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Model-based clustering

In order to understand our data, we will assume that there is a
generative process (a model) that creates/describes the data, and we
will try to find the model that best fits the data.

- Models of different complexity can be defined, but we will assume that our model is
a distribution from which data points are sampled

- Example: the data is the height of all adults in Greece

In most cases, a single distribution is not good enough to describe all
data points: different parts of the data follow a different distribution

- Example: the data is the height of all adults and children in Greece

- We need a mixture model

- Different distributions correspond to different clusters in the data.



Gaussian Distribution

- Example: the data is the height of all adults in Greece
- Experience has shown that this data follows a Gaussian (Normal) distribution
- Reminder: Normal distribution:

- 4 = mean, o = standard deviation



Gaussian Model

-What is a model?

- A Gaussian distribution is fully defined by the mean i and the standard
deviation o

- We define our model as the pair of parameters 6 = (u, o)

- This is a general principle: a model is defined as a vector of
parameters 6



e
Fitting the model

- We want to find the normal distribution that best fits our data
- Find the best values for y and o
- But what does best fit mean?



-
Maximum Likelihood Estimation (MLE)

Find the most likely parameters given the data. Given the data
observations X, find 6 that maximizes P(6|X)

- Problem: We do not know how to compute P(6|X)

Using Bayes Rule:
P(X|0)P(60)

P(X)

P(O|X) =

If we have no prior information about &, or X, we can assume
uniform. Maximizing P(6|X) is now the same as maximizing P(X|6)



-
Maximum Likelihood Estimation (MLE)

We have a vector X = (x4, ..., x,,) of values and we want to fit a
Gaussian N(u, o) model to the data

- Our parameter setis 8 = (1, 0)
Probabllity of observing point x; given the parameters 6
We cheated a little here.
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mo_e P(x; <x < x; +dx)

Probabillity of observing all points (assume independence)
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We want to find the parameters 6 = (u, o) that maximize the probability
P(X]6)

P(x;]6) =




-
Maximum Likelihood Estimation (MLE)

- The probabillity P(X|0) as a function of 6 is called the Likelihood
function
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- It is usually easier to work with the Log-Likelihood function
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- Maximum Likelihood Estlmatlon
- Find parameters u, o that maximize LL(6)
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(a) Histogram of 200 points from a (b) Log likelihood plot of the 200 points for
(Gaussian distribution. different values of the mean and standard

deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.



Mixture of Gaussians

- Suppose that you have the heights of adults and children, and the
distribution looks like the figure below
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

- In this case the data iIs the result of the mixture of two Gaussians
- One for Adults, and one for Children

- Identifying for each value which Gaussian is most likely to have generated it
will give us a clustering.
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture model

- Avalue x; Is generated according to the following process:

- First select the age group
- With probability 7, select Adult, with probability = select Child (7, + 7, = 1)

- Given the nationality, generate the point from the corresponding Gaussian
P(xl|9A) N(‘UA, O-A) If Adult
P(xl|9(;) N([.lc, O-C) if Child




e
Mixture Model

- Our model has the following parameters

6 = (4, ¢, ks O HENGE)
Mixture probabilties [0 parameters of the Adult distrbution




e
Mixture Model

- Our model has the following parameters
0 = (T[A,TL'C, Ha, 04, He, O-C)

Mixture probabilities Distribution Parameters

- For value x;, we have:
P(x;|0) = myP(x;|64) + mcP(x;]0¢)
- For all values X = (x4, ...,x5)

Pexie) = | [Peaile)
=1

- We want to estimate the parameters that maximize the Likelihood of the
data



Mixture Models

- Once we have the parameters 0 = (w4, ¢, Ua, e, 4, Oc) WE CAN
estimate the membership probabilities P(4|x;) and P(C|x;) for
each point x;:

- This is the probabillity that point x; belongs to the Adult or the Child
population (cluster)

- Using Bayes Rule: Given from the Gaussian

distribution N (u¢, o) for Greek

P(x;|A)P(A)

P(Alx;) =

P(x;|A)P(A) + P(x;|C)P(C)
P(x;|604)m,

- P(xil04)ma + P(x;|6¢)7c




EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in ® to some random values

Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership probabilities
P(Alx;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation) maximize the
data likelihood LL(0) = }.,, log(cP(x;10¢) + maP(x;10,4))
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Relationship to K-means

E-Step: Assignment of points to clusters
- K-means: hard assignment, EM: soft assignment

M-Step: Computation of centroids
- K-means assumes common fixed variance (spherical clusters)

- EM: can change the variance for different clusters or different dimensions
(ellipsoid clusters)

If the variance is fixed then both minimize the same error function
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Figure 9.4. EM clustering of a two-dimensional point set with three clusters.
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Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.



