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DISCRETE PROBABILITY THEORY



Events and Probabilities

• Consider a random process: 

• E.g., throw a die, pick a random card from a deck of cards

• Each possible outcome is a simple even (or sample point)

• The sample space Ω is the set of all possible simple events

• An event is a set of simple events (a subset of the sample space)

• With each simple event 𝐸 we associate a real number 0 ≤ Pr 𝐸 ≤ 1
which is the probability of event 𝐸



Probability Space – Definition 

• A probability space has three components:

1. A sample space Ω, which is the set of all possible outcomes of the random process 
modeled by the probability space.

2. A family of sets 𝐹 representing the allowable events, where each set in 𝐹 is a subset of the 
sample space Ω. 

• In discrete probability space we use 𝐹 = “all subsets of Ω”

3. A probability function Pr: 𝐹 → 𝑅 satisfying the definition below

• A probability function is any function Pr: 𝐹 → 𝑅 that satisfies the following conditions

1. For any event 𝐸, 0 ≤ Pr 𝐸 ≤ 1
2. Pr Ω = 1
3. For any finite or countably infinite sequence of pairwise mutually disjoint events 𝐸1, 𝐸2, 𝐸3, …

Pr ራ

𝑖≥1

𝐸𝑖 =

𝑖≥1

Pr 𝐸𝑖

Corollary: The probability of an event is the sum of the probabilities of its simple events.



Example

• Consider the random process defined by the outcome of rolling a die:

• Each facet of the die is a simple event

Ω = 1,2,3,4,5,6

• We assume that all facets of the die are equally likely:

Pr 1 = Pr 2 = ⋯ = Pr 6 =
1

6
• Event 𝐸 = “odd outcome” = {1,3,5}

Pr 𝐸 =
3

6
=
1

2



Example

• Rolling two dice. Sample space is the set of all ordered pairs

Ω = 𝑖, 𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 6

• We assume that each simple event 𝑖, 𝑗 has probability Pr 𝑖, 𝑗 =
1

36

• Event 𝐸1 = "sum=2" = {(1,1)}: Pr 𝐸1 =
1

36

• Event 𝐸2 = "sum=3" = {(1,2),(2,1)}: Pr 𝐸2 =
2

36
• Event 𝐸3 = "sum at most 6" =

1,1 , 1,2 , 1,3 , (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)

Pr 𝐸3 =
15

36

• Event 𝐸4 = "both dice have odd numbers": Pr 𝐸4 =
1

4
• There are four combinations, equally likely: (odd,odd), (even, even), (odd, even), (even, odd)

• Event 𝐸5 = 𝐸3 ∩ 𝐸4 = (1,1), (1,3), (1,5), (3,1), (3,3), (5,1) : Pr 𝐸5 =
6

36



Conditional Probability

• In conditional probability we consider the probability that an event 𝐸1
occurs, given that we know that an event 𝐸2 has occurred.

• Sample space: “all the people living in Ioannina”

• Event 𝐸1 = “people living in Ioannina who were born in Ioannina”

• Event 𝐸2 = “people living in Ioannina who are students at UoI”

• Conditional probability of a person living in Ioannina to be born in 
Ioannina given that they are students at UoI:

Pr 𝐸1 𝐸2
• Conditional probability is different from joint probability

Pr 𝐸1 ∩ 𝐸2
• This is the probability that a person living in Ioannina is born in Ioannina 
and is also a student at UoI



Computing Conditional Probability

The conditional probability that event 𝐸 occurs given that event 𝐹 occurs is 

Pr 𝐸 𝐹 =
Pr 𝐸 ∩ 𝐹

Pr 𝐹

The conditional probability is well defined only if Pr 𝐹 > 0

By conditioning on 𝐹 we restrict the sample space to the set 𝐹. Thus, we 

are interested in Pr(𝐸 ∩ 𝐹) normalized by Pr(𝐹).

Corollary:

Pr 𝐸 ∩ 𝐹 = Pr 𝐸 𝐹 Pr 𝐹



Venn Diagrams

• We can represent events using Venn Diagrams

Sample space:

All people living in IoanninaEvent 𝐸1:
People born in Ioannina 

Event 𝐸2:

Students at UoI

Event 𝐸1 ∩ 𝐸2:
Students at UoI

born in Ioannina

Pr 𝐸 ∩ 𝐹 =
𝑝𝑢𝑟𝑝𝑙𝑒

𝑏𝑙𝑢𝑒

The probability that a 

randomly selected person 

living in Ioannina is a student 

at UoI, born in Ioannina

Pr 𝐸|𝐹 =
𝑝𝑢𝑟𝑝𝑙𝑒

𝑔𝑟𝑒𝑒𝑛

The probability that a 

randomly selected student at 

UoI is born in Ioannina



Example

• What is the probability when rolling two dice that their sum is 8, 

given that their sum is even

• 𝐸1 = “sum is 8” = 2,6 , 3,5 , 4,4 , 5,3 , 6,2 : Pr 𝐸1 =
5

36

• 𝐸2 = “sum is even”: Pr 𝐸2 =
1

2

• Pr 𝐸1 𝐸2 =
5

36
1

2

=
5

18

Pr(𝐸1 ∩ 𝐸2) = Pr 𝐸1
𝐸1 ⊆ 𝐸2: When the sum is 8 then it is even. 



Complement

• Let Ω be the sample space. If 𝐸 ⊆ Ω is an event, then the complement of the 
event 𝐸 is the event ത𝐸, such that 

• 𝐸 ∩ ത𝐸 = ∅

• 𝐸 ∪ ത𝐸 = Ω

• Example: 
• 𝐸 = “sum of dice is even”

• ത𝐸 = “sum of dice is odd”

• Probability of the complement: Pr ത𝐸 = 1 − Pr 𝐸
• Sometimes it is more convenient to work with the complement. 

• Example: Compute the probability that the sum of two dice is greater than 1
• 𝐸 = “sum of dice > 1”

• ത𝐸 = “sum of dice = 1” = 1,1

• Pr 𝐸 = 1 − Pr ത𝐸 = 1 −
1

36
=

35

36

ത𝐸 𝛦



A Useful Identity

• Consider two events 𝐴, 𝐵

Pr 𝐴 = Pr(𝐴 ∩ 𝐵) + Pr 𝐴 ∩ ത𝐵

= Pr 𝐴 𝐵 Pr 𝐵 + Pr 𝐴 ത𝐵 Pr ത𝐵

𝐴 ∩ 𝐵 and 𝐴 ∩ ത𝐵 are disjoint

𝐴𝐵 ത𝐵

Recall that Pr 𝐴 ∩ 𝐵 = Pr 𝐴 𝐵 Pr 𝐵



Application

• Compute the probability that a randomly selected person has 

height greater than 1.80

• Assume that we know that the probability that a man has height 

greater than 1.80 is 0.4, and the probability that a woman has 

height greater than 1.80 is 0.04

• Event A = “height greater than 1.80”. We want Pr 𝐴

• Event B = “person is a woman”. Pr 𝐵 = 0.51

• We can now compute Pr(𝐴)

Pr 𝐴 = Pr 𝐴 𝐵 Pr B + Pr A ത𝐵 Pr ത𝐵

= 0.04 ∗ 0.51 + 0.4 ∗ 0.49 = 0.41



Bayes Rule

• Express the conditional probability Pr 𝐸1 𝐸2 as a function of the 

probability Pr 𝐸2 𝐸1

Pr 𝐸1 𝐸2 =
Pr 𝐸2 𝐸1 Pr 𝐸1

Pr 𝐸2

=
Pr 𝐸2 𝐸1 Pr 𝐸1

Pr 𝐸2|𝐸1 Pr 𝐸1 + Pr 𝐸2 𝐸1 Pr 𝐸1



Example: A-posteriori probability

• We are given 2 coins:

• one is a fair coin A

• the other coin, B, has head on both sides

• We choose a coin at random, i.e. each coin is chosen with 

probability 
1

2
. We then flip the coin.

• Given that we got head, what is the probability that we chose the 

fair coin A???



Example: A-posteriori probability

• Event 𝐸1 = “coin A was chosen”

• Event 𝐸2 = “output was head”

• We want to compute Pr(𝐸1|𝐸2)

• Using Bayes Rule

Pr(𝐸1|𝐸2) =
Pr 𝐸2 𝐸1 Pr 𝐸1

Pr 𝐸2 𝐸1 Pr 𝐸1 + Pr 𝐸2 𝐸1 Pr 𝐸1

=

1
2
×
1
2

1
2
×
1
2
+ 1 ×

1
2

=
1

3



Independent Events

• Two events 𝐸 and 𝐹 are independent if and only if 

Pr 𝐸 ∩ 𝐹 = Pr 𝐸 Pr 𝐹

• The probability of occurring together is equal to the product of the 

probabilities of occurring individually.

• Equivalently:

Pr 𝐸 𝐹 = Pr 𝐸
Pr 𝐹 𝐸 = Pr 𝐹

• The probability of one event occurring is not affected by the fact 

that we know the other event has occurred. 



Examples

• Pick a random card from a deck:
• 𝐸 = “ace was picked”

• 𝐹 = “heart was picked”

• Roll a die:
• 𝐸 = “even number” = 2,4,6

• 𝐹 = “number ≤ 4” = {1,2,3,4}

• Roll a die:
• 𝐸 = “prime number” = 1,2,3,5

• 𝐹 = “number ≤ 4” = {1,2,3,4}

Independent!

Even if we know that we have picked a heart

we still have probability 
1

13
to pick an ace

Two independent processes

Independent!

The events are of the same process but

even if we know that we have picked a number ≤ 4

we still have probability 
1

2
to pick an even number

Not Independent!

If we know that we have picked a number ≤ 4

then we have probability 
3

4
to pick a prime number

while we have probability 
4

6
overall



Random Variables

• A random variable 𝑋 on the sample space Ω is a function on Ω, that 

is, 𝑋:Ω → 𝑅

• A discrete random variable is a random variable that takes only a 

finite or countably infinite number of values.

• A random variable is a numeric quantity that we are interested that 

is the by-product of the random process. 

• By defining the random variable, we assign a value to every simple 

event in the sample space.



Examples

1. Roll a die: 𝑋1 = “the number”
• In this case the number we associate with each simple event is the value of the event.

2. Roll 2 dice:  𝑋2 = “the sum of the two values”
• For example, the simple event 2,3 is assigned the value 5. Note that the same value is 

also assigned to the simple event 3,2 .

3. Flip two coins: 𝑋3 = ቊ
$3 if two Heads
$1 otherwise

• This random variable assigns value 3 to the event 𝐻,𝐻 and 1 to all other events

4. Pick a card: 𝑋4 = ൜
1 if card is Ace
0 otherwise

• We assign value 1 to the event A, and zero to all other events. This models the case of 
“success”

5. Run QuickSort on a given matrix T: 𝑋5 = “Running time of Quicksort”
• The sample space is the set of all random choices made by the algorithm. Each one will 

result in a specific running time in {0, … , 𝑛2}



Probability Distribution

• Each value 𝑥 of the random variable 𝑋, defines an event (𝑋 = 𝑥) in the 
sample space Ω.
• For example, for the random variable 𝑋3 the value 𝑋3 = 3 corresponds to the 

event { 𝐻,𝐻 }, while the value 𝑋3 = 1 corresponds to the event 
{ 𝐻, 𝑇 , 𝑇, 𝐻 , (𝑇, 𝑇)}

• We can thus compute the probability of a value Pr 𝑋 = 𝑥 (or Pr 𝑥 )

• Pr 𝑋3 = 3 =
1

4
, Pr 𝑋3 = 1 =

3

4

• The probability distribution function for random variable 𝑋 gives the 
probability Pr 𝑋 = 𝑥 (Pr 𝑥 ) for all values of 𝑋. The probability 
distribution should satisfy:
• 0 ≤ Pr 𝑥 ≤ 1, for all 𝑥

• σ𝑥 Pr 𝑥 = 1 , where the sum is over all possible values of 𝑋.



Random variables and Probability Distribution

• We sometimes define random variables simply by the set of values 

they take and the probability distribution, without explicit reference 

to the sample space

• For example, we may say that we have a random variable 𝑋 that 

takes values {1,2,3,4} with probability distribution Pr 𝑖 =
1

4
(the 

uniform distribution)

• We often say, we have a random variable that follows the uniform 

distribution over the set {1, … , 𝑛}

• In such cases you can think of the sample space as being the 

same as the field of values.



Independent Random Variables

Two random variables 𝑋 and 𝑌 are independent if and only if 

Pr 𝑋 = 𝑥 ∩ 𝑌 = 𝑦 = Pr 𝑋 = 𝑥 Pr 𝑌 = 𝑦

for all values 𝑥, 𝑦

• This definition means that all the events defined by the two variables are 
independent

• In simple terms, the value that one variable takes, does not depend on 
the value that the other variable takes.

• We also write: Pr 𝑋, 𝑌 = Pr 𝑋 Pr 𝑌 or Pr 𝑋 𝑌 = Pr 𝑋
• 𝑃 𝑋, 𝑌 is the joint distribution of variables 𝑋 and 𝑌
• 𝑃 𝑋|𝑌 is the conditional probability distribution of variable 𝑋 given 𝑌



Example

• Rolling 5 dice:

• The outcome of each roll is independent of the outcome of the other rolls

• The sum of the first three rolls is independent of the sum of the last two rolls

• Drawing 3 cards:

• The number of Aces we have is independent of the number of Hearts we get

• General rule: When repeating the same experiment multiple times, 

we assume that each trial is independent of the rest



Expectation

The expectation of a discrete random variable 𝑋, denoted by 𝐸 𝑋 , 

is given by

𝐸 𝑋 =

𝑥

𝑥 Pr 𝑋 = 𝑥

where the summation is over all values in the range of 𝑋

Think of the expectation as the mean value you would get if you 

took infinite values of the random variable 𝑋



Examples

• The expected value of one die roll is:

𝐸 𝑋 = 

𝑖=1

6

𝑖 Pr 𝑋 = 𝑖 =

𝑖=1

6
𝑖

6
=
3

2

• The expected sum of two dice:

𝐸 𝑋 =
1

36
2 +

2

36
3 +

3

36
4 +⋯+

1

36
12 = 7

• Throw two coins. If both are head you will $3, else you loose $1.1. What 
is the expected gain?

𝐸 𝑋 = 3
1

4
− 1.1

3

4
= −0.1

3

4



Examples

• The expectation is not the most probable value. Consider random 
variable 𝑋 that takes values −2,1,2 with probability 0.4, 0.1, 0.4 .
The expected value is 

𝐸 𝑋 = −2 ⋅ 0.4 + 1 ⋅ 0.1 + 2 ⋅ 0.4 = 0.1

• The expectation may be unbounded. Consider the random variable 

𝑋 which takes value 2𝑖 with probability 
1

2𝑖
for 𝑖 = 1,2,3, … (this is a 

distribution)

𝐸 𝑋 =

𝑖=1

∞

2𝑖
1

2𝑖
=

𝑖=1

∞

1 =∞



Linearity of Expectation

• For any two random variables 𝑋 and 𝑌:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

• For any constant 𝑐 and random variable 𝑋:

𝐸 𝑐𝑋 = 𝑐𝐸 𝑋

• This holds for any random variables, 𝑋 and 𝑌 do not need to be 

independent



Examples

• Roll 𝑛 dice. What is the expectation of the random variable 𝑋 that is the 

sum of their output?

• Define random variables 𝑋1, 𝑋2, … , 𝑋𝑛 for the output of the 𝑛 dice

• 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

• 𝐸 𝑋 = σ𝑖=1
𝑛 𝐸 𝑋𝑖 = 𝑛

3

2

• Roll 2 dice. What is the expectation of the random variable 𝑋 that is the 

sum of the output of the first plus two times the output of the second?

• Define random variables 𝑋1, 𝑋2 for the output of the two dice

• 𝑋 = 𝑋1 + 2𝑋2

• 𝐸 𝑋 = 𝐸 𝑋1 + 2𝐸 𝑋2 =
3

2
+ 2

3

2
=

9

2



Bernoulli Random Variable

• A Bernoulli Random Variable is one that takes values 0,1 .
Bernoulli has a parameter 𝑝 which is the probability of taking the 
value 1.

𝐵 = ቊ
1 with probability 𝑝
0 with probability 1 − 𝑝

• Bernoulli variables are used as indicator variables, whether some 
event of interest happened or not
• E.g., 1 if I draw an Ace, 0 otherwise

• Expectation:

𝐸 𝐵 = 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ 0 = 𝑝 = Pr 𝐵 = 1



Binomial Random Variable

• A binomial random variable measures the number of successes in a 
sequence of 𝑛 trials
• E.g., toss a coin 𝑛 times, random variable 𝑋 is the number of times we get Head

• A binomial random variable 𝑋 with parameters 𝑛, 𝑝, denoted 𝐵(𝑛, 𝑝) is 
defined by the following probability distribution for 𝑘 = 0,1,2, … , 𝑛:

Pr 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝑛:number of trials

𝑝: probability of success

𝑘: number of successes

𝑛
𝑘

: number of ways to select 𝑘 elements out of 𝑛 elements



Expectation of a Binomial Random Variable

• We can compute the expectation using the standard formula:

𝐸 𝑋 = 

𝑘=0

𝑛

𝑘 Pr 𝑋 = 𝑘 = 

𝑘=0

𝑛

𝑘
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 = ⋯ = 𝑛𝑝

• There is a simpler way. Ideas?
• Define Bernoulli random variables 𝑋1, 𝑋2, … , 𝑋𝑛 for each trial with success 

probability 𝑝

𝑋 =

𝑖=1

𝑛

𝑋𝑖

𝐸 𝑋 = 

𝑖=1

𝑛

𝐸 𝑋𝑖 = 𝑛𝑝



A useful formula

• Consider a discrete random variable 𝑋 that takes values 1,2,3, …𝑛. 

Sometimes it is easier to use the following formula to compute the 

expectation:

𝐸 𝑋 = 

𝑖=1

𝑛

Pr 𝑋 ≥ 𝑖

• Proof?



Expectation is not everything

• Consider the following two jobs:

• One job gives salary 1000 euros per month

• The other job gives salary 1 euro per month, plus a bonus of 1,000,000 with 

probability 
1

1000

• Which job would you pick?



Variance

• The variance of a random variable 𝑋 is 

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2 = 𝐸 𝑋2 − 𝐸 𝑋 2

• Variance measures the expected deviation from the expected 

value, measured as the squared difference

• The standard deviation of a random variable 𝑋 is 

𝜎 𝑋 = 𝑉𝑎𝑟 𝑋



Quiz

• Question: We have two events that are disjoint. Are they independent?

• Answer: No. Clearly, they are dependent. If one happens the probability 

of the other happening is zero.

• Question: A coin has probability 𝑝 of being head. What is the probability 

that I throw the coin 10 times and I get all heads?

• Answer: Each coin toss is independent. Therefore, the probability is: 𝑝10

• Question: A coin has probability 𝑝 of being head. What is the probability 

that I throw the coin 10 times and I get at least one head?

• Answer: Consider the complement of this event: I get no heads. The 

probability of not getting a head is 1 − 𝑝. The probability of getting no 

heads is 1 − 𝑝 10. The probability of this not happening is 1 − 1 − 𝑝 10



Exercise

• Assume that 𝑁 people checked coats in a restaurants. The coats are mixed up, and each person 
gets a random coat.

• How many people we expect to have gotten their own coats?

• Let 𝑋 = “number of people that got their own coats”. We want to compute 𝐸 𝑋 = σ𝑖=0
𝑁 𝑖 Pr(𝑋 = 𝑖). 

Not easy. Ideas?

• Define 𝑁 Bernoulli random variables 𝑋𝑖:

𝑋𝑖 = ቊ
1 person 𝑖 got their coat
0 otherwise

, Pr 𝑋𝑖 = 1 =
1

𝑁

𝑋 = 

𝑖=1

𝑁

𝑋𝑖

𝐸 𝑋 = 𝐸 

𝑖=0

𝑁

𝑋𝑖 =

𝑖=0

𝑁

𝐸[𝑋𝑖] = 𝑁
1

𝑁
= 1



Exercise

• What is the probability that everyone gets their own coat?

• Incorrect argument: The probability that one person gets their coat is Pr 𝑋𝑖 = 1 =
1

𝑁
. The probability that 

everyone gets their coat is

ෑ

𝑖=1

𝑁

Pr(𝑋𝑖 = 1) =
1

𝑁𝑁

• Where is the error in this?

• The random variables are not independent. Once one person has found their coat the probability for the rest 

changes.

• What is the correct probability?

• One way to compute it:

Pr(𝑋1) Pr 𝑋2 𝑋1 ⋯Pr 𝑋𝑁 𝑋𝑁−1, … , 𝑋1 =
1

𝑁

1

𝑁 − 1
⋯ 1 =

1

𝑁!
• It also follows from the fact that of all possible permutations of coats there is only one that is the correct one.



CONTINUOUS RANDOM VARIABLES



Continuous Random Variables

• A continuous random variable 𝑋 is one that takes values on a real 

interval, rather than a discrete set

• E.g., the height of a randomly selected person in Greece

• E.g., the amount of rainfall in a specific location on a randomly selected day

• Since the range of the variable 𝑋 is not countable or infinitely 

countable, it does not make sense to assign a probability to a 

specific real value

• There are uncountably infinite of those, and also measurements are never 

exact.

• Instead, the probability is defined over intervals of values



Cumulative Probability Function

• Mathematically, a continuous random variable is defined through 

the cumulative probability function 

𝐹 𝑥 = Pr 𝑋 ≤ 𝑥

Which should have some nice properties (e.g. be non-decreasing 

and continuous)



Probability Density Function

• More often, a random variable is defined by its probability density 

function 𝑓(𝑥).

• The function 𝑓 is the derivative of the cumulative function 𝐹 and it 

has the following two properties:

1. 𝑓 𝑥 ≥ 0, for all 𝑥

2. ∞−
+∞

𝑓 𝑥 𝑑𝑥 = 1



Probability Density Function

• The pdf is the closest analog to the probability function for the discrete 
case
• It tells us how the probability mass (the samples) is distributed over the range of the 

random variable

• Sometimes, we may use 𝑓(𝑥) as the probability of value 𝑥

• The correct way to compute this though is to take the integral of 𝑓 (the 
area under the curve) in the interval 𝑥, 𝑥 + 𝜖

Pr 𝑥 < 𝑋 ≤ 𝑥 + 𝜖 = න

𝑥

𝑥+𝜖

𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 + 𝜖 − 𝐹 𝑥

𝐹 𝑥 = න

−∞

𝑥

𝑓 𝑥 𝑑𝑥



Expectation and Indepedence

• The expectation is defined by taking the integral

𝐸 𝑋 = න

−∞

+∞

𝑥𝑓 𝑥 𝑑𝑥

• Same properties hold for linearity of expectation

• Independence is defined using the cumulative or density function

𝐹 𝑥, 𝑦 = 𝐹 𝑥 𝐹 𝑦
𝑓 𝑥, 𝑦 = 𝑓 𝑥 𝑓(𝑦)



Important continuous distributions

• Uniform distribution: The probability of 
any interval (𝑎, 𝑏) is proportional to its 
length 𝑏 − 𝑎.
• The pdf is a flat line: equal mass 

everywhere.

• Gaussian/Normal distribution. 
Probability density function:

𝜙 𝑥 =
1

𝜎 2𝜋
𝑒
1
2
𝑥−𝜇
𝜎

2

It is fully characterized by the mean 𝜇
and the standard deviation 𝜎



Central Limit Theorem

• Let 𝑌1, 𝑌2, … , 𝑌𝑛 be independent identically distributed random 

variables with mean 𝜇 and variance 𝜎2

• For example, 𝑛 height measurements from a broader population

• Let ത𝑌 =
1

𝑛
σ𝑖 𝑌𝑖 be the mean value of the 𝑛 random variables

• Taking the mean height

• When 𝑛 is large the random variable ത𝑌 converges to a normal 

distribution with mean 𝜇 and variance 
𝜎2

𝑛


