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What is a Clustering?

A grouping of objects such that the objects in a group (cluster) are similar (or 

related) to one another and different from (or unrelated to) the objects in other 

groups (clusters)

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Why Cluster Analysis

• Understanding

• Group related documents for browsing, 

genes and proteins that have similar 

functionality, stocks with similar price 

fluctuations, users with same behavior

• Summarization

• Reduce the size of large data sets

• Applications

• Recommendation systems

• Search Personalization

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

Clustering precipitation 

in Australia



Early applications of cluster analysis

• John Snow, London 1854



Types of Clusterings

• Important distinction between hierarchical and partitional sets of 
clusters 

• Partitional Clustering
• A division data objects into subsets (clusters) such that each data object is in 

exactly one subset

• Hierarchical clustering
• A set of nested clusters organized as a hierarchical tree 



Partitional Clustering

Original Points A Partitional  Clustering



Hierarchical Clustering

Hierarchical Clustering 

𝐶1

𝐶2

𝐶3
𝐶4

𝐶5

𝐶1𝐶2𝐶3𝐶4𝐶5

Hierarchical Clustering dendrogram



Other types of clustering

• Exclusive (or non-overlapping) versus non-exclusive (or 
overlapping)
• In non-exclusive clusterings, points may belong to multiple clusters.

• Points that belong to multiple classes, or ‘border’ points

• Fuzzy (or soft) versus non-fuzzy (or hard)
• In fuzzy clustering, a point belongs to every cluster with some weight 

between 0 and 1
• Weights usually must sum to 1 (often interpreted as probabilities)

• Partial versus complete
• In some cases, we only want to cluster some of the data



Clustering objectives

• Well-Separated Clusters: 
• A cluster is a set of points such that any point in a cluster is closer (or 

more similar) to every other point in the cluster than to any point not in the 
cluster. 

3 well-separated clusters



Clustering objectives

• Center-based Clusters:
• A cluster is a set of objects such that an object in a cluster is closer (more 

similar) to the “center” of a cluster, than to the center of any other cluster  

• The center of a cluster is often a centroid, the minimizer of distances from 
all the points in the cluster, or a medoid, the most “representative” point of 
a cluster 

4 center-based clusters



Clustering objectives

• Contiguous Clusters (Nearest neighbor or Transitive)
• A cluster is a set of points such that a point in a cluster is closer (or more 

similar) to one or more other points in the cluster than to any point not in the 
cluster.

8 contiguous clusters



Clustering Objectives

• Density-based clusters
• A cluster is a dense region of points, which is separated by low-density 

regions, from other regions of high density. 

• Used when the clusters are irregular or intertwined, and when noise and 
outliers are present. 

6 density-based clusters



Clustering objectives

• Shared Property or Conceptual Clusters
• Finds clusters that share some common property or represent a particular 

concept. 

A cluster is defined as a set of points that lie on a circle



Clustering objectives

• Clustering as an optimization problem

• Finds clusters that minimize or maximize an objective function. 

• Consider all possible ways of dividing the points into clusters and compute the 

`goodness' of each clustering using the objective function to find the best one.  

• Usually, finding the best is NP-hard (no polynomial algorithm).

• Can have global or local objectives.

• Hierarchical clustering algorithms typically have local objectives

• Partitional algorithms typically have global objectives

• A variation of the global objective function approach is to fit the data to a 

parameterized (probabilistic) model. 

• The parameters for the model are determined from the data, and they determine the clustering

• E.g., Mixture models assume that the data is a ‘mixture' of a number of statistical distributions.  



Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• DBSCAN



K-MEANS



K-means Clustering

• Partitional clustering approach 

• Each cluster is associated with a centroid (center point) 

• Each point is assigned to the cluster with the closest centroid

• Number of clusters, K, must be specified

• The objective is to:
• find K centroids and 

• the assignment of points to clusters/centroids 

• so as to minimize the sum of distances of the points to their respective 
centroid



K-means Clustering as an optimization problem

• Problem: Given a set 𝑋 of 𝑛 objects and an integer 𝐾, find a 

grouping of the points into 𝐾 clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝐾} with 

centroids 𝑐1, 𝑐2, … , 𝑐𝐾 that minimizes the cost function

𝐶𝑜𝑠𝑡 𝐶 = ෍

𝑖=1

𝐾

෍

𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑖)

• Note: We need to find both the grouping into clusters and the 

centroids per cluster.

Definition for a general 

distance function 𝑑𝑖𝑠𝑡



K-means Clustering

• Most common definition is with euclidean distance, minimizing the 

Sum of Squares Error (SSE) – distance function

• Sometimes K-means clustering is defined like that

• Problem: Given a set 𝑋 of 𝑛 points in a 𝑑-dimensional space and an 

integer 𝐾 group the points into 𝐾 clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝐾} such that

𝐶𝑜𝑠𝑡 𝐶 =෍

𝑖=1

𝐾

෍

𝑥∈𝐶𝑖

𝑥 − 𝑐𝑖
2

is minimized, where 𝑐𝑖 is the mean of the points in cluster 𝐶𝑖

Sum of Squares Error (SSE)



Complexity of the k-means problem

• NP-hard if the dimensionality of the data is at least 2 (𝑑 ≥ 2)

• Finding the best solution in polynomial time is infeasible

• For 𝑑 = 1 the problem is solvable in polynomial time (how?)

• A simple iterative algorithm works quite well in practice



1. Select 𝐾 points as the initial centroids

2. repeat

3. Form 𝐾 clusters by assigning each point to the closest centroid

4. Compute the new centroid* of each cluster 

5. until The centroids do not change 

K-means Algorithm

• Also known as Lloyd’s algorithm.

• K-means is sometimes synonymous with this algorithm

*The centroid of a set of points is the point that is minimizes the sum of 

distances from the points in the set



Example
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Example
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K-means Algorithm – Initialization

• Initial centroids are often chosen randomly.

• Clusters produced vary from one run to another.



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Dealing with Initialization

• Do multiple runs and select the clustering with the smallest error

• Select original set of  points by methods other than random. 

E.g.,  pick the most distant (from each other) points as cluster 

centers (K-means++ algorithm)



K-means Algorithm – Centroids

• ‘Closeness’ is measured by some similarity or distance function
• E.g., Euclidean distance (SSE), cosine similarity, correlation, etc.

• The centroid depends on the distance function
• The minimizer for the distance function

• Centroid:
• The mean of the points in the cluster for SSE, and cosine similarity

• The median for Manhattan distance.

• Finding the centroid is not always easy 
• It can be an NP-hard problem for some distance functions

• E.g., median for multiple dimensions



K-means Algorithm – Convergence

• K-means will converge for common similarity measures mentioned 
above.
• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points change 
clusters’

• Complexity is 𝑂( 𝑛 ⋅ 𝐾 ⋅ 𝐼 ⋅ 𝑑 )
• 𝑛 = number of points, 

• 𝐾 = number of clusters, 

• 𝐼 = number of iterations, 

• 𝑑 = dimensionality

• In general, a fast and efficient algorithm



Limitations of K-means

• K-means has problems when clusters are of different: 

• sizes

• densities

• non-globular shapes

• K-means has problems when the data contains outliers.



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)



Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.



Overcoming K-means Limitations

Original Points K-means Clusters



Overcoming K-means Limitations

Original Points K-means Clusters



Variations

• K-medoids: Similar problem definition as in K-means, but the 

centroid of the cluster is defined to be one of the points in the 

cluster (the medoid).

• K-centers: Similar problem definition as in K-means, but the goal 

now is to minimize the maximum diameter of the clusters

• diameter of a cluster is maximum distance between any two points in the 

cluster. 



HIERARCHICAL CLUSTERING



Hierarchical Clustering

• Two main types of hierarchical clustering
• Agglomerative:  

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

• Divisive:  
• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a point (or there are k clusters)

• Traditional hierarchical algorithms use a similarity or distance 
matrix
• Merge or split one cluster at a time



Hierarchical Clustering 

• Produces a set of nested clusters organized as a hierarchical tree

• Can be visualized as a dendrogram

• A tree like diagram that records the sequences of merges or splits
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number of clusters
• Any desired number of clusters can be obtained by ‘cutting’ the dendogram

at the proper level

• Dendrograms may correspond to meaningful taxonomies
• Example in biological sciences (e.g., animal kingdom, phylogeny 

reconstruction, …)



Agglomerative Clustering Algorithm

• Most popular hierarchical clustering technique

• Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

• Key operation is the computation of the proximity of two clusters
• Different approaches to defining the distance between clusters distinguish 

the different algorithms



Starting Situation 

• Start with single-point clusters and a proximity matrix between points

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

• After some merging steps, we have some clusters and a proximity matrix between clusters

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

• We want to merge the two closest clusters (C2 and C5)  and update the proximity matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



After Merging
• The question is “How do we update the proximity matrix?” 

C1

C4

C2 U C5

C3
?      ?       ?      ?    

?

?

?

C2

U 

C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

Similarity?

MIN

MAX

Group Average

Distance Between Centroids

Other methods driven by an objective function

– Ward’s Method uses squared error

Proximity Matrix

.

.

.



How to Define Inter-Cluster Similarity
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– Ward’s Method uses squared error



How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

MIN

MAX

Group Average

Distance Between Centroids

Other methods driven by an objective function

– Ward’s Method uses squared error

||Cluster||Cluster
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

MIN

MAX

Group Average

Distance Between Centroids

Other methods driven by an objective function

– Ward’s Method uses squared error

 



Single Link – Complete Link

• Another way to view the processing of the hierarchical algorithm is 

that we create links between the elements in order of increasing 

distance

• The MIN – Single Link, will merge two clusters when a single pair of 

elements is linked

• The MAX – Complete Linkage will merge two clusters when all pairs of 

elements have been linked.



Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes



Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers



Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers



Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters



Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

• Compromise between Single and Complete Link

• Strengths

• Less susceptible to noise and outliers

• Limitations

• Biased towards globular clusters



Cluster Similarity: Ward’s Method

• Similarity of two clusters is based on the increase in squared error 

(SSE) when two clusters are merged

• Similar to group average if distance between points is sum of squares 

distance

• Hierarchical analogue of K-means

• Can be used to initialize K-means

• Less susceptible to noise and outliers

• Biased towards globular cluster



Hierarchical Clustering: Comparison
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Hierarchical Clustering:  Time and Space requirements

• O(N2) space since it uses the proximity matrix.  

• N is the number of points.

• O(N3) time in many cases

• There are N steps and at each step the size, N2, proximity matrix must be 

updated and searched

• Complexity can be reduced to O(N2 log(N) ) time for some approaches



Hierarchical Clustering:  Problems and Limitations

• Computational complexity in time and space

• Once a decision is made to combine two clusters, it cannot be undone

• No objective function is directly minimized

• Different schemes have problems with one or more of the following:

• Sensitivity to noise and outliers

• Difficulty handling different sized clusters and convex shapes

• Breaking large clusters



DBSCAN



DBSCAN: Density-Based Clustering

• DBSCAN is a Density-Based Clustering algorithm

• Reminder: In density-based clustering we partition points into dense 
regions separated by not-so-dense regions.

• Important Questions:
• How do we measure density?

• What is a dense region?

• DBSCAN:
• Density at point p: number of points within a circle of radius Eps

• Dense Region: A circle of radius Eps that contains at least MinPts points



DBSCAN

• Characterization of points

• A point is a core point if it has more than a specified number of 
points (MinPts) within Eps
• These points belong in a dense region and are at the interior of a cluster

• A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point.

• A noise point is any point that is not a core point or a border point. 



DBSCAN: Core, Border, and Noise Points



DBSCAN: Core, Border and Noise Points

Original Points Point types: core, border and noise

Eps = 10, MinPts = 4



Density-Connected points

• Density edge

• We place an edge between two core 

points q and p if they are within distance 

Eps.

• Density-connected

• A point p is density-connected to a point q 

if there is a path of edges from p to q

p

q
p1

p q

o



DBSCAN Algorithm

• Label points as core, border and noise

• Eliminate noise points

• For every core point p that has not been assigned to a 

cluster

• Create a new cluster with the point p and all the points 

that are density-connected to p.

• Assign border points to the cluster of  the closest core 

point.



DBSCAN: Determining Eps and MinPts

• Idea: for points in a cluster, their kth nearest neighbors are at roughly 
the same distance

• Noise points have the kth nearest neighbor at farther distance

• So, plot sorted distance of every point to its kth nearest neighbor

• Find the distance d where there is a “knee” in the curve
• Eps = d, MinPts = k

Eps ~ 7-10

MinPts = 4



When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



DBSCAN: Sensitive to Parameters



When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data



Other algorithms

• PAM, CLARANS: Solutions for the k-medoids problem

• BIRCH: Constructs a hierarchical tree that acts a summary of the 
data, and then clusters the leaves.

• MST: Clustering using the Minimum Spanning Tree.

• ROCK: clustering categorical data by neighbor and link analysis

• LIMBO, COOLCAT: Clustering categorical data using information 
theoretic tools.

• CURE: Hierarchical algorithm uses different representation of the 
cluster

• CHAMELEON: Hierarchical algorithm uses closeness and 
interconnectivity for merging



CLUSTERING EVALUATION



Clustering Evaluation

• We need to evaluate the “goodness” of the resulting clusters?

• But “clustering lies in the eye of the beholder”! 



Quality of Clustering can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters



Clustering Evaluation

• Then why do we want to evaluate them?
• To avoid finding patterns in noise

• To compare clusterings, or clustering algorithms

• To compare against a “ground truth”



1. Internal Evaluation: Evaluating how well the results of a cluster analysis fit the 

data without reference to external information. 

- Use only the data

2. Determining the clustering tendency of a set of data, i.e., distinguishing whether 

non-random structure actually exists in the data. 

3. Determining the ‘correct’ number of clusters. 

4. External Evaluation: Comparing the results of a cluster analysis to externally 

known results, e.g., to externally given class labels.

Different Aspects of Cluster Validation



Metrics for cluster and clustering validity

• For the following we will see some metrics for the clustering validity.

• The metrics can be applied for the evaluation of either a cluster, or a 

clustering

• In cluster validity, we evaluate a group of points, as to whether they 

were correctly placed together. 

• We usually check if the group is homogeneous (for some notion of homogeneity)

• In clustering validity, we evaluate a collection of clusters

• We often use the (weighted) average of cluster validity 

• There are also metrics that look at the relationships between the clusters, e.g., how 

well-separated the clusters are.



CLUSTER VALIDITY WITH 

INTERNAL CRITERIA



• Internal Index:  A metric used to measure the goodness of a 
clustering structure without reference to external information
• Example: Sum of Square Errors (SSE)

• SSE can be used to evaluate a cluster or a clustering: 
• For a cluster of points 𝐶𝑖, the SSE is:

𝑆𝑆𝐸 𝐶𝑖 = ෍

𝑥∈𝐶𝑖

𝑥 − 𝑐𝑖
2 , 𝑐𝑖 = centroid of cluster 𝐶𝑖

• For a clustering 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} , the SSE is:

𝑆𝑆𝐸 𝐶 =෍

𝑖

෍

𝑥∈𝐶𝑖

𝑥 − 𝑐𝑖
2 , 𝑐𝑖 = centroid of cluster 𝐶𝑖

• SSE can also be used to compare clusters, or clusterings

Internal Measures



• In general, we evaluate clusters and clusterings based on cohesion and separation
• Cluster Cohesion: Measures how closely related are objects in a cluster
• Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters 

• Example: Squared Error
• Cohesion is measured by the within cluster sum of squares (SSE)

𝑊𝑆𝑆 = ෍

𝑖

෍

𝑥∈𝐶𝑖

𝑥 − 𝑐𝑖
2

• Separation is measured by the sum of square error of the centroids

𝐵𝑆𝑆 =෍

𝑖

𝑚𝑖 𝑐 − 𝑐𝑖
2

• Where 𝑚𝑖 is the size of cluster 𝑖 , 𝑐 the overall mean. It also holds that:

𝐵𝑆𝑆 = ෍

𝑥∈𝐶𝑖

෍

𝑦∈𝐶𝑗

𝑥 − 𝑦 2

• Interesting observation: WSS+BSS = constant

Cohesion and Separation

We want this to be small

We want this to be large



• A proximity graph-based approach can also be used for cohesion 

and separation.

• Cluster cohesion is the sum of the weight of all links within a cluster.

• Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Cohesion and Separation

cohesion separation



• Silhouette Coefficient combines ideas of both cohesion and separation, but 
for individual points, as well as clusters and clusterings

• For an individual point 𝑖
• Calculate 𝒂𝒊 = average distance of 𝑖 to the points in its own cluster

• Calculate 𝒃𝒊 = min (over clusters) of the average distance of 𝑖 to points in other clusters

• The silhouette coefficient for a point 𝑖 is then given by 

𝒔𝒊 = 𝟏 – 𝒂𝒊/𝒃𝒊

• Typically, between 0 and 1, the closer to 1 the better.

• Can be less than 0 but this is a problematic case

• Can calculate the Average Silhouette coefficient of the points for a cluster, or 
for a clustering

Silhouette Coefficient

a

b



Silhouette Coefficient Example



▪Two matrices 
▪ Similarity or Distance Matrix

▪ One row and one column for each data point

▪ An entry is the similarity or distance of the 

associated pair of points

▪ “Incidence” Matrix

▪ One row and one column for each data point

▪ An entry is 1 if the associated pair of points belong 

to the same cluster

▪ An entry is 0 if the associated pair of points 

belongs to different clusters

Measuring Cluster Validity Via Correlation
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▪Compute the correlation between the two 
matrices

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
σ𝑖(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

σ𝑖 𝑥𝑖 − 𝜇𝑋
2 σ𝑖 𝑦𝑖 − 𝜇𝑌

2

▪ Since the matrices are symmetric, only the correlation 
between n(n-1) / 2 entries needs to be calculated.

▪High correlation (positive for similarity, negative
for distance) indicates that points that belong to 
the same cluster are close to each other. 

▪Not a good measure for some density or 
contiguity-based clusters.

Measuring Cluster Validity Via Correlation

𝑆 =

0 0.9
0.9 0

2.2 1.5
1.2 1.7

2.2 1.2
1.5 1.7

0 1.1
1.1 0

𝐼 =

1 1
1 1

0 0
0 0

0 0
0 0

1 1
1 1

A

B

C

D

A

B

C

D

A       B       C      D

A    B    C    D

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓([0.9, 2.2, 1.5, 1.2, 1.7, 1.1],

[ 1,    0,     0,    0,    0,   1  ])

= - 0.71



• Order the similarity matrix with respect to cluster labels and inspect 

visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation
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• Clusters in more complicated figures are not well separated

• This technique can only be used for small datasets since it requires a 

quadratic computation



Internal measures – caveats 

• Internal measures have the problem that the clustering algorithm 

did not set out to optimize this measure, so it is will not necessarily 

do well with respect to the measure.

• Essentially, we check whether one criterion correlates well with another

• An internal measure can also be used as an objective function for 

clustering

• The algorithm that optimizes this criterion is expected to do well.



STATISTICAL FRAMEWORK FOR 

CLUSTER(ING) VALIDITY



Framework for Cluster Validity

• Need a framework to interpret any measure. 
• For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?

• Statistics provide a framework for cluster validity
• The more “non-random” a clustering result is, the more likely it represents valid structure in 

the data

• Can compare the index value for a clustering with the values of the index that result from 
clustering random data, or from random clusterings.
• If the value of the index is unlikely, then the clustering results are valid

• Comparing against clustering of random data tells us if there is valid clustering structure in 
the data

• Comparing against random clusterings tells us if the clustering algorithm is meaningful
• Although a random clustering is a weak alternative.

• For comparing the results of two different clusterings, a framework is less 
necessary, but we may want to know whether the difference between two 
index values is significant



• Example
• Compare SSE of 0.005 against three clusters in random data

• Histogram of SSE for three clusters in 500 random data sets of 100 random 

points distributed in the range 0.2 – 0.8 for x and y
• Value 0.005 is very unlikely

Statistical Framework for SSE
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• Correlation of incidence and proximity matrices for the K-means 

clusterings of the following two data sets. 

Statistical Framework for Correlation
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Empirical p-value

• What we do is similar to a permutation test:

• We have a measurement v (e.g., the SSE value)

• We compute N measurements on random datasets

• We compute the empirical p-value as the fraction of measurements in 
the random data that have value less or equal than value v (or greater 
or equal if we want to maximize) 
• i.e., the value in the random dataset is at least as good as that in the real data

• We usually require that p-value ≤ 0.05

• Hard question: what is the right notion of a random dataset?



ESTIMATING THE “RIGHT” 

NUMBER OF CLUSTERS



Estimating the “right” number of clusters

• Typical approach: find a “knee” in an internal measure curve.

• Question: why not the k that minimizes the SSE?
• Forward reference: minimize a measure, but with a “simple” clustering

• Desirable property: the clustering algorithm does not require the 
number of clusters to be specified (e.g., DBSCAN)
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Estimating the “right” number of clusters

• SSE curve for a more complicated data set
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SSE of clusters found using K-means



Estimating the “right” number of clusters

• A metric that is better suited for this 
task is the average silhouette 
coefficient which does not change 
monotonically with the number of 
clusters

• In this example 6 seems to be a 
good number of clusters since it 
has high silhouette coefficient and 
low SSE

• 2 has the highest silhouette 
coefficient but highest SSE.

• 12 could be another alternative



EVALUATION WITH EXTERNAL 

“GROUND TRUTH”



External Measures for Clustering Validity

• Assume that the data is labeled with some class labels
• E.g., documents are classified into topics, people classified according to 

their income, politicians classified according to the political party.

• This is called the “ground truth”

• In this case we want the clusters to be homogeneous with respect 
to classes
• Each cluster should contain elements of mostly one class

• Each class should ideally be assigned to a single cluster

• This does not always make sense
• Clustering is not the same as classification

• …but this is what people use most of the time



Confusion/Contingency matrix

• Rows: clusters

• Columns: classes

• Entries: counts/probability of cluster-class pair

• 𝑛 = number of points

• 𝑚𝑖 = points in cluster 𝑖

• 𝑐𝑗 = points in class 𝑗

• 𝑛𝑖𝑗= points in cluster 𝑖 coming from class 𝑗

• The confusion/contingency matrix is sometimes 
used for evaluation as is
• It gives us the mapping between the clusters and ground 

truth classes

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Confusion/Contingency matrix of 

clusters and classes (counts)

Example

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300



Measures of cluster homogeneity

• Compute probabilities:

𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑚𝑖

The probability that a randomly selected point from 
cluster 𝑖 comes from class 𝑗. 

• Probabilities of rows sum to 1

• Purity:
• Of a cluster 𝑖: 𝑝𝑖 = max

𝑗
𝑝𝑖𝑗

• Of a clustering: 𝑝(𝐶) = σ𝑖=1
𝐾 𝑚𝑖

𝑛
𝑝𝑖

• Entropy:
• Of a cluster 𝑖: 𝑒𝑖 = −σ𝑗=1

𝐿 𝑝𝑖𝑗 log 𝑝𝑖𝑗
• Highest when uniform, zero when single class

• Of a clustering: 𝑒 = σ𝑖=1
𝐾 𝑚𝑖

𝑛
𝑒𝑖

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Class 1 Class 2 Class 3

Cluster 1 0.02 0.03 0.95 90

Cluster 2 0.82 0.11 0.07 110

Cluster 3 0.08 0.85 0.07 100

100 100 100 300

Purity: (0.94, 0.81, 0.85) 

– overall 0.86

Entropy: (0.33, 0.85, 0.76) 

– overall 0.66



Classification-based Measures

• Precision:
• Of cluster 𝑖 with respect to class 𝑗:

𝑃𝑟𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑚𝑖
= 𝑝𝑖𝑗

• Percentage of the cluster 𝑖 that comes from class 𝑗

• Recall:
• Of cluster 𝑖 with respect to class 𝑗: 

𝑅𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑐𝑗
• Percentage of class 𝑗 that goes to cluster 𝑖

• F-measure:
• Harmonic Mean of Precision and Recall:

𝐹 𝑖, 𝑗 =
2 ∗ 𝑃𝑟𝑒𝑐 𝑖, 𝑗 ∗ 𝑅𝑒𝑐(𝑖, 𝑗)

𝑃𝑟𝑒𝑐 𝑖, 𝑗 + 𝑅𝑒𝑐(𝑖, 𝑗)

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300



Precision-recall for cluster-class cobinations

• Precision of cluster 𝑖 with respect to class 𝑗: 𝑃𝑟𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑚𝑖
= 𝑝𝑖𝑗

• Percentage of the cluster 𝑖 that comes from class 𝑗

• Recall of cluster 𝑖 with respect to class 𝑗: 𝑅𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑐𝑗

• Percentage of class 𝑗 that goes to cluster 𝑖

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300

Class 1 Class 2 Class 3

Cluster 1 0.02 0.03 0.95

Cluster 2 0.82 0.11 0.07

Cluster 3 0.08 0.85 0.07

Class 1 Class 2 Class 3

Cluster 1 0.02 0.03 0.85

Cluster 2 0.90 0.12 0.08

Cluster 3 0.08 0.85 0.07

Precision Table Recall Table



Precision/Recall for clusters and clusterings

• Assign to cluster 𝑖 the class 𝑘𝑖 such that 𝑘𝑖 = argmax
𝑗

𝑛𝑖𝑗

• Precision:

• Of cluster 𝑖: 𝑃𝑟𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖
𝑚𝑖

• Of the clustering: 𝑃𝑟𝑒𝑐(𝐶) = σ𝑖
𝑚𝑖

𝑛
𝑃𝑟𝑒𝑐(𝑖)

• Recall:

• Of cluster 𝑖: 𝑅𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖
𝑐𝑘𝑖

• Of the clustering: 𝑅𝑒𝑐 𝐶 = σ𝑖
𝑚𝑖

𝑛
𝑅𝑒𝑐(𝑖)

• F-measure:

• Harmonic Mean of Precision and Recall

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300

Precision: (0.94, 0.81, 0.85) 

– overall 0.86

Recall: (0.85, 0.9, 0.85)  

- overall 0.87 



Good and bad clustering

Class 1 Class 2 Class 3

Cluster 1 20 35 35 90

Cluster 2 30 42 38 110

Cluster 3 38 35 27 100

100 100 100 300

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300

Purity: (0.94, 0.81, 0.85) 

– overall 0.86

Precision: (0.94, 0.81, 0.85) 

– overall 0.86

Recall: (0.85, 0.9, 0.85)  

- overall 0.87 

Purity: (0.38, 0.38, 0.38) 

– overall 0.38

Precision: (0.38, 0.38, 0.38) 

– overall 0.38

Recall: (0.35, 0.42, 0.38) 

– overall 0.39 



Another clustering

Class 1 Class 2 Class 3

Cluster 1 0 0 35 35

Cluster 2 50 77 38 165

Cluster 3 38 35 27 100

100 100 100 300

Cluster 1: 

Purity: 1

Precision: 1

Recall: 0.35  



External Measures of Cluster Validity: Entropy and Purity



“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity


