𝐴 = 𝑃 𝑍 = Adult  , 𝜋𝐶 = 𝑃 𝑍 = Child

𝜃𝐺: parameters of the Adult distribution

𝜃𝐶: parameters of the Child distribution

Using the Hidden Variable Z:

𝑃 𝑥𝑖 𝑍 = Adult = 𝑃 𝑥𝑖 𝜃𝐴  ~ 𝑁 𝜇𝐴, 𝜎𝐴

𝑃 𝑥𝑖 𝑍 = Child = 𝑃 𝑥𝑖 𝜃𝐶  ~ 𝑁 𝜇𝐶 , 𝜎𝐶



• Our model has the following parameters

Θ = (𝜋𝐴, 𝜋𝐶 , 𝜇𝐴, 𝜎𝐴, 𝜇𝐶 , 𝜎𝐶)

Mixture Model

Mixture probabilities

𝜃𝐶: parameters of the Child distribution

𝜃A: parameters of the Adult distribution



• Our model has the following parameters

Θ = (𝜋𝐴, 𝜋𝐶 , 𝜇𝐴, 𝜎𝐴, 𝜇𝐶 , 𝜎𝐶)

• For value 𝑥𝑖, we have:

𝑃 𝑥𝑖|Θ = 𝜋𝐴𝑃 𝑥𝑖 𝜃𝐴 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶)

• For all values 𝑋 = 𝑥1, … , 𝑥𝑛

𝑃 𝑋|Θ = ෑ
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• We want to estimate the parameters that maximize the Likelihood of the 
data

Mixture Model

Mixture probabilities Distribution Parameters



Mixture Models

• Once we have the parameters Θ = (𝜋𝐴, 𝜋𝐶 , 𝜇𝐴, 𝜇𝐶 , 𝜎𝐴, 𝜎𝐶) we can 

estimate the membership probabilities 𝑃 𝐴 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖 for 

each point 𝑥𝑖: 

• This is the probability that point 𝑥𝑖 belongs to the Adult or the Child 

population (cluster)

• Using Bayes Rule:

𝑃 𝐴 𝑥𝑖 =
𝑃 𝑥𝑖 𝐴 𝑃(𝐴)

𝑃 𝑥𝑖 𝐴 𝑃 𝐴 + 𝑃 𝑥𝑖 𝐶 𝑃(𝐶)

=
𝑃 𝑥𝑖 𝜃𝐴 𝜋𝐴

𝑃 𝑥𝑖 𝜃𝐴 𝜋𝐴 + 𝑃 𝑥𝑖 𝜃𝐶 𝜋𝐶

Given from the Gaussian 

distribution 𝑁(𝜇𝐺 , 𝜎𝐺) for Greek



EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in Θ to some random values

• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities 

𝑃 𝐴 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖

• M-Step: Compute the parameter values that (in expectation) maximize the 
data likelihood 𝐿𝐿 Θ = σ𝑥𝑖

log 𝜋𝐶𝑃 𝑥𝑖 𝜃𝐶 + 𝜋𝐴𝑃 𝑥𝑖 𝜃𝐴
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Relationship to K-means

• E-Step: Assignment of points to clusters 

• K-means: hard assignment, EM: soft assignment

• M-Step: Computation of centroids

• K-means assumes common fixed variance (spherical clusters)

• EM: can change the variance for different clusters or different dimensions 

(ellipsoid clusters)

• If the variance is fixed then both minimize the same error function
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