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Supervised learning

• In supervised learning, except for the feature variables that describe the 
data, we also have a target variable

• The goal is to learn a function (model) that can estimate/predict the 
value of the target variable given the features
• We learn the function using a labeled training set.

• Regression: The target variable (but also the features) is numerical and 
continuous
• The price of a stock, the GDP of a country, the grade in a class, the height of a 

child, the life expectancy etc

• Classification: The target variable is discrete
• Does a taxpayer cheat or not? Will the stock go up or down? Will the student pass 

or fail? Is a transaction fraudulent or not? What is the topic of an article?



Applications

• Descriptive modeling: Explanatory tool to understand the data:
• Regression: How does the change in the value of different factors affect our target variable?

• What factors contribute to the price of a stock?

• What factors contribute to the GDP of a country?

• Classification: Understand what attributes distinguish between objects of different classes 
• Why people cheat on their taxes?

• What words make an post offensive?

• Predictive modeling: Predict a class of a previously unseen record
• Regression: What will the life-expectancy of a patient be?

• Classification: Is this a cheater or not? Will the stock go up or not. Is this an offensive post?

• Predictive modeling is in the heart of the data science revolution.
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A model is a function 𝑴 that takes as input the feature 

vector 𝒇 and outputs a value for the target variable 𝒕



LINEAR REGRESSION



Regression

• We assume that we have 𝑘 feature variables (numeric):

• Also known as covariates, or independent variables

• The target variable is also known as dependent variable.

• We are given a dataset of the form (𝒙1, 𝑦1) , … , (𝒙𝑛, 𝑦𝑛) where, 𝒙𝒊 is 

a 𝑘-dimensional feature vector, and 𝑦𝑖 a real value

• We want to learn a function 𝑓 which given a feature vector 𝒙𝒊 predicts 

a value 𝑦𝑖
′ = 𝑓 𝒙𝒊 that is as close as possible to the value 𝑦𝑖

• Minimize sum of squares:

෍

𝑖

𝑦𝑖 − 𝑓 𝒙𝒊
2



Linear regression

• The simplest form of 𝑓 is a linear 

function

• In linear regression the function 𝑓 is 

typically of the form:

𝑓 𝒙𝒊 = 𝑤0 +෍

𝑗=1

𝑘

𝑤𝑗𝑥𝑖𝑗



One-dimensional linear regression

In the simplest case we have a single 

variable and the function is of the 

form:

𝑓 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖

Minimizing the error gives:

𝑤0 = ത𝑦 − 𝑤1 ҧ𝑥

𝑤1 =
σ𝑖(𝑥𝑖− ҧ𝑥)(𝑦𝑖−ത𝑦)

σ𝑖 𝑥𝑖− ҧ𝑥 2 = 𝑟𝑥𝑦
𝜎𝑦

𝜎𝑥

ҧ𝑥: mean value of 𝑥𝑖’s
ത𝑦: mean value of 𝑦𝑖’s
𝑟𝑥𝑦: correlation coefficient 

between 𝒙, 𝒚



Multiple linear regression

• In the general case we have 𝑘 features, and 𝒙𝒊,𝒘 are vectors. 

• We simplify the notation:
𝒙𝒊 = 1, 𝑥𝑖1, … , 𝑥𝑖𝑘
𝒘 = 𝑤0, 𝑤1, … , 𝑤𝑘

𝑓 𝒙𝒊, 𝒘 = 𝒙𝒊
𝑇𝒘

• Let 𝑋 be the 𝑛 × (𝑘 + 1) matrix with vectors 𝒙𝒊 as rows. 

• Let 𝒚 = (𝑦1, … , 𝑦𝑛)

• We can write the SSE function as:

𝑆𝑆𝐸 = 𝑋𝒘 − 𝒚 2

• There is a closed-form solution for 𝒘:
𝒘 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚

• Matrix inversion may be too expensive. Other optimization techniques are 
often used to find the optimal vector (e.g., Gradient Descent)



Outliers

• Regression is sensitive to outliers:

• The line will “tilt” to accommodate very extreme values

• Solution: remove the outliers

• But make sure that they do not capture useful information

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiK-YWl5pjmAhXNsaQKHWLGCggQjRx6BAgBEAQ&url=http%3A%2F%2Fr-statistics.co%2FOutlier-Treatment-With-R.html&psig=AOvVaw3ZoanFi1QLy4lbhtyGmQwT&ust=1575439133469519


Normalization

• In the regression problem some times our features may have very 

different scales:

• For example: predict the GDP of a country using as features the 

percentage of home owners and the income

• The weights in this case will not be interpretable

• Solution: Normalize the features by replacing the values with the 

z-scores

• Remove the mean and divide by the standard deviation



More complex models

• The model we have is linear with 
respect to the parameters 𝒘 but the 
features we consider may be non-linear 
functions of the 𝒙𝒊 values. 

• To capture more complex relationships, 
we can take a transformation of the 
input (e.g., logarithm log 𝑥𝑖𝑗), or add 

polynomial terms (e.g., 𝑥𝑖𝑗
2 ). 

• For example, we can learn a function of the 
form 𝑓 𝑥 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥

2

• However this may increase a lot the number 
of features



Interpretation and significance

• A regression model is useful for 
making predictions for new data.

• The coefficients for the linear 
regression model are also useful for 
understanding the effect of the 
independent variables to the value of 
the dependent variable
• The 𝑤𝑗 value is the effect of the increase of 
𝑥𝑖𝑗 by one to the value 𝑦𝑖

• We can also compute the significance
of the value of 𝑤𝑗 by testing the null 
hypothesis that 𝑤𝑗 = 0

Predicting Crime rate



CLASSIFICATION



Classification

• Similar to the regression problem we have features and a target 

variable that we want to model/predict

• The target variable is now discrete. It is often called the class label

• In the simplest case, it is a binary variable.

• In classification the features may also be categorical.



Example: Catching tax-evasion
Tid Refund Marital

Status
Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tax-return data for year 2011

A new tax return for 2012

Is this a cheating tax return?

An instance of the classification problem: learn a method for discriminating between 

records of different classes (cheaters vs non-cheaters)



Classification
• Classification is the task of learning a target function f that maps attribute set x to one of 

the predefined class labels y

• The function may be defined as an algorithm (e.g., if Single and Income < 125K then No)

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

One of the attributes is the class attribute

In this case: Cheat

Two class labels (or classes): Yes (1), No (0)



Examples of Classification Tasks

• Predicting tumor cells as benign or malignant

• Classifying credit card transactions as legitimate or fraudulent

• Categorizing news stories as finance, weather, entertainment, sports

• Identifying spam email, spam web pages, adult content

• Understanding if a web query has commercial intent or not

Classification is everywhere in data science

Big data has the answers to all questions.



General approach to classification

• Obtain a training set consisting of records with known class labels

• Training set is used to build a classification model

• A labeled test set of previously unseen data records is used to evaluate
the quality of the model.

• The classification model is applied to new records with unknown class 
labels

• Important intermediate step: Decide on what features to use



Illustrating Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning 
algorithm

Training Set



Evaluation of classification models

• Counts of test records that are correctly (or incorrectly) predicted 

by the classification model

• Confusion matrix
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Classification Techniques

• Decision Tree based Methods

• Rule-based Methods

• Memory based reasoning

• Neural Networks

• Naïve Bayes and Bayesian Belief Networks

• Support Vector Machines

• Logistic Regression



DECISION TREES



Decision Trees

• Decision tree 

• A flow-chart-like tree structure

• Internal node denotes a test on an attribute

• Branch represents an outcome of the test

• Leaf nodes represent class labels or class distribution



Example of a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree

Test outcome

Class labels



Another Example of Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree that 

fits the same data!



Decision Tree Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Start from the root of tree.



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Assign Cheat to “No”



Decision Tree Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree



Tree Induction

• Goal: Find the tree that has low classification error in the training data 
(training error)

• Finding the best decision tree (lowest training error) is NP-hard

• Greedy strategy.
• Split the records based on an attribute test that optimizes certain criterion.

• Many Algorithms:
• Hunt’s Algorithm (one of the earliest)

• CART

• ID3, C4.5

• SLIQ,SPRINT



General Structure of Hunt’s Algorithm

• 𝐷𝑡 ∶ the set of training records that reach a node 𝑡

• General Procedure:
• If 𝐷𝑡 contains records that belong the same class 𝑦𝑡, then 
𝑡 is a leaf node labeled as 𝑦𝑡

• If 𝐷𝑡 contains records with the same attribute values, then 
𝑡 is a leaf node labeled with the majority class 𝑦𝑡

• If 𝐷𝑡 is an empty set, then 𝑡 is a leaf node labeled by the 
default class, 𝑦𝑑

• If 𝐷𝑡 contains records that belong to more than one class, 
use an attribute test to split the data into smaller subsets. 

• Recursively apply the procedure to each subset.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

𝐷𝑡

?



Hunt’s Algorithm

Don’t 

Cheat

Refund

Don’t 

Cheat

Don’t 

Cheat

Yes No

Refund

Don’t 

Cheat

Yes No

Marital

Status

Don’t 

Cheat

Cheat

Single,

Divorced
Married

Taxable

Income

Don’t 

Cheat

< 80K >= 80K

Refund

Don’t 

Cheat

Yes No

Marital

Status

Don’t 

Cheat
Cheat

Single,

Divorced
Married

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

4 Yes Married 120K No 

7 Yes Divorced 220K No 

2 No Married 100K No 

3 No Single 70K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

4 Yes Married 120K No 

7 Yes Divorced 220K No 

2 No Married 100K No 

6 No Married 60K No 

9 No Married 75K No 

3 No Single 70K No 

5 No Divorced 95K Yes 

8 No Single 85K Yes 

10 No Single 90K Yes 
10 

 



Constructing decision-trees (pseudocode)
GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F) = true then

a. leaf = createNode()

b. leaf.label= Classify(S)

c. return leaf

2. root = createNode()

3. root.test_condition = findBestSplit(S,F)

4. V = {v| v a possible outcome of root.test_condition}

5. for each value vєV:

a. Sv: = {s | root.test_condition(s) = v and s є S};

b. child = GenDecTree(Sv ,F) ;

c. Add child as a descent of root and label the edge (root→child) as v

6. return root



Tree Induction

• Issues

• How to Classify a leaf node

• Assign the majority class

• If leaf is empty, assign the default class – the class that has the highest popularity (overall 

or in the parent node).

• Determine how to split the records

• How to specify the attribute test condition?

• How to determine the best split?

• Determine when to stop splitting



How to Specify Test Condition?

• Depends on attribute types

• Nominal

• Ordinal

• Continuous

• Depends on number of ways to split

• 2-way split

• Multi-way split



Splitting Based on Nominal Attributes

• Multi-way split: Use as many partitions as distinct values. 

• Binary split: Divides values into two subsets. 

Need to find optimal partitioning.

CarType
Family

Sports

Luxury

CarType
{Family, 

Luxury} {Sports}

CarType
{Sports, 

Luxury} {Family}
OR



Splitting Based on Ordinal Attributes

• Multi-way split: Use as many partitions as distinct values. 

• Binary split: Divides values into two subsets – respects the 

order. Need to find optimal partitioning.

• What about this split?

Size
Small

Medium

Large

Size
{Medium, 

Large} {Small}

Size
{Small, 

Medium} {Large} OR

Size
{Small, 

Large} {Medium}



Splitting Based on Continuous Attributes

• Different ways of handling

• Discretization to form an ordinal categorical attribute

• Static – discretize once at the beginning

• Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing 

(percentiles), or clustering.

• Binary Decision: (A < v) or (A  v)

• consider all possible splits and finds the best cut

• can be more computationally intensive



Splitting Based on Continuous Attributes

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K



How to determine the Best Split

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

Before Splitting: 10 records of class 0,

10 records of class 1

Which test condition is the best?



How to determine the Best Split

C0: 5

C1: 5

• Greedy approach: 

• Creation of nodes with homogeneous class distribution is preferred

• Need a measure of node impurity:

• Ideas?

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity



Measuring Node Impurity

• We are at a node 𝐷𝑡 and the samples belong to classes {1, … , 𝑐}
• 𝑝(𝑖|𝑡): fraction of records associated with node 𝐷𝑡 belonging to class 𝒊

• Impurity measures:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐷𝑡 = −෍

𝑖=1

𝑐

𝑝 𝑖 𝑡 log 𝑝 𝑖 𝑡

• Used in ID3 and C4.5

𝐺𝑖𝑛𝑖 𝐷𝑡 = 1 −෍

𝑖=1

𝑐

𝑝 𝑖 𝑡 2

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝐷𝑡 = 1 −max 𝑝 𝑖 𝑡

• Used in CART, SLIQ, SPRINT.



Example: C4.5

• Simple depth-first construction.

• Uses Information Gain

• Sorts Continuous Attributes at each node.

• Needs entire data to fit in memory.

• Unsuitable for Large Datasets.

• Needs out-of-core sorting.

• You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz


EXPRESSIVENESS



Expressiveness

• A classifier defines a function that discriminates between two (or 

more) classes.

• The expressiveness of a classifier is the class of functions that it 

can model, and the kind of data that it can separate

• When we have discrete (or binary) values, we are interested in the 

class of boolean functions that can be modeled

• When the data-points are real vectors we talk about the decision 

boundary that the classifier can model

• The decision boundary is the (multi-dimensional) surface defined by the 

function of the classifier that separates the YES and NO decisions



Decision Boundary for Decision Trees

y < 0.33?

     : 0

     : 3

     : 4

     : 0

y < 0.47?

    : 4

    : 0

     : 0

     : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Consider a decision tree on real data where the test conditions involve a single attribute at a time, 

and a Yes/No question

• Each test defines a line parallel to an axis (the one corresponding to the test attribute)

• The decision boundary is a collection of lines parallel to the axes



Limitations of single attribute-based decision 

boundaries

Both positive (+) and negative (o) classes 

generated from skewed Gaussians with 

centers at (8,8) and (12,12) respectively.  

The resulting boundary is very complex.  



Oblique Decision Trees

x + y < 1

Class = + Class =     

• Test condition may involve multiple attributes

• More expressive representation

• Finding optimal test condition is computationally expensive



Expressiveness

• Decision tree provides expressive representation for learning discrete-valued 
function

• But they do not generalize well to certain types of Boolean functions
• Example: parity function: 

• Class = 1 if there is an even number of Boolean attributes with truth value = True

• Class = 0 if there is an odd number of Boolean attributes with truth value = True

• For accurate modeling, must have a complete tree

• Less expressive for modeling continuous variables

• Particularly when test condition involves only a single attribute at-a-time



NEAREST NEIGHBOR 

CLASSIFICATION



Instance-Based Classifiers

Atr1 ……... AtrN Class

A

B

B

C

A

C

B

Set of Stored Cases

Atr1 ……... AtrN

Unseen Case

• Store the training records 

• Use training records to 

predict the class label of 

unseen cases



Instance Based Classifiers

• Examples:

• Rote-learner

• Memorizes entire training data and performs classification only if attributes of record 

match one of the training examples exactly

• Nearest neighbor classifier

• Uses k “closest” points (nearest neighbors) for performing classification



Nearest Neighbor Classifiers

• Basic idea:

• “If it walks like a duck, quacks like a duck, then it’s probably a duck”

Training 

Records

Test 

Record

Compute 

Distance

Choose k of the 

“nearest” records



Nearest-Neighbor Classifiers

Requires three things

– The set of stored records

– Distance Metric to compute 

distance between records

– The value of k, the number of 

nearest neighbors to retrieve

To classify an unknown record:

1. Compute distance to other 

training records

2. Identify k nearest neighbors 

3. Use class labels of nearest 

neighbors to determine the 

class label of unknown 

record (e.g., by taking 

majority vote)

Unknown record



Nearest Neighbor Classification

• Compute distance between two points:

• Euclidean distance 

𝑑 𝑝, 𝑞 = ෍

𝑖

𝑝𝑖 − 𝑞𝑖
2

• Determine the class from nearest neighbor list

• take the majority vote of class labels among the k-nearest neighbors

• Weigh the vote according to distance

• weight factor, w = 1/d2



Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points 

that have the k smallest distance to x



1 nearest-neighbor
Voronoi Diagram defines the classification boundary

The area takes the 

class of the green 

point



Nearest Neighbor Classification…

• Choosing the value of k:

• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from other classes

X

The value of k determines the complexity of 

the model

Lower k produces more complex models



Example



Nearest Neighbor Classification…

• Problem with Euclidean measure:

• High dimensional data 

• curse of dimensionality

• Can produce counter-intuitive results

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

vs

d = 1.4142 d = 1.4142

◆ Solution: Normalize the vectors to unit length



Nearest neighbor Classification…

• k-NN classifiers are lazy learners 

• It does not build models explicitly

• Unlike eager learners such as decision trees 

• Classifying unknown records is relatively expensive

• Naïve algorithm: O(n)

• Need for structures to retrieve nearest neighbors fast.

• The Nearest Neighbor Search problem.

• Also, Approximate Nearest Neighbor Search 

• Issues with distance in very high-dimensional spaces



SUPPORT VECTOR MACHINES



Linear classifiers

• SVMs are part of a family of classifiers that assumes that the 

classes are linearly separable

• That is, there is a hyperplane that separates (approximately, or 

exactly) the instances of the two classes.

• The goal is to find this hyperplane



Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data



Support Vector Machines

• One Possible Solution

B1



Support Vector Machines

• Another possible solution

B
2



Support Vector Machines

• Other possible solutions

B
2



Support Vector Machines

• Which one is better? B1 or B2?

• How do you define better?

B
1

B
2



Support Vector Machines

• Find hyperplane maximizes the margin : B1 is better than B2

B
1

B
2

b
11

b
12

b
21

b
22

margin



Support Vector Machines
B
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Support Vector Machines

• We want to maximize: 𝑀𝑎𝑟𝑔𝑖𝑛 =
2

𝑤

• Which is equivalent to minimizing:𝐿 𝑤 =
𝑤

2

• But subjected to the following constraints:

𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 if 𝑦𝑖 = −1

• This is a constrained optimization problem
• Numerical approaches to solve it (e.g., quadratic programming)

Concisely:

𝑦𝑖 𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1



Support Vector Machines

• What if the problem is not linearly separable?



Support Vector Machines

• What if the problem is not linearly separable?

𝜉𝑖
𝑤

𝑤 ⋅ Ԧ𝑥 + 𝑏 = −1 + 𝜉𝑖



Support Vector Machines

• What if the problem is not linearly separable?

• Introduce slack variables

• Minimize:

𝐿 𝑤 =
𝑤

2
+ 𝐶 ෍

𝑖=1

𝑁

𝜉𝑖
𝑘

• Subject to: 

𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 + 𝜉𝑖 if 𝑦𝑖 = −1



Nonlinear Support Vector Machines

• What if decision boundary is not linear?



Nonlinear Support Vector Machines

• Trick: Transform data into higher dimensional space

Decision boundary:

𝑤 ⋅ Φ Ԧ𝑥 + 𝑏 = 0



Learning Nonlinear SVM

• Optimization problem:

• Which leads to the same set of equations (but involve (𝑥) instead 

of 𝑥)



Learning NonLinear SVM

• Issues:

• What type of mapping function  should be used?

• How to do the computation in high dimensional space?

• Most computations involve dot product  𝑥𝑖 ⋅ (𝑥𝑗)

• Curse of dimensionality?



Learning Nonlinear SVM

• Kernel Trick:

•  𝑥𝑖 ⋅ (𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗)

• 𝐾(𝑥𝑖, 𝑥𝑗) is a kernel function (expressed in terms of the coordinates in the 

original space)

• Examples:



Example of Nonlinear SVM

SVM with polynomial 

degree 2 kernel

𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗 + 1
2



Learning Nonlinear SVM

• Advantages of using kernel:

• Don’t have to know the mapping function 

• Computing dot product  𝑥𝑖 ⋅ (𝑥𝑗) in the original space avoids curse of 

dimensionality

• Not all functions can be kernels

• Must make sure there is a corresponding  in some high-dimensional space

• Mercer’s theorem (see textbook)



LOGISTIC REGRESSION



Classification via regression

• Instead of predicting the class of a record we want to predict the 

probability of the class given the record

• Transform the classification problem into a regression problem.

• But how do you define the probability that you want to predict?



Linear regression

• A simple approach: use linear regression to learn a linear function that 
predicts 0/1 values
• Not good: It may produce negative probabilities, or probabilities that are greater 

than 1.

• Also the probabilities it produces are not what we want. We want probability close 
to zero for small values, and close to 1 for large, and a transition from 0 to 1 around 
the value 20



The logistic function

𝛽 controls the slope

𝑎 controls the position of the turning point

𝑓 𝑥 =
1

1 + 𝑒−𝑎−𝛽𝑥



Logistic Regression
𝑓 𝑥 =

1

1 + 𝑒−𝑥

𝑃 𝐶+ 𝑥 =
1

1 + 𝑒−𝛽𝑥−𝑎

𝑃 𝐶− 𝑥 =
𝑒−𝛽𝑥−𝑎

1 + 𝑒−𝛽𝑥−𝑎

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝛽𝑥 + 𝑎

Logistic Regression: Find the values 

𝛽, 𝛼 that maximize the probability of 

the observed data

Class Probabilities

Linear regression on the log-odds ratio



Logistic Regression in one dimension



Logistic Regression in one dimension



Class probabilities for multiple dimensions

• Assume a linear classification boundary

𝑤 ⋅ 𝑥 = 0

𝑤 ⋅ 𝑥 > 0

𝑤 ⋅ 𝑥 < 0

For the positive class the bigger the value 

of 𝑤 ⋅ 𝑥, the further the point is from the 

classification boundary, the higher our 

certainty for the membership to the positive 

class

• Define 𝑃(𝐶+|𝑥) as an increasing function 

of 𝑤 ⋅ 𝑥

For the negative class the smaller the 

value of 𝑤 ⋅ 𝑥, the further the point is from 

the classification boundary, the higher our 

certainty for the membership to the 

negative class

• Define 𝑃(𝐶−|𝑥) as a decreasing function 

of 𝑤 ⋅ 𝑥



Logistic Regression 𝑓 𝑡 =
1

1 + 𝑒−𝑡

𝑃 𝐶+ 𝑥 =
1

1 + 𝑒−𝑤⋅𝑥−𝑎

𝑃 𝐶− 𝑥 =
𝑒−𝑤⋅𝑥−𝑎

1 + 𝑒−𝑤⋅𝑥−𝑎

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝑤 ⋅ 𝑥 + 𝑎

Logistic Regression: Find the 

vector 𝑤, 𝑎 that maximizes the 

probability of the observed data

Class probabilities

Linear regression on the log-odds ratio



Logistic regression in 2-d

Coefficients

𝛽1 = −1.9
𝛽2 = −0.4
𝛼 = 13.04



Estimating the coefficients

• Maximum Likelihood Estimation:

• We have pairs of the form (𝑥𝑖 , 𝑦𝑖)

• Log Likelihood function 

𝐿 𝑤 = ෍

𝑖

𝑦𝑖 log 𝑃 𝑦𝑖 𝑥𝑖 , 𝑤 + 1 − 𝑦𝑖 log(1 − 𝑃 𝑦𝑖 𝑥𝑖 , 𝑤 )

• Unfortunately, it does not have a closed form solution

• Use gradient descend to find local minimum



Logistic Regression

• Produces a probability estimate for the class membership which is 

often very useful.

• The weights can be useful for understanding the feature 

importance.

• Works for relatively large datasets

• Fast to apply.



NAÏVE BAYES CLASSIFIER



Bayes Classifier

• A probabilistic framework for solving classification problems

• A, C random variables

• Joint probability: Pr(A=a,C=c)

• Conditional probability: Pr(C=c | A=a)

• Relationship between joint and conditional probability distributions

Pr 𝐶, 𝐴 = Pr 𝐶 𝐴 𝑃 𝐴 = 𝑃 𝐴 𝐶 𝑃(𝐶)

• Bayes Theorem:

𝑃 𝐶 𝐴 =
𝑃 𝐴 𝐶 𝑃(𝐶)

𝑃(𝐴)



Bayesian Classifiers

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Find the class with the highest 

probability given the vector values.

Maximum Aposteriori Probability 

estimate:

• Find the value c for class C that 

maximizes P(C=c| X)

• How do we estimate P(C|X) for the 

different values of C?

• We want to estimate 

• P(C=Yes| X)

• P(C=No| X)



Bayesian Classifiers
• In order for probabilities to be well defined:

• Consider each attribute and the class label as random variables

• Probabilities are determined from the data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Evade C 

Event space: {Yes, No}

𝑃(𝐶) = (0.3, 0.7)

Refund A1

Event space: {Yes, No}

𝑃(𝐴1) = (0.3,0.7)

Martial Status A2

Event space: {Single, Married, Divorced}

𝑃(𝐴2) = (0.4,0.4,0.2)

Taxable Income A3

Event space: R

𝑃(𝐴3) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎2

𝜇 = 104:sample mean, 2 = 1874:sample variance



Bayesian Classifiers

• Approach:

• compute the posterior probability 𝑃(𝐶 | 𝐴1, 𝐴2, … , 𝐴𝑛) using the Bayes theorem

𝑃 𝐶 𝐴1, 𝐴2, … , 𝐴𝑛 =
𝑃 𝐴1, 𝐴2, … , 𝐴𝑛 𝐶 𝑃(𝐶)

𝑃(𝐴1, 𝐴2, … , 𝐴𝑛)

• Maximizing
𝑃(𝐶 | 𝐴1, 𝐴2, … , 𝐴𝑛)

is equivalent to maximizing
𝑃(𝐴1, 𝐴2, … , 𝐴𝑛|𝐶) 𝑃(𝐶)

• The value 𝑃(𝐴1, … , 𝐴𝑛) is the same for all values of 𝐶.

• How do we estimate 𝑃(𝐴1, 𝐴2, … , 𝐴𝑛|𝐶 )?



Naïve Bayes Classifier

• Assume conditional independence among attributes 𝐴𝑖 when class C is given:    

• 𝑃(𝐴1, 𝐴2, … , 𝐴𝑛|𝐶) = 𝑃(𝐴1|𝐶) 𝑃(𝐴2 𝐶 ⋯𝑃(𝐴𝑛|𝐶)

• We can estimate 𝑃(𝐴𝑖| 𝐶) from the data.

• New point 𝑋 = (𝐴1 = 𝛼1, … , 𝐴𝑛 = 𝛼𝑛) is classified to class c if 

𝑃 𝐶 = 𝑐 𝑋 = 𝑃 𝐶 = 𝑐 ς𝑖 𝑃(𝐴𝑖 = 𝛼𝑖|𝑐)

is maximum over all possible values of C.



Example

• Record 
X = (Refund = Yes, Status = Single, Income =80K)

• For the class C :‘Evade’, we want to compute: 
P(C = Yes|X) and P(C = No| X)

• We compute:
• P(C = Yes|X) = P(C = Yes)*P(Refund = Yes |C = Yes)

*P(Status = Single |C = Yes)

*P(Income =80K |C= Yes)

• P(C = No|X) = P(C = No)*P(Refund = Yes |C = No)

*P(Status = Single |C = No)

*P(Income =80K |C= No)



How to Estimate Probabilities from Data?

Class Prior Probability:  

𝑃 𝐶 = 𝑐 =
𝑁𝑐

𝑁

𝑁𝑐: Number of records with 
class c

𝑁 = Number of records

P(C = No) = 7/10 

P(C = Yes) = 3/10

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

cate
goric

al

cate
goric

al

contin
uous

cla
ss



How to Estimate Probabilities from Data?

Discrete attributes:

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎,𝑐
𝑁𝑐

𝑁𝑎,𝑐: number of instances 
having attribute 𝐴𝑖 = 𝑎 and 
belong to class 𝑐

𝑁𝑐: number of instances of 
class 𝑐

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

Discrete attributes:

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎,𝑐
𝑁𝑐

𝑁𝑎,𝑐: number of instances 
having attribute 𝐴𝑖 = 𝑎 and 
belong to class 𝑐

𝑁𝑐: number of instances of 
class 𝑐

P(Refund = Yes|No) = 3/7

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

Discrete attributes:

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎,𝑐
𝑁𝑐

𝑁𝑎,𝑐: number of instances 
having attribute 𝐴𝑖 = 𝑎 and 
belong to class 𝑐

𝑁𝑐: number of instances of 
class 𝑐

P(Refund = Yes|Yes) = 0

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

Discrete attributes:

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎,𝑐
𝑁𝑐

𝑁𝑎,𝑐: number of instances 
having attribute 𝐴𝑖 = 𝑎 and 
belong to class 𝑐

𝑁𝑐: number of instances of 
class 𝑐

P(Status=Single|No) = 2/7

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

Discrete attributes:

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎,𝑐
𝑁𝑐

𝑁𝑎,𝑐: number of instances 
having attribute 𝐴𝑖 = 𝑎 and 
belong to class 𝑐

𝑁𝑐: number of instances of 
class 𝑐

P(Status=Single|Yes) = 2/3

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

Numerical Attributes:

• Assume a normal distribution for 

each(𝐴𝑖 , 𝑐𝑗)pair

• For Class=Yes and attribute Income

• sample mean 𝜇 = 90

• sample variance 𝜎2 = 25

• For Income = 80

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

Numerical Attributes:

• Assume a normal distribution for 

each(𝐴𝑖 , 𝑐𝑗)pair

• For Class=No and attribute Income

• sample mean 𝜇 = 110

• sample variance 𝜎2 = 2975

• For Income = 80

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example

• Record 
X = (Refund = Yes, Status = Single, Income =80K)

• We compute:
• P(C = Yes|X) = P(C = Yes)*P(Refund = Yes |C = Yes)

*P(Status = Single |C = Yes)

*P(Income =80K |C= Yes)

= 3/10* 0 * 2/3 * 0.01 = 0

• P(C = No|X) = P(C = No)*P(Refund = Yes |C = No)

*P(Status = Single |C = No)

*P(Income =80K |C= No)

= 7/10 * 3/7 * 2/7 * 0.0062 = 0.0005



Example of Naïve Bayes Classifier

• Creating a Naïve Bayes Classifier, essentially means to compute 

counts:

Total number of records: N = 10

Class No:

Number of records: 7

Attribute Refund: 

Yes: 3 

No:  4

Attribute Marital Status:

Single:     2

Divorced: 1

Married:   4

Attribute Income:

mean:     110

variance: 2975

Class Yes:

Number of records: 3

Attribute Refund: 

Yes: 0 

No:  3

Attribute Marital Status:

Single:     2

Divorced: 1

Married:   0

Attribute Income:

mean:     90

variance: 25

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:
If class=No:   sample mean=110

sample variance=2975
If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:



Example of Naïve Bayes Classifier

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:
If class=No:   sample mean=110

sample variance=2975
If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

P(X|Class=No) = P(Refund=Yes|Class=No)

 P(Married| Class=No)

 P(Income=120K| Class=No)

= 3/7 * 2/7 * 0.0062 = 0.00075

P(X|Class=Yes) = P(Refund=No| Class=Yes)

 P(Married| Class=Yes)

 P(Income=120K| Class=Yes)

= 0 * 2/3 * 0.01 = 0

• P(No) = 0.3, P(Yes) = 0.7

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No

Given a Test Record:

X = (Refund = Yes, Status = Single, Income =80K)



Naïve Bayes Classifier

• If one of the conditional probabilities is zero, then the entire 

expression becomes zero

• Laplace Smoothing:

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎𝑐 + 1

𝑁𝑐 + 𝑁𝑖

• 𝑁𝑖: number of attribute values for attribute 𝐴𝑖



Example of Naïve Bayes Classifier

• Creating a Naïve Bayes Classifier, essentially means to compute 

counts:

Total number of records: N = 10

Class No:

Number of records: 7

Attribute Refund: 

Yes: 3 

No:  4

Attribute Marital Status:

Single:     2

Divorced: 1

Married:   4

Attribute Income:

mean:     110

variance: 2975

Class Yes:

Number of records: 3

Attribute Refund: 

Yes: 0 

No:  3

Attribute Marital Status:

Single:     2

Divorced: 1

Married:   0

Attribute Income:

mean:     90

variance: 25

With Laplace Smoothing

P(Refund=Yes|No) = 4/9
P(Refund=No|No) = 5/9
P(Refund=Yes|Yes) = 1/5
P(Refund=No|Yes) = 4/5

P(Marital Status=Single|No) = 3/10
P(Marital Status=Divorced|No)=2/10
P(Marital Status=Married|No) = 5/10
P(Marital Status=Single|Yes) = 3/6
P(Marital Status=Divorced|Yes)=2/6
P(Marital Status=Married|Yes) = 1/6

For taxable income:
If class=No:   sample mean=110

sample variance=2975
If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:



Example of Naïve Bayes Classifier

P(Refund=Yes|No) = 4/9
P(Refund=No|No) = 5/9
P(Refund=Yes|Yes) = 1/5
P(Refund=No|Yes) = 4/5

P(Marital Status=Single|No) = 3/10
P(Marital Status=Divorced|No)=2/10
P(Marital Status=Married|No) = 5/10
P(Marital Status=Single|Yes) = 3/6
P(Marital Status=Divorced|Yes)=2/6
P(Marital Status=Married|Yes) = 1/6

For taxable income:
If class=No:   sample mean=110

sample variance=2975
If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

P(X|Class=No) = P(Refund=No|Class=No)

 P(Married| Class=No)

 P(Income=120K| Class=No)

= 4/9  3/10  0.0062 = 0.00082

P(X|Class=Yes) = P(Refund=No| Class=Yes)

 P(Married| Class=Yes)

 P(Income=120K| Class=Yes)

= 1/5  3/6  0.01 = 0.001

• P(No) = 0.7, P(Yes) = 0.3

• P(X|No)P(No) = 0.0005 

• P(X|Yes)P(Yes) = 0.0003

=> Class = No

Given a Test Record: With Laplace Smoothing

X = (Refund = Yes, Status = Single, Income =80K)



Implementation details

• Computing the conditional probabilities involves multiplication of 

many very small numbers 

• Numbers get very close to zero, and there is a danger of numeric instability

• We can deal with this by computing the logarithm of the conditional 

probability

log 𝑃 𝐶 𝐴 ~ log 𝑃 𝐴 𝐶 + log 𝑃 𝐶

=෍

𝑖

log 𝑃 𝐴𝑖 𝐶 + log 𝑃(𝐶)



Naïve Bayes for Text Classification

• Naïve Bayes is commonly used for text classification

• For a document with k terms 𝑑 = (𝑡1, … , 𝑡𝑘)

𝑃 𝑐 𝑑 = 𝑃 𝑐 𝑃(𝑑|𝑐) = 𝑃(𝑐)ෑ

𝑡𝑖∈𝑑

𝑃(𝑡𝑖|𝑐)

• 𝑃 𝑡𝑖 𝑐 = Fraction of terms from all documents in c that are 𝑡𝑖.

𝑷 𝒕𝒊 𝒄 =
𝑵𝒊𝒄 + 𝟏

𝑵𝒄 + 𝑻

• Easy to implement and works relatively well

• Limitation: Hard to incorporate additional features (beyond words).
• E.g., number of adjectives used.

Number of times 𝑡𝑖
appears in all 

documents in c

Total number of terms in all documents in c

Number of unique words

(vocabulary size)

Laplace Smoothing

Fraction of 

documents in c



Multinomial document model

• Probability of document 𝑑 = 𝑡1, … , 𝑡𝑘 in class c:

𝑃(𝑑|𝑐) = 𝑃(𝑐)ෑ

𝑡𝑖∈𝑑

𝑃(𝑡𝑖|𝑐)

• This formula assumes a multinomial distribution for the document 
generation:
• If we have probabilities 𝑝1, … , 𝑝𝑇 for events 𝑡1, … , 𝑡𝑇 the probability of a subset of 

these is

𝑃 𝑑 =
𝑁

𝑁𝑡1! 𝑁𝑡2!⋯𝑁𝑡𝑇!
𝑝1
𝑁𝑡1𝑝2

𝑁𝑡2 ⋯𝑝𝑇
𝑁𝑡𝑇

• Equivalently: There is an automaton spitting words from the above 
distribution

w





Example

“Obama meets Merkel”

“Obama elected again”

“Merkel visits Greece again”

“OSFP European basketball champion”

“Miami NBA basketball champion”

“Greece basketball coach?”

News titles for Politics and Sports

Politics Sports

documents

P(p) = 0.5 P(s) = 0.5

obama:2, meets:1, merkel:2, 

elected:1, again:2, visits:1, 

greece:1

OSFP:1, european:1, basketball:3, 

champion:2, miami:1, nba:1, 

greece:1, coach:1

terms

Total terms: 10 Total terms: 11

New title: X = “Obama likes basketball”

Vocabulary 

size: 14

P(Politics|X) ~ P(p)*P(obama|p)*P(likes|p)*P(basketball|p)

= 0.5 * 3/(10+14) *1/(10+14) * 1/(10+14) = 0.000108

P(Sports|X) ~ P(s)*P(obama|s)*P(likes|s)*P(basketball|s)

= 0.5 * 1/(11+14) *1/(11+14) * 4/(11+14) = 0.000128 



Naïve Bayes (Summary)

• Robust to isolated noise points

• Handle missing values by ignoring the instance during probability 
estimate calculations

• Robust to irrelevant attributes

• Independence assumption may not hold for some attributes
• Use other techniques such as Bayesian Belief Networks (BBN)

• Naïve Bayes can produce a probability estimate, but it is usually a very 
biased one
• Logistic Regression is better for obtaining probabilities.



Generative vs Discriminative models

• Naïve Bayes is a type of a generative model
• Generative process: 

• First pick the category of the record

• Then given the category, generate the attribute values from the distribution of the 
category

• Conditional independence given C

• We use the training data to learn the distributions most likely to 
have generated the data

C

𝐴1 𝐴2 𝐴𝑛



Generative vs Discriminative models

• Logistic Regression and SVM are discriminative models

• The goal is to find the boundary that discriminates between the two classes 

from the training data

• In order to classify the language of a document, you can 

• Either learn the two languages and find which is more likely to have 

generated the words you see

• Or learn what differentiates the two languages.


