DATA MINING DATA EXPLORATION AND STATISTICS

Exploratory analysis of data – basic statistics

Exploratory analysis of data – What does my data look like?

- Summary statistics: numbers that summarize properties of the data
- Summarized properties include frequency, location and spread
 - Examples: location mean spread - standard deviation
- Most summary statistics can be calculated in a single pass through the data
- Computing data statistics is one of the first steps in understanding our data

Frequency and Mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set
 - For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.
- The mode of an attribute is the most frequent attribute value
- The notions of frequency and mode are typically used with categorical data
- We can visualize the data frequencies using a value histogram
- Frequency and frequency histogram are the empirical analogue of probability and probability distribution

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married 120K		No
5	No	Divorced 10000K		Yes
6	No	NULL	60K	No
7	Yes	Divorced 220K		NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Marital Status

Single	Married	Divorced	NULL
4	3	2	1

Mode: Single

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single 125K		No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married 120K		No	
5	No	Divorced	Divorced 10000K		
6	No	NULL	60K	No	
7	Yes	Divorced 220K		NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
10	No	Single	90K	No	

Marital Status

Single	Married	Divorced	NULL
40%	30%	20%	10%

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married 90K		No
10	No	Single	90K	No

We can choose to ignore NULL values

Marital Status

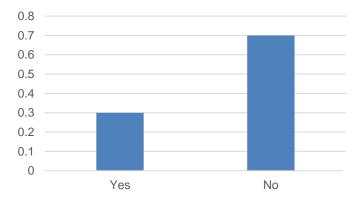
Single	Married	Divorced
44%	33%	22%

Data histograms

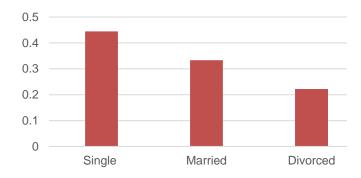
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

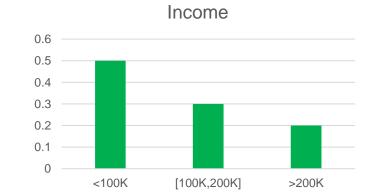
Use binning for numerical values

Refund



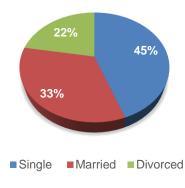
Marital Status



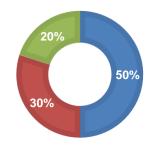


REFUND

Marital Status



INCOME <100K •[100K,200K] •>200K



Percentiles

• For continuous data, the notion of a percentile is more useful.

Given an ordinal or continuous attribute x and a number p between 0 and 100, the pth percentile is a value x_p of x such that p% of the observed values of x are less or equal than x_p .

• For instance, the 80th percentile is the value $x_{80\%}$ that is greater or equal than 80% of all the values of x we have in our data.

 The percentiles are the empirical analogue of the cumulative probability function

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced 10000		Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Taxable Income 10000K 220K 125K 120K 100K 90K 90K 85K 70K 60K

 $x_{80\%} = 125 K$

Measures of Location: Mean and Median

 The mean is the most common measure of the location of a set of points.

$$\operatorname{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

- However, the mean is very sensitive to outliers.
- Thus, the median is also commonly used.

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1\\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

 Or the trimmed mean: the mean after removing min and max values

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes]
6	No	NULL	60K	No	
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
10	No	Single	90K	No	

Measures of Spread: Range and Variance

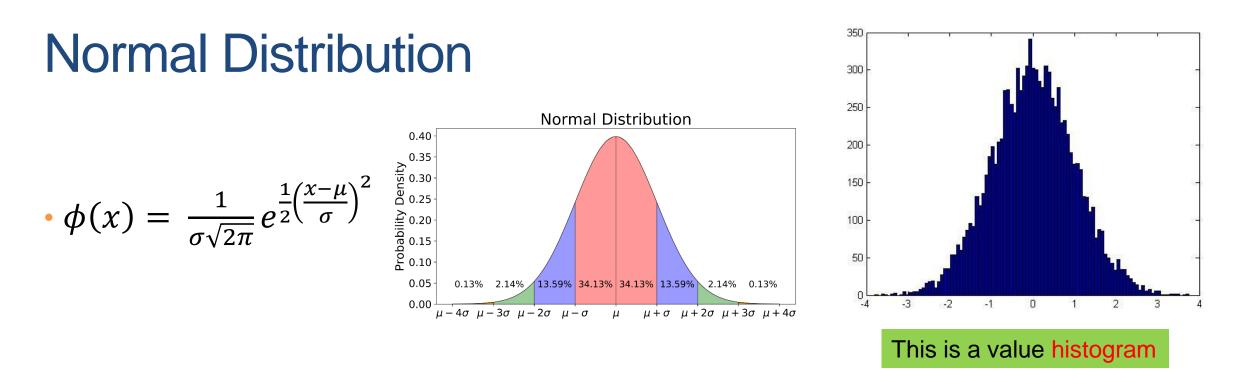
- Range is the difference between the max and min
- The variance or standard deviation is the most common measure of the spread of a set of points.

$$var(x) = \frac{1}{m-1} \sum_{i=1}^{m} (x - \bar{x})^2$$

$$\sigma(x) = \sqrt{var(x)}$$

m or m - 1?

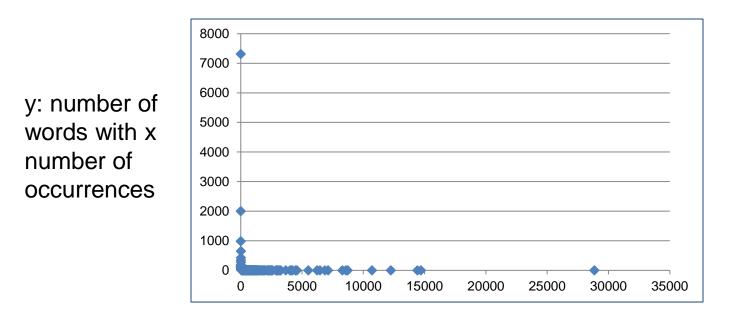
When computing the sample variance m-1 is used For large data it does not make much difference



- An important distribution that characterizes many quantities and has a central role in probabilities and statistics.
- Appears also in the central limit theorem: the distribution of the sum of IID random variables.
- Fully characterized by the mean μ and standard deviation σ

Not everything is normally distributed

Plot of number of words with x number of occurrences



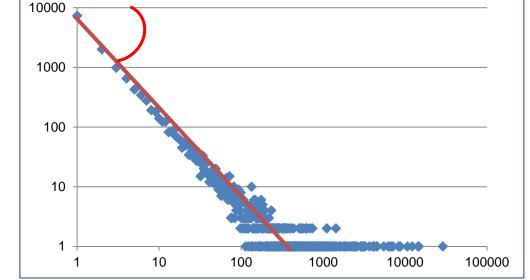
x: number of occurrences

 If this was a normal distribution we would not have number of occurrences as large as 28K

Power-law distribution

• We can understand the distribution of words if we take the log-log plot

y: logarithm of number of words with x number of occurrences



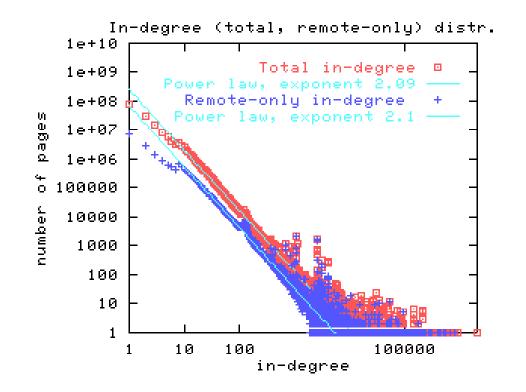
x: logarithm of number of occurrences

Linear relationship in the log-log space $\log p(x = k) = -a \log k$ Power-law distribution: $p(k) = k^{-a}$

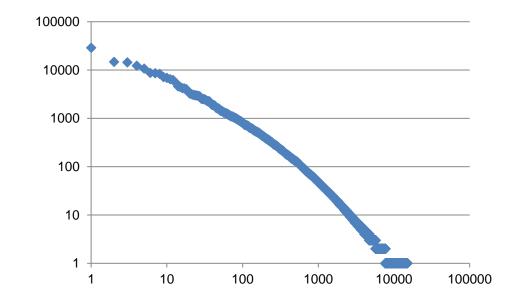
The slope of the line gives us the exponent α

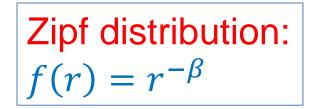
Power-laws are everywhere

- Incoming and outgoing links of web pages, number of friends in social networks, number of occurrences of words, file sizes, city sizes, income distribution, popularity of products and movies
 - Signature of human activity?
 - A mechanism that explains everything?
 - Rich get richer process
- Related distribution: log-normal
 - Taking the log of the values gives a normal distribution



 Power laws can be detected also by a linear relationship in the log-log space for the rank-frequency plot





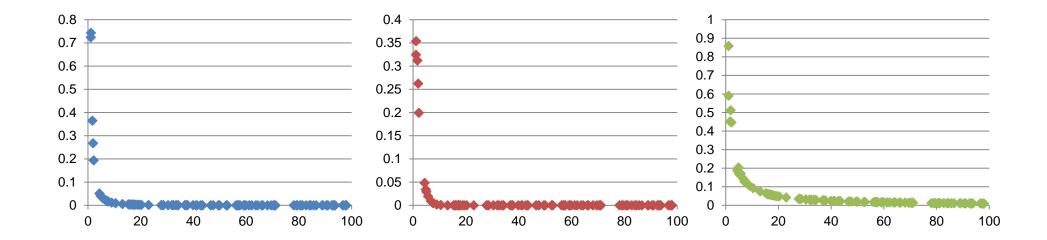
y: number of occurrences of the r-th most frequent word

r: rank of word according to frequency (1st, 2nd ...)

• f(r): Frequency of the r-th most frequent word $\log f(r) = -\beta \log r$

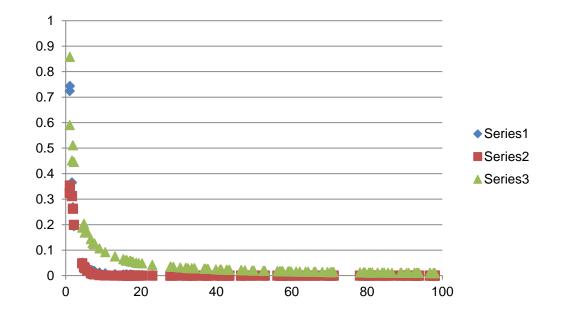
The importance of correct representation

 Consider the following three plots which are histograms of values. What do you observe? What can you tell of the underlying function?



The importance of correct representation

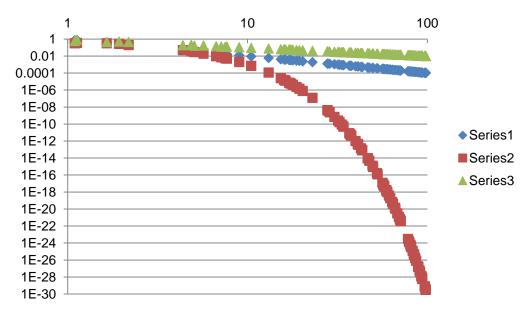
• Putting all three plots together makes it clearer to see the differences



• Green falls more slowly. Blue and Red seem more or less the same

The importance of correct representation

Making the plot in log-log space makes the differences more clear



Linear relationship in log-log means polynomial in linear-linear The slope in the log-log is the exponent of the polynomial

Exponential relationship remains exponential in log-log

Green and Blue form straight lines. Red drops exponentially.

• $y = \frac{1}{2x+\epsilon}$ • $y = \frac{1}{x^2+\epsilon}$ • $y = 2^{-x} + \epsilon$ $\log y \approx -\log x + c$ $\log y \approx -2\log x + c$ $\log y \approx -x + c = -10^{\log x} + c$

Attribute relationships

- In many cases it is interesting to look at two attributes together to understand if they are correlated
 - E.g., how does your marital status relate with tax cheating?
 - E.g., Does refund correlate with average income?
 - Is there a relationship between years of study and income?
- How do we visualize these relationships?

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Confusion or Contingency Matrix

	No	Yes
Single	2	1
Married	4	0
Divorced	2	1

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Confusion Matrix

	No	Yes
Single	2	1
Married	4	0
Divorced	2	1

Joint Distribution Matrix

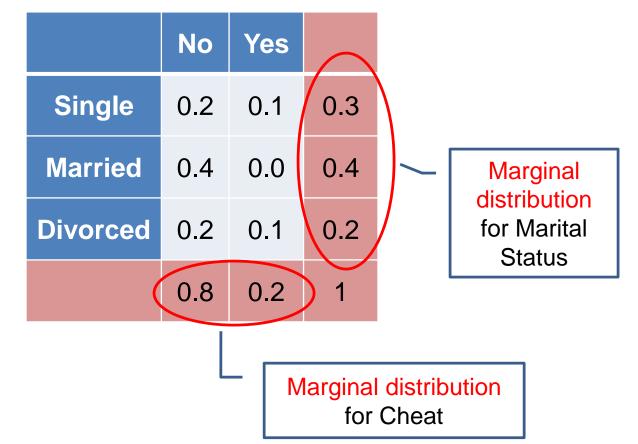
	No	Yes	
Single	0.2	0.1	
Married	0.4	0.0	
Divorced	0.2	0.1	

	No	Yes
Single	0.2	0.1
Married	0.4	0.0
Divorced	0.2	0.1

It can also be represented as a heatmap

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Joint Distribution Matrix



Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

How do we know if there are interesting correlations?

Joint Distribution Matrix P

	No	Yes	
Single	0.2	0.1	0.3
Married	0.4	0.0	0.4
Divorced	0.2	0.1	0.2
	0.8	0.2	1

Independence Matrix E

	No	Yes				No	Yes	
Single	0.2	0.1	0.3		Single	0.24	0.06	0.3
Married	0.4	0.0	0.4		Married	0.32	0.08	0.4
Divorced	0.2	0.1	0.2		Divorced	0.16	0.04	0.2
	0.8	0.2	1			0.8	0.2	1
Compare the values P_{xy} with E_{xy} The product of the two marginal values 0.2° To 0.2°								

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Joint Distribution Matrix P

	No	Yes	
Single	0.2	0.1	0.3
Married	0.4	0.0	0.4
Divorced	0.2	0.1	0.2
	0.8	0.2	1

Independence Matrix E

	No	Yes	
Single	0.24	0.06	0.3
Married	0.32	0.08	0.4
Divorced	0.16	0.04	0.2
	0.8	0.2	1

We can compare specific pairs of values:

- If P(x, y) > E(x, y) there is positive correlation (e.g, Married, No)
- If P(x, y) < E(x, y) there is negative correlation (e.g., Single, No)
- Otherwise there is no correlation

The quantity $\frac{P(x,y)}{E(x,y)} = \frac{P(x,y)}{P(x)P(y)}$ is called Lift, or Pointwise Mutual Information

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Joint Distribution Matrix P

	No	Yes	
Single	0.2	0.1	0.3
Married	0.4	0.0	0.4
Divorced	0.2	0.1	0.2
	0.8	0.2	1

Independence Matrix E

	No	Yes	
Single	0.24	0.06	0.3
Married	0.32	0.08	0.4
Divorced	0.16	0.04	0.2
	0.8	0.2	1

Or compare the two attributes: Pearson x^2 Independence Test Statistic:

$$U = N \sum_{x} \sum_{y} \frac{\left(P_{xy} - E_{xy}\right)^2}{E_{xy}}$$

Hypothesis testing

- How important is the statistic value *U* that we computed?
- Formulate a null hypothesis H_0 :
 - H_0 = the two attributes are independent
- Compute the distribution of the statistic U in the case that H_0 is true
 - In this case we can show that the statistic U follows a χ^2 distribution
- For the statistic value $U = \theta$ we observe in our data, compute the probability $P(U \ge \theta)$ under the null hypothesis
 - For most distributions there are tables that give these numbers for our data
- This is the p-value of our experiment:

The p-value is the probability under H_0 (independence) of observing a value of the test statistic the same as, or more extreme than the one that was actually observed

- We want it to be small (ideally ≤ 0.01 , ≤ 0.05 is good , ≤ 0.1 is ok)
 - This means that the observed value is interesting

Hypothesis Testing and P-values – A simple example

- A coin is tossed 20 times, and we get 16 heads.
- Hypothesis H_1 ="The coin is not fair"
- Null Hypothesis H_0 = "The coin is fair" (probability 50% for head)
- p-value: What is the probability of getting a number of heads that is the same or more extreme than 16?
 - One-sided p-value: $Pr(H \ge 16) = 0.0059$
 - Two-sided p-value: $Pr(H \ge 16) + Pr(H \le 4) = 0.0118$
- With significance level $\alpha = 0.05$ we can conclude that we can reject the null hypothesis

P-values

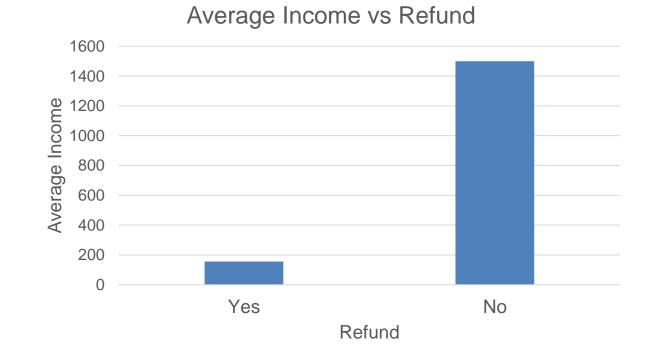
- The p-value tells us the probability that the value we observe could appear in data generated under the null hypothesis.
 - The null hypothesis proposes a (random) model for the data generation
 - The p-value answers the question: "If the null hypothesis model was correct how unlikely would it be to observe the value we observe"?

• Be careful!

- A p-value ϕ does not mean that the null hypothesis is correct with probability ϕ
 - A high p-value (e.g., 90%) does not mean that the null hypothesis is true, it only means that the data is consistent with the model of the null hypothesis
- A p-value ϕ does not mean that our hypothesis is correct with probability 1ϕ
 - A p-value of 3% does not mean that our hypothesis is correct with probability 97%
 - It only means that the data is not consistent with the null hypothesis random model

Categorical and numerical attributes

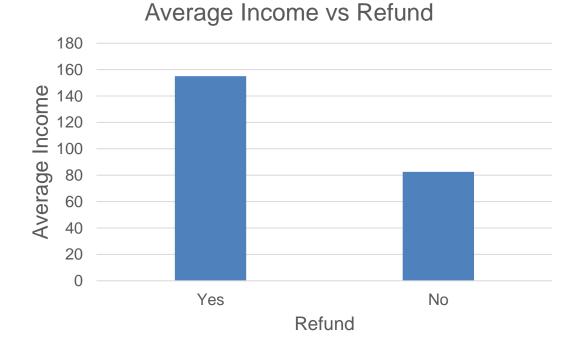
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No



Categorical and numerical attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

After removing the outlier value

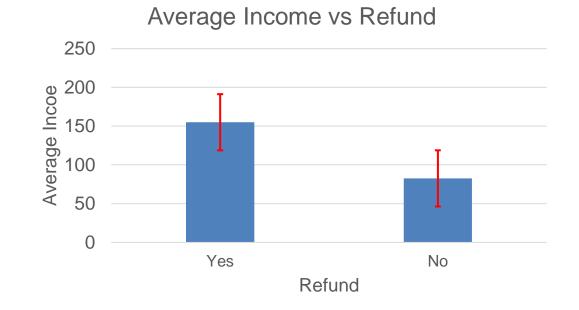


How informative are the means?

Categorical and numerical attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Compute error bars



Error bars give a measure of the variability of the mean

Error bars

- Error bars may be:
 - The range
 - The standard deviation
 - The standard error
 - The 95% confidence interval

Descriptive error bars: They tell us something about the underlying distribution of the data

Inferential error bars: They tell us something about the quality of the estimation of the mean

- Inferential error bars get more informative the more data we collect.
- We should always specify what the error bars mean in a plot.

Standard Error (of the Mean)

- The Standard Error (SE) is usually defined for the mean of a sample of values X (it is also known as SEM – Standard Error of the Mean)
- It is defined as:

$$se = \frac{\hat{\sigma}(X)}{\sqrt{n}}$$

where $\hat{\sigma}(X)$ = empirical standard deviation.

- As the sample size grows the SE is reduced (we have a better estimation of the mean)
- Computation follows from the fact that

$$se = \hat{\sigma}(\hat{\mu}), \hat{\mu} = \frac{1}{n} \sum_{i} X_{i}$$

• We assume that *X_i* are independent samples of the random variable *X* that come from the same distribution. We use the fact that:

$$Var(\sum_{i} \alpha_{i} X_{i}) = \sum_{i} \alpha_{i}^{2} Var(X_{i})$$

Confidence interval

- We want to estimate the average income μ which is a fixed value.
- We have a sample of the population and the measurements $\{X_i\}$ of incomes and we estimate the average income as:

$$\hat{u} = \frac{1}{n} \sum_{i} X_i$$

• The *p*-confidence interval of the value μ is an interval of values C_n such that

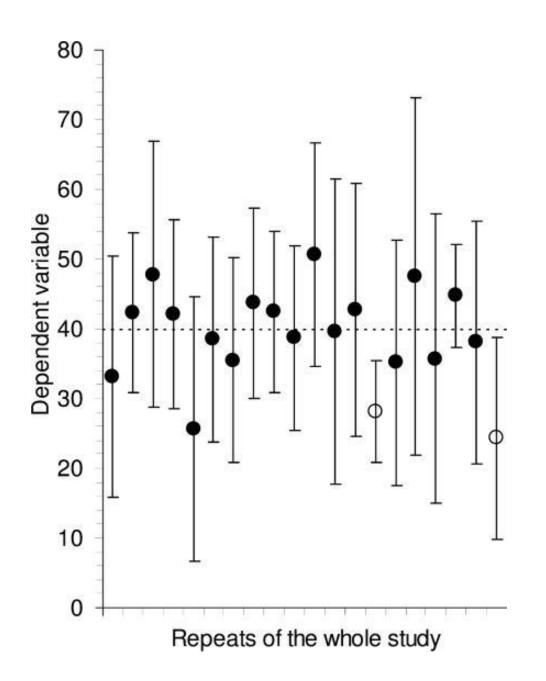
 $P(\mu \in C_n) \ge p$

- We usually ask for the 95% confidence interval
- Important: The probability is taken over the many different samples of the population
 - Different samples will generate different confidence intervals
 - There is a 95% chance that each of these intervals contains the true mean μ
 - It is incorrect to say that this is the probability that μ belongs to the interval
- The value $\hat{\mu}$ follows a normal distribution for large *n*. For normal distributions the 95% confidence interval (for large enough *n*) is:

 $(\hat{\mu} - 2se, \hat{\mu} + 2se)$

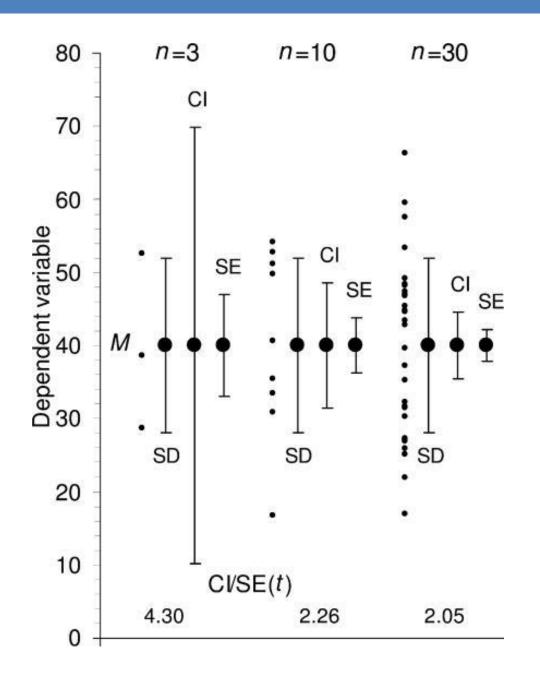
Example

- If we obtain an estimate of the mean for 20 different population samples, we will obtain 20 different 95%confidence intervals.
- We expect that 1/20 of these intervals will not contain the true mean (the dotted line)



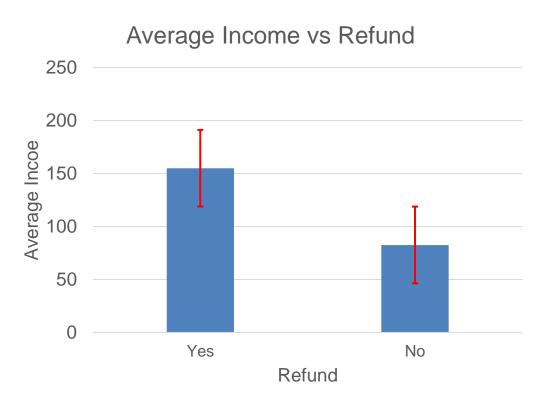
Error bars example

- The different error bars and how they change as the sample size increases
- Out of the four different error bars, the confidence interval is probably the most informative.



Statistical significance

- Given the means of two populations an important question is whether the difference we observe is statistically significant
- Statistical significance is estimated by computing a p-value with respect to a null hypothesis
- The value is compared to a significance level *α* which is usually set to 0.05 (or 0.01)



Statistical significance via error bar overlap

- It is not always safe to declare that there is statistical significance when error bars do not overlap
 - We may have statistically significant differences when there is overlap, or no statistical significance when there is no overlap
- We can say that there is statistically significant difference of means when sample sizes are comparable and the 95%-confidence intervals do not overlap
- There are a little more complex rules for the standard error.

Statistical tests

- Statistical tests measure specific values and determine their statistical significance
 - For example measure the importance of the difference between the means (e.g., average grade) of two populations (e.g., students in cities vs students in rural areas).
- The magnitude of the value that is measured is also called the effect size
- The statistical significance of this value is measured with respect to a null hypothesis
 - For example: the difference of the means is zero
- The statistical test assumes a random model for the underlying data
 - For example, the data are generated by a Gaussian distribution
- The statistical test produces a p-value for the statistical significance of the values we observe

Statistical tests – The Student t-test

 The Student t-test tests if the difference of the means of two samples is "big enough"

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$$

- Large t-value (effect size):
 - Large difference between the means
 - Small variance in the samples (more accurate measurements)
 - Large sample sizes (more reliable)

Statistical tests – The Student t-test

- The Student t-test produces a p-value: Measures the probability of the null hypothesis that the two distributions have zero difference in mean
 - This is what we care about, the t-value is usually not looked at
- Student t-test assumptions:
 - (near) Gaussian distribution of the data,
 - (near) same variance,
 - similar sample sizes.
- There is paired and unpaired Student t-test
 - Example of paired: behavior before and after a treatment.

Statistical tests – The KS-test

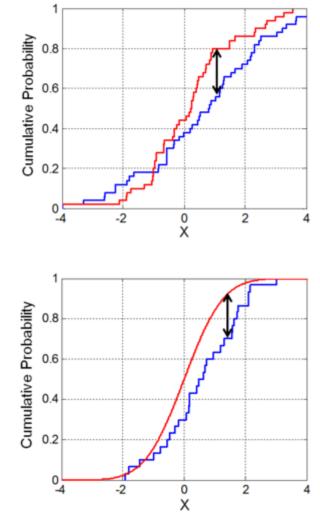
- The Kolomogorov-Smirnov (KS) test, tests if two samples come from the same distribution (or come from a specific distribution)
 - Take the cumulative distribution function (CDF) of the two distributions
 - Compute:

$$D(C_1, C_2) = \max_{x} |C_1(x) - C_2(x)|$$

• We can reject the null hypothesis if:

$$D(C_1, C_2) > c(\alpha) \sqrt{\frac{N_1 + N_2}{N_1 N_2}}$$

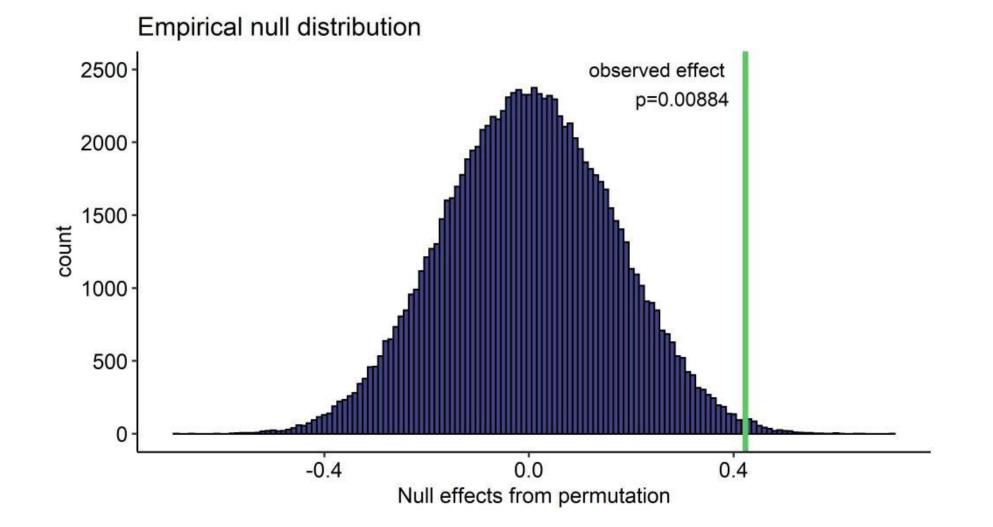
• α is the confidence level, $c(\alpha)$ is given by some tables



Statistical tests – Permutation testing

- Most tests make some assumption about the underlying distribution of the data.
- A non-parametric statistical test is the permutation test
- Create random instances of the data by randomly permuting values
 - E.g., permute the Cheat labels randomly
- Compute a statistic of interest for the permuted data
 - E.g., the average income of the cheaters
- Repeat this several times (at least 1000)
- Compute the empirical p-value: the fraction of permutations where we have a value that is equal or more extreme than the one observed.

Example

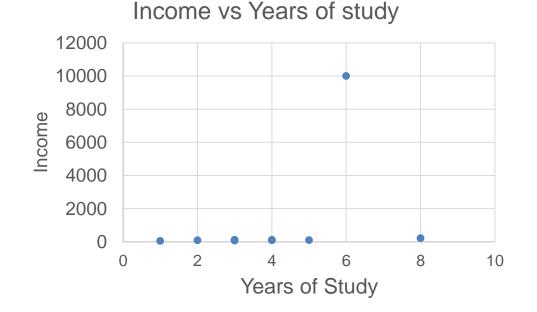


Correlating numerical attributes

Tid	Refund	Marital Status	Taxable Income	Years of Study
1	Yes	Single	125K	4
2	No	Married	100K	5
3	No	Single	70K	3
4	Yes	Married	120K	3
5	No	Divorced	10000K	6
6	No	NULL	60K	1
7	Yes	Divorced	220K	8
8	No	Single	85K	3
9	No	Married	90K	2
10	No	Single	90K	4

Scatter plot:

X axis is one attribute, Y axis is the other For each entry we have two values Plot the entries as two-dimensional points



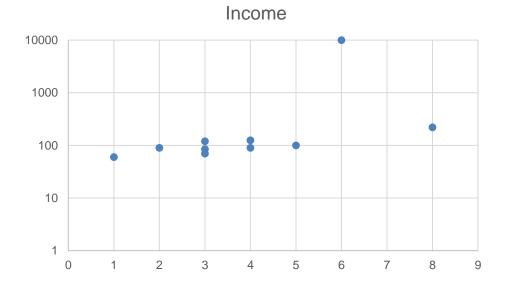
Correlating numerical attributes

Tid	Refund	Marital Status	Taxable Income	Years of Study
1	Yes	Single	125K	4
2	No	Married	100K	5
3	No	Single	70K	3
4	Yes	Married	120K	3
5	No	Divorced	10000K	6
6	No	NULL	60K	1
7	Yes	Divorced	220K	8
8	No	Single	85K	3
9	No	Married	90K	2
10	No	Single	90K	4

Scatter plot:

X axis is one attribute, Y axis is the other For each entry we have two values Plot the entries as two-dimensional points

Log-scale in y-axis makes the plot look a little better



Plotting attributes against each other

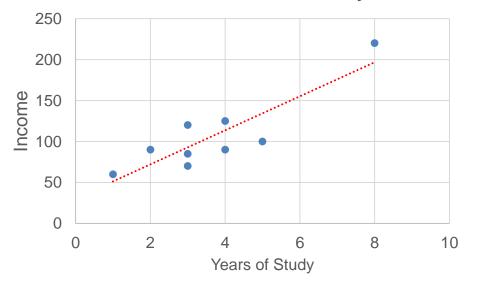
Tid	Refund	Marital Status	Taxable Income	Years of Study
1	Yes	Single	125K	4
2	No	Married	100K	5
3	No	Single	70K	3
4	Yes	Married	120K	3
5	No	Divorced	10000K	6
6	No	NULL	60K	1
7	Yes	Divorced	220K	8
8	No	Single	85K	3
9	No	Married	90K	2
10	No	Single	90K	4

Scatter plot:

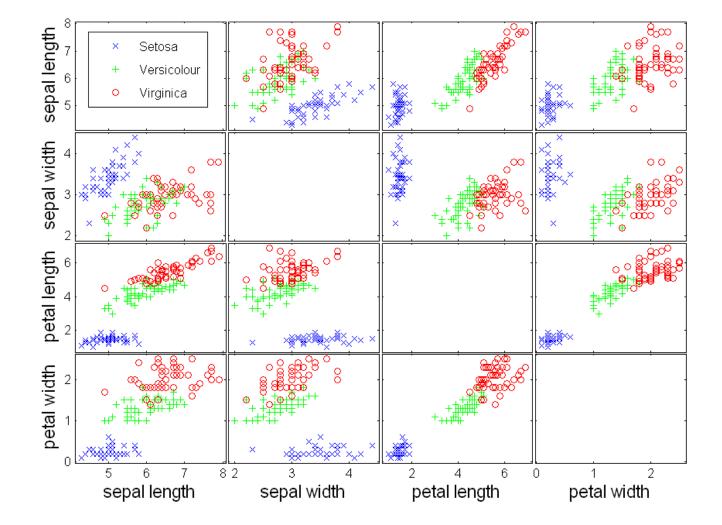
X axis is one attribute, Y axis is the other For each entry we have two values Plot the entries as two-dimensional points

After removing the outlier value there is a clear correlation

Income vs Years of Study



Scatter Plot Array of Iris Attributes



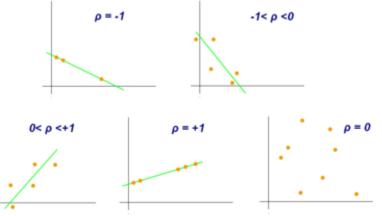
Measuring correlation

Pearson correlation coefficient: measures the extent to which two variables are linearly correlated

•
$$X = \{x_1, \dots, x_n\}$$

• $Y = \{y_1, \dots, y_n\}$
• $corr(X, Y) = \frac{\sum_i (x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_i (x_i - \mu_X)^2} \sqrt{\sum_i (y_i - \mu_Y)^2}}$

- It comes with a p-value
 - The p-value is the probability that the correlation was by chance.



Pearson correlation

- Assumptions:
 - Variables are normally distributed
 - No outliers
 - A linear relationship between the variables
- Caveats
 - For large samples p-values will always be small
 - Except for the p-value we need to also look at the effect size: the value of r = corr(X, Y)
- Interpretation
 - The value of r^2 measures the fraction of variance in one variable that is explained by the values of the other variable (shared variance)

Rank correlation

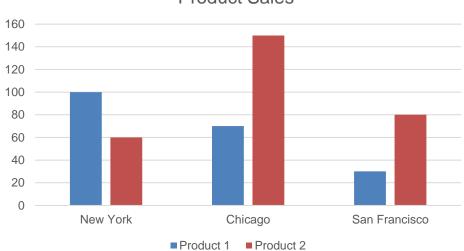
- Spearman rank correlation coefficient: tells us if two variable are rank-correlated
 - They place items in the same order Pearson correlation of the rank vectors
 - For ranking without ties it looks at the differences between the ranks of the same items
- Spearman coefficient also comes with a p-value
- Spearman coefficient does not assume a linear relationship, but a monotonic one

Statistical significance vs Scientific significance

- Statistics place a lot of emphasis on the p-values and the statistical significance
- However, p-values may be small but the finding to not be of scientific interest
 - A difference or a correlation may be statistically significant, but too small to be of scientific interest
 - We need to evaluate the results beyond simply looking at the p-values.
 - We also need to look at the effect size, or the impact of the computed difference.

Plotting attributes together

City	Product 1	Product 2
New York	100	60
Chicago	70	150
San Francisco	30	80



Product Sales

How would you visualize the differences between the product sales per city?

Plotting attributes together

Year	Product 1	Product 2
2011	100	200
2012	200	250
2013	180	300
2014	300	350
2015	500	490
2016	600	500
2017	650	550
2018	640	540
2019	700	500
2020	200	100

How would you visualize the differences between the product sales over time?

