
Online Social Networks and
Media

Graph Partitioning:

cuts, spectral clustering, density

1

PART II
Cuts
Spectral Clustering
Dense Subgraphs

Outline

2

Graph partitioning
The general problem

– Input: a graph 𝐺 = (𝑉, 𝐸)
• edge (𝑢, 𝑣) denotes connection/similarity between 𝑢 and 𝑣

• weighted graphs: weight of edge captures the degree of
similarity (or, strength of connection)

Partition the nodes in the graph such that

• nodes within clusters are well interconnected (high edge
weights)

• nodes across clusters are sparsely interconnected (low edge
weights)

Partitioning as an optimization problem:

• most graph partitioning problems are NP hard

3

4

Graph Partitioning

Graph Partitioning

Undirected graph 𝐺(𝑉, 𝐸):

Bi-partitioning task:

Divide vertices into two disjoint groups 𝑨,𝑩

How can we define a “good” partition of 𝑮?

5

1

3
2

5

4
6

A B

1

3

2

5

4
6

Graph Partitioning

What makes a good partition?

▪ Maximize the number of within-group
connections

▪ Minimize the number of between-group
connections

6

1

3

2

5

4
6

A B

A B

Graph Cuts

Express partitioning objectives as a function of
the “edge cut” of the partition

Cut: Set of edges with only one vertex in a
group:

7

cut(A,B) = 2
1

3

2

5

4
6

Min Cut
min-cut: the min number of edges such that when
removed cause the graph to become disconnected

Minimizes the number of connections between partition

U V-U

()   
 −

=−
Ui UVj

U
ji,AUVU,E min

This problem can be solved in
polynomial time

Min-cut/Max-flow algorithm

arg minA,B cut(A,B)

8

Does this work?

9

Min Cut

Problem:
– Only considers external cluster connections

– Does not consider internal cluster connectivity

10

“Optimal cut”

Minimum cut

Graph Bisection

• Since the minimum cut does not always yield
good results, we need extra constraints to
make the problem meaningful.

• Graph Bisection refers to the problem of
partitioning the nodes of the graph into two
equal sets.

11

Ratio Cut

Ratio Cut

Normalize cut by the size of the groups

12

RatioCut =
Cut(U,V−U)

|𝑈|
+

Cut(U,V−U)

|𝑉−𝑈|

Normalized Cut

Normalized-cut

Connectivity between groups relative to the
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least
one endpoint in 𝑈 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

◼ Produce more balanced partitions

13

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)

Normalized-Cut(Red) =
1

1
+

1

27
=

28

27
= 1.04

Normalized-Cut(Green) =
2

12
+

2

16
=

14

48
= 0.29

Normalized is smaller due to density

Ratio-Cut(Red) =
1

1
+

1

8
=

9

8
= 1.125

Ratio-Cut(Green) =
2

5
+

2

4
=

18

20
= 0.9

Min-Cut(Red) = 1

Min-Cut(Green) = 2

An example

15

Min-Cut(A) = 1

Min-Cut(B) = 4

Min-Rut(C) = 2

An example

16

Ratio-Cut(A) =
1

1
+

1

8
=

9

8
= 1.125

Ratio-Cut(B) =
4

5
+

4

4
=

36

20
= 1.8

Ratio-Rut(C) =
2

3
+

2

6
=

6

6
= 1

An example

17

Normalized-Cut(A) =
1

1
+

1

27
=

28

27
= 1.04

Normalized-Cut(B) =
4

16
+

4

12
=

7

12
= 0.58

Normalized-Rut(C) =
2

8
+

2

20
=

44

40
= 1.1

Graph conductance

Connectivity of group A with the rest of the network
relative to the density of the group

()
 vol(A)-m2 vol(A),min

A-VA,cut
 φ(Α) =

18

The lower the conductance, the better the cluster

Graph Bisection

• Kernighan-Lin algorithm: Start with random
equal partitions and then swap nodes to
improve some quality metric (e.g., cut,
modularity, etc).

19

The problem find a partition with equal number of nodes and minimum
cut is NP-hard

Graph Cuts

Ratio and normalized cuts can be reformulated in
matrix format and solved using spectral clustering

20

SPECTRAL CLUSTERING

21

Adjacency matrix

22

Network Adjacency matrix

Nodes

N
o

d
e

s

Simplest form: Split the graph into two pieces, many connections
within, few across

How do we identify this structure?
Partition the graph, so that the resulting pieces have low conductance

Matrix Representation
Adjacency matrix (A):

– n n matrix

– A=[aij], aij=1 if edge between node i and j

23

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

If the graph is weighted, aij= wij

How many non-zeros in each row?

Spectral Graph Partitioning

x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

– Think of it as a label/value of each node of 𝑮

• Value xi corresponds to node i in the graph

▪ What is the meaning of A x?

24

Entry yi is a sum of labels
xj of neighbors of i

Spectral Analysis

ith coordinate of A x :

– Sum of the x-values
of neighbors of i

– Make this a new value at node j

Spectral Graph Theory:

– Analyze the “spectrum” of a matrix representing 𝐺

– Spectrum: Eigenvectors 𝑥𝑖 of a graph, ordered by
the magnitude (strength) of their corresponding
eigenvalues 𝜆𝑖:

Spectral clustering: use the eigenvectors of A or
graphs derived by it

Most based on the graph Laplacian
25

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Example: d-regular graph

Suppose all nodes in 𝐺 have degree 𝑑 and 𝐺 is
connected

• What are some eigenvalues/vectors of 𝐺?

𝑨 𝒙 = 𝝀 ⋅ 𝒙 What is ? What x?

– Let’s try: 𝑥 = (1,1, … , 1)

– Then: 𝐴 ⋅ 𝑥 = 𝑑, 𝑑,… , 𝑑 = 𝜆 ⋅ 𝑥. So: 𝜆 = 𝑑

– We found eigenpair of 𝐺: 𝑥 = (1,1, … , 1), 𝜆 = 𝑑

26

Remember the meaning of 𝒚 = 𝑨 𝒙:

Example: Graph on 2 components
• What if 𝐺 is not connected?

– 𝐺 has 2 components, each 𝑑-regular

• What are some eigenvectors?

– 𝑥 = Put all 𝟏s on 𝑨 and 𝟎s on 𝑩 or vice versa

• 𝑥′ = (1,… , 1,0,… , 0) then A ⋅ 𝑥′ = 𝑑,… , 𝑑, 0, … , 0

• 𝑥′′ = (0,… , 0,1,… , 1) then 𝐴 ⋅ 𝑥′′ = (0,… , 0, 𝑑, … , 𝑑)

• And so in both cases the corresponding 𝜆 = 𝑑

• A bit of intuition:

27

A B

|A| |B|

A B

𝝀𝒏 = 𝝀𝒏−𝟏

A B

𝝀𝒏 − 𝝀𝒏−𝟏 ≈ 𝟎

2nd largest eigenvalue
𝜆𝑛−1 now has value
very close
to 𝜆𝑛

What is the right matrix to apply this intuition?

Matrix Representations
Adjacency matrix (A):

– n n matrix

– A=[aij], aij=1 if edge between node i and j

Important properties:

– Symmetric matrix

– Eigenvectors are real and orthogonal

28

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

Matrix Representations

Degree matrix (D):
– n n diagonal matrix

– D=[dii], dii = degree of node i

29

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2

• What is trivial eigenpair?

– 𝒙 = (𝟏,… , 𝟏) then 𝑳 ⋅ 𝒙 = 𝟎 and so 𝝀 = 𝝀𝟏 = 𝟎

• Important properties:

– Eigenvalues are non-negative real numbers

– Eigenvectors are real and orthogonal
30

𝐿 = 𝐷 − 𝐴
1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

Graph Laplacian

Laplacian matrix (L):

– n n symmetric matrix

Graph Laplacian

31

If the graph is disconnected

▪ If there are two connected components, the
same argument as for the adjacency matrix
applies, and λ1 = λ2 = 0

▪ The multiplicity of eigenvalue 0 is equal to the
number of connected components

The second smallest eigenvalue

32

xx

xMx
T

T

x

min2 =

Fact: For a symmetric matrix M

What is the meaning of min xT L x on G?

λ2 as an optimization problem
What is the meaning of min xT L x on G?

– xTL x = σ𝑖,𝑗=1
𝑛 𝐿𝑖𝑗 𝑥𝑖𝑥𝑗 = σ𝑖,𝑗=1

𝑛 𝐷𝑖𝑗 − 𝐴𝑖𝑗 𝑥𝑖𝑥𝑗

– = σ𝑖𝐷𝑖𝑖𝑥𝑖
2 − σ 𝑖,𝑗 ∈𝐸 2𝑥𝑖𝑥𝑗

– = σ 𝑖,𝑗 ∈𝐸(𝑥𝑖
2 + 𝑥𝑗

2 − 2𝑥𝑖𝑥𝑗) = σ 𝑖,𝑗 ∈𝐸 𝑥𝑖 − 𝑥𝑗
2

33

Node 𝒊 has degree 𝒅𝒊. So, value 𝒙𝒊
𝟐 needs to be summed up 𝒅𝒊 times.

But each edge (𝒊, 𝒋) has two endpoints so we need 𝒙𝒊
𝟐 +𝒙𝒋

𝟐

The expression:

is

LxxT

()


−
Ej)(i,

2

ji xx

34

λ2 as an optimization problem

When is this expression minimized?
“similar values” for connected edges

λ2 as an optimization problem

What else do we know about x?

– 𝑥 is unit vector: σ𝑖 𝑥𝑖
2 = 1

– 𝑥 is orthogonal to 1st eigenvector (1, … , 1) thus:
σ𝑖 𝑥𝑖 ⋅ 1 = σ𝑖 𝑥𝑖 = 0

35


 −

=


2

2

),(

2

)(
min

ii

jiEji

x

xx


All labelings

of nodes 𝑖 so

that σ𝑥𝑖 = 0

If i and j are connected, we want xi and xj to subtract each other, have the “same sign”
We want to assign values 𝑥𝑖 to nodes i such that few edges cross 0.

=1

λ2 as an optimization problem

36


 −

=


2

2

),(

2

)(
min

ii

jiEji

x

xx


All labelings

of nodes 𝑖 so

that σ𝑥𝑖 = 0

𝑥𝑖 0

x

𝑥𝑗

Balance to minimize

▪ Minimum when connected nodes get the
same sign (similar values)

▪ This minimization problem tries to place
(embed) nodes of the graph on the real line
so that the number of edges that span
across 0 is as small as possible

▪ Tightly connected nodes on the same side of
the real line

37

0

Find Optimal Cut [Fiedler’73]

Back to finding the optimal cut

• Express partition (A,B) as a vector

𝑦𝑖 = ቊ
+1
−1

𝑖𝑓 𝑖 ∈ 𝐴
𝑖𝑓 𝑖 ∈ 𝐵

• We can minimize the cut of the partition by finding a
non-trivial vector x that minimizes:

38

𝑦𝑖 = −1 0 𝑦𝑗 = +1

Can’t solve exactly. Let’s relax 𝑦 and
allow it to take any real value (instead of just +1, -1)

Rayleigh Theorem

39

◼ 𝜆2 = min
𝑦

𝑓 𝑦 : The minimum value of 𝑓(𝑦) is

given by the 2nd smallest eigenvalue λ2 of the
Laplacian matrix L

◼ x = argminy 𝑓 𝑦 : The optimal solution for y

is given by the corresponding eigenvector 𝑥,
referred as the Fiedler vector

𝑥𝑖 0 x𝑥𝑗

1

3

2

5

4
6

Example

40

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

Eigenvectors

5.04..03..03.01.00.0Eigenvalues

Spectral Partitioning Algorithm

Three basic stages:

Pre-processing

• Construct a matrix representation of the graph

Decomposition

• Compute eigenvalues and eigenvectors of the matrix

Grouping

• Assign points to two or more clusters, based on the
new representation

41

Spectral Partitioning Algorithm

Pre-processing:
Build Laplacian
matrix L of the
graph

Decomposition:
– Find eigenvalues 

and eigenvectors x
of the matrix L

– Map vertices to
corresponding
components of 2

42

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

 = X =

How do we now
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

Spectral Partitioning Algorithm

Grouping:
– Sort components of reduced 1-dimensional vector
– Identify clusters by splitting the sorted vector in two

• How to choose a splitting point?
– Naïve approaches:

• Split at 0 or median value

– More expensive approaches:
• Attempt to minimize normalized cut in 1-dimension

(sweep over ordering of nodes induced by the eigenvector)

43-0.66

-0.35

-0.34

0.33

0.62

0.31
Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B

Example: Spectral Partitioning

44

Rank in x2

V
a
lu

e
 o

f
x

2

45

1

2

3

4

8

5

7

6

46

1

2

3

4

8

5

7

6

0 0.247 0.383-0.383 -0.247

47

1

2

3

4

8

5

7

6

0 0.247 0.383-0.383 -0.247

k-Way Spectral Clustering
How do we partition a graph into k clusters?

48

k-Way Spectral Clustering
How do we partition a graph into k clusters?
▪ Recursively apply a bi-partitioning algorithm in a hierarchical

divisive manner

• Disadvantages: Inefficient, unstable

49

k-Way Spectral Clustering

50

Use several of the eigenvectors to partition the graph.

▪ Use 𝑚 eigenvectors, and set a threshold for each,

▪ Get a partition into 2𝑚 groups, each group consisting
of the nodes that are above or below threshold for
each of the eigenvectors, in a particular pattern.

1

3

2

5

4
6

Example

If we use both the 2nd and 3rd eigenvectors,
nodes 5 and 6 (negative in both) 2 and 3 (positive in both)
1 and 4 alone

• Note that each eigenvector except the first is the vector x that minimizes xTLx, subject
to the constraint that it is orthogonal to all previous eigenvectors.

• Thus, while each eigenvector tries to produce a minimum-sized cut, successive
eigenvectors have to satisfy more and more constraints => the cuts progressively worse.

51

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

Eigenvectors

5.04..03..03.01.00.0Eigenvalues

Example: Spectral Partitioning

52

Rank in x2

V
a
lu

e
 o

f
x

2

Components of x2

Example: Spectral partitioning

53

Components of x1

Components of x3

Spectral Clustering

▪ Use the lowest k eigenvalues of L to
construct the n x k graph G’ that has these
eigenvectors as columns

▪ The n-rows represent the graph vertices in a
k-dimensional Euclidean space

▪ Group these vertices in k clusters using k-
means clustering or similar techniques

54

Pre-processing:

Build Laplacian
matrix L of the
graph

Decomposition:

– Find eigenvalues  and
eigenvectors x
of the matrix L

55

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

 = X =

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

k-Way Spectral Clustering

k = 3

Cuts and spectral clustering

Relaxing Ncut leads to normalized spectral
clustering, while relaxing RatioCut leads to
unnormalized spectral clustering

56

Normalized Graph Laplacians

2/12/1
2/12/1

−−
=

−−
−= WDDILDDLsym

WDILDLrw
1

1
−

−
−==

















−=

Ej)(i,

2

ji
xx

ji

sym

dd
xLx

Lrw closely connected to random walks

57

Spectral clustering (besides graphs)

Can be used to cluster any points (not just vertices), as long as
there is an appropriate similarity matrix

Needs to be symmetric and non-negative

How to construct a graph:

• ε-neighborhood graph: connect all points whose pairwise
distances are smaller than ε

• k-nearest neighbor graph: connect each point with each k
nearest neighbor

• full graph: connect all points with weight in the edge (𝑖, 𝑗)
equal to the similarity of 𝑖 and 𝑗

58

Summary

• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group similar
(connected) nodes together

()2
),(





−

Eji

ji xx
0x

min

 () −


j)(i,

2

ji
0x

xxji,Amin

 =
i i 0x

 =
i i 0x

59

PART II
Cuts
Spectral Clustering
Dense Subgraphs

Outline

60

MAXIMUM DENSEST SUBGRAPH
Thanks to Aris Gionis

61

Finding Dense Subgraphs

• Dense subgraph: A collection of vertices such that
there are a lot of edges between them

– E.g., find the subset of email users that talk the most
between them

– Or, find the subset of genes that are most commonly
expressed together

• Similar to community identification but we do not
require that the dense subgraph is sparsely
connected with the rest of the graph.

62

Definitions

• Input: undirected graph 𝐺 = (𝑉, 𝐸).

• Degree of node u: deg 𝑢

• For two sets 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝑉:
𝐸 𝑆, 𝑇 = u, v ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

• 𝐸 𝑆 = 𝐸(𝑆, 𝑆): edges within nodes in 𝑆

• Graph Cut defined by nodes in 𝑆 ⊆ 𝑉:

𝐸(𝑆, ҧ𝑆): edges between 𝑆 and the rest of the graph

• Induced Subgraph by set 𝑆 : 𝐺𝑆 = (𝑆, 𝐸 𝑆)

63

Definitions

• How do we define the density of a subgraph?

• Average Degree:

𝑑 𝑆 =
2|𝐸 𝑆 |

|𝑆|

• Problem: Given graph G, find subset S, that maximizes
density d(S)

– Surprisingly there is a polynomial-time algorithm for
this problem.

64

Min-Cut Problem

Given a graph* 𝐺 = (𝑉, 𝐸),
A source vertex 𝑠 ∈ 𝑉,
A destination vertex 𝑡 ∈ 𝑉

Find a set 𝑆 ⊆ 𝑉
Such that 𝑠 ∈ 𝑆 and 𝑡 ∈ ҧ𝑆
That minimizes 𝐸(𝑆, ҧ𝑆)

* The graph may be weighted

Min-Cut = Max-Flow: the minimum cut maximizes the flow that can
be sent from s to t. There is a polynomial time solution.

the maximum amount of flow passing from the source to the sink is equal to the
total weight of the edges in the minimum cut

65

Algorithm (Goldberg)

Given the input graph G, and value c

1. Create the min-cut instance graph

2. Compute the min-cut

3. If the set S is not empty, return YES

4. Else return NO

How do we find the set with maximum density?

66

Min-cut algorithm

• The min-cut algorithm finds the optimal solution in
polynomial time O(nm), but this is too expensive for
real networks.

• We will now describe a simpler approximation
algorithm that is very fast
– Approximation algorithm: the ratio of the density of the

set produced by our algorithm and that of the optimal is
bounded.
• The ratio is at most ½
• The optimal set is at most twice as dense as that of the

approximation algorithm.

• Any ideas for the algorithm?

67

Greedy Algorithm

Given the graph 𝐺 = (𝑉, 𝐸)

1. 𝑆0 = 𝑉

2. For 𝑖 = 1… |𝑉|

a. Find node 𝑣 ∈ 𝑆 with the minimum degree

b. 𝑆𝑖 = 𝑆𝑖−1 ∖ {𝑣}

3. Output the densest set 𝑆𝑖

68

Example

69

Analysis

• Density of optimal set: 𝑑𝑜𝑝𝑡 = max
𝑆⊆𝑉

𝑑(𝑆)

• Density of greedy algorithm 𝑑𝑔

• 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

70

Summary

71

▪ Spectral clustering

Using the eigenvectors of the Laplacian (or,
normalized Laplacian)

split around 0
use the k-eigenvectors

▪ Dense subgraphs

Questions?

72

73

▪ Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets,
Chapter 10, http://www.mmds.org/

▪ Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An
Introduction, Chapter 6, http://dmml.asu.edu/smm/

▪ Santo Fortunato: Community detection in graphs. CoRR
abs/0906.0612v2 (2010)

▪ Ulrike von Luxburg: A Tutorial on Spectral
Clustering. CoRR abs/0711.0189 (2007)

▪ G Palla, A. L. Barabási, T Vicsek, Quantyfying Social Group Evolution. Nature
446 (7136), 664-667

Basic References

http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189

74

Extra material

Decision problem

• 𝑑 𝑆 ≥ 𝑐

• 2 𝐸 𝑆 ≥ 𝑐|𝑆|

• σ𝑣∈𝑆 deg 𝑣 − 𝐸 𝑆, ҧ𝑆 ≥ 𝑐|𝑆|

• 2 𝐸 − σ𝑣∈ ҧ𝑆 deg 𝑣 − 𝐸 𝑆, ҧ𝑆 ≥ 𝑐 𝑆

• σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆 ≤ 2|𝐸|

75

• Consider the decision problem:

– Is there a set 𝑆 with 𝑑 𝑆 ≥ 𝑐?

Transform to min-cut

• For a value 𝑐 we do the following transformation

• We ask for a min s-t cut in the new graph
76

Transformation to min-cut

• There is a cut that has value 2|𝐸|

77

Transformation to min-cut

Every other cut has value:

• σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆

78

Transformation to min-cut

• If σ𝑣∈ ҧ𝑆 deg 𝑣 + 𝐸 𝑆, ҧ𝑆 + 𝑐 𝑆 ≤ 2|𝐸|

then 𝑆 ≠ ∅ and 𝑑 𝑆 ≥ 𝑐

79

Analysis

• We will prove that the optimal set has density
at most 2 times that of the set produced by
the Greedy algorithm.

• Density of optimal set: 𝑑𝑜𝑝𝑡 = max
𝑆⊆𝑉

𝑑(𝑆)

• Density of greedy algorithm 𝑑𝑔

• We want to show that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

80

Upper bound

• We will first upper-bound the solution of optimal

• Assume an arbitrary assignment of an edge
(𝑢, 𝑣) to either 𝑢 or 𝑣

• Define:
– 𝐼𝑁 𝑢 = # edges assigned to u

– Δ = max
𝑢∈𝑉

𝐼𝑁(𝑢)

• We can prove that

– 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ Δ
This is true for any
assignment of the edges!

81

Lower bound

• We will now prove a lower bound for the density of the
set produced by the greedy algorithm.

• For the lower bound we consider a specific assignment
of the edges that we create as the greedy algorithm
progresses:
– When removing node 𝑢 from 𝑆, assign all the edges to 𝑢

• So: 𝐼𝑁 𝑢 = degree of 𝑢 in 𝑆 ≤ 𝑑 𝑆 ≤ 𝑑𝑔
• This is true for all 𝑢 so Δ ≤ 𝑑𝑔

• It follows that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

82

The k-densest subgraph

• The k-densest subgraph problem: Find the set
of 𝑘 nodes 𝑆, such that the density 𝑑(𝑆) is
maximized.

– The k-densest subgraph problem is NP-hard!

83

