
DATA MINING

SIMILARITY & DISTANCE
Similarity and Distance

Recommender Systems



SIMILARITY AND DISTANCE
Thanks to:

Tan, Steinbach, and Kumar, “Introduction to Data Mining”

Rajaraman and Ullman, “Mining Massive Datasets”



Similarity and Distance

• For many different problems we need to quantify how close two objects
are.

• Examples:
• For an item bought by a customer, find other similar items

• Group together the customers of a site so that similar customers are shown the 
same ad.

• Group together web documents so that you can separate the ones that talk about 
politics and the ones that talk about sports.

• Find all the near-duplicate mirrored web documents.

• Find credit card transactions that are very different from previous transactions.

• To solve these problems we need a definition of similarity, or distance.
• The definition depends on the type of data that we have



Similarity

• Numerical measure of how alike two data objects are.

• A function that maps pairs of objects to real values

• Higher when objects are more alike.

• Often falls in the range [0,1], sometimes in [-1,1]

• Desirable properties for similarity

1. s(p, q) = 1 (or maximum similarity) only if p = q.  (Identity)

2. s(p, q) = s(q, p)   for all p and q. (Symmetry)



Similarity between sets

• Consider the following documents

• Which ones are more similar?

• How would you quantify their similarity?

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe



Similarity: Intersection

• Number of words in common

• Sim(D,D) = 3, Sim(D,D) = Sim(D,D)  =2

• What about this document?

• Sim(D,D) = Sim(D,D)  = 3

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe

Vefa releases new book 

with apple pie recipes
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Jaccard Similarity

• The Jaccard similarity (Jaccard coefficient) of two sets S1, S2 is the size of their 
intersection divided by the size of their union.
• JSim (S1, S2) = |S1S2| / |S1S2|.

• Extreme behavior:
• Jsim(X,Y) = 1, iff X = Y

• Jsim(X,Y) = 0 iff X,Y have no elements in common

• JSim is symmetric

3 in intersection.

8 in union.

Jaccard similarity = 3/8



Jaccard Similarity between sets

• The distance for the documents

• JSim(D,D) = 3/5 

• JSim(D,D) = JSim(D,D)  = 2/6

• JSim(D,D) = JSim(D,D)  = 3/9

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe

Vefa releases 

new book with 

apple pie 

recipes



Similarity between vectors

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

Documents (and sets in general) can also be represented as vectors

How do we measure the similarity of two vectors?

• We could view them as sets of words. Jaccard Similarity will show that 

D4 is different form the rest

• But all pairs of the other three documents are equally similar

We want to capture how well the two vectors are aligned



Example

Documents D1, D2 are in the “same direction”

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

apple

microsoft

{Obama, election}



Example

Documents D1, D2 are in the “same direction”

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

apple

microsoft

{Obama, election}



Cosine Similarity

• Sim(X,Y) = cos(X,Y)

• The cosine of the angle between X and Y

• If the vectors are aligned (correlated) angle is zero degrees and 
cos(X,Y)=1

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(X,Y) = 0

• Cosine is commonly used for comparing documents, where we assume 
that the vectors are normalized by the document length, or words are 
weighted by tf-idf.



Cosine Similarity - math

• If d1 and d2 are two vectors, then

cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2|| ,

where • indicates vector dot product and || d || is the length of vector d.

• Example:

d1 =  3 2 0 5 0 0 0 2 0 0 

d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150

Note: We only need to 

consider the non-zero 

entries of the vectors

What if we have 0/1 vectors?



Example

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

apple

microsoft

{Obama, election}

Cos(D1,D2) = 1

Cos (D3,D1) = Cos(D3,D2) = 4/5

Cos(D4,D1) = Cos(D4,D2) = Cos(D4,D3) = 0



Correlation Coefficient

• The correlation coefficient measures correlation between two random 
variables.

• If we have observations (vectors) 𝑋 = (𝑥1, … , 𝑥𝑛) and 𝑌 = (𝑦1, … , 𝑦𝑛) is 
defined as

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
σ𝑖(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

σ𝑖 𝑥𝑖 − 𝜇𝑋
2 σ𝑖 𝑦𝑖 − 𝜇𝑌

2

• This is essentially the cosine similarity between the normalized vectors 
(where from each entry we remove the mean value of the vector.

• The correlation coefficient takes values in [-1,1] 
• -1 negative correlation, +1 positive correlation, 0 no correlation. 

• Most statistical packages also compute  a p-value that measures the 
statistical importance of the correlation
• Lower value – higher statistical importance



Correlation Coefficient

document Apple Microsoft Obama Election

D1 -5 +5 0 0

D2 -15 +15 0 0

D3 +15 -15 0 0

D4 0 0 -5 +5

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
σ𝑖(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

σ𝑖 𝑥𝑖 − 𝜇𝑋
2 σ𝑖 𝑦𝑖 − 𝜇𝑌

2

Normalized vectors

CorrCoeff(D1,D2) = 1

CorrCoeff(D1,D3) = CorrCoeff(D2,D3) = -1

CorrCoeff(D1,D4) = CorrCoeff(D2,D4) = CorrCoeff(D3,D4) = 0



Distance

• Numerical measure of how different two data objects are

• A function that maps pairs of objects to real values

• Lower when objects are more alike

• Higher when two objects are different

• Minimum distance is 0, when comparing an object with itself.

• Upper limit varies



Distance Metric

• A distance function d is a distance metric if it is a function from 

pairs of objects to real numbers such that:

1. 𝑑 𝑥, 𝑦 ≥ 0. (non-negativity)

2. 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦. (identity)

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). (symmetry)

4. 𝑑 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality ).



Triangle Inequality

• Triangle inequality guarantees that the distance function is well-

behaved.

• The direct connection is the shortest distance

• It is useful also for proving useful properties about the data.



Example

• We have a set of objects 𝑋 = {𝑥1, … , 𝑥𝑛} of a universe 𝑈 (e.g., 𝑈 = ℝ𝑑), 

and a distance function 𝑑 that is a metric.

• We want to find the object 𝑧 ∈ 𝑈 that minimizes the sum of distances 

from 𝑋. 

• For some distance metrics this is easy, for some it is an NP-hard problem.

• It is easy to find the object 𝑥∗ ∈ 𝑋 that minimizes the distances from all 

the points in 𝑋.

• But how good is this? We can prove that 

෍

𝑥∈𝑋

𝑑(𝑥, 𝑥∗) ≤ 2෍

𝑥∈𝑋

𝑑 𝑥, 𝑧

• We are a factor 2 away from the best solution.



Distances for real vectors

• Vectors 𝑥 = 𝑥1, … , 𝑥𝑑 and 𝑦 = (𝑦1, … , 𝑦𝑑)

• 𝑳𝒑-norms or Minkowski distance:

𝐿𝑝 𝑥, 𝑦 = 𝑥1 − 𝑦1
𝑝 + ⋯+ 𝑥𝑑 − 𝑦𝑑

𝑝 ൗ1 𝑝

• 𝑳𝟐-norm: Euclidean distance:

𝐿2 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯+ 𝑥𝑑 − 𝑦𝑑

2

• 𝑳𝟏-norm: Manhattan distance:

𝐿1 𝑥, 𝑦 = 𝑥1 − 𝑦1 + ⋯+ |𝑥𝑑 − 𝑦𝑑|

• 𝑳∞-norm: 

𝐿∞ 𝑥, 𝑦 = max 𝑥1 − 𝑦1 , … , |𝑥𝑑 − 𝑦𝑑|
• The limit of 𝑳𝒑 as p goes to infinity.

Lp norms are known to be distance metrics
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Example of Distances

x = (5,5)

y = (9,8)
𝐿2-norm:

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 42+ 32 = 5

𝐿1-norm:

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 4 + 3 = 74

35

𝐿∞-norm:

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = max 3,4 = 4



Example

𝑥 = (𝑥1, … , 𝑥𝑛)

r

Green: All points y at distance 𝐿1(𝑥, 𝑦) = 𝑟 from point 𝑥

Blue: All points y at distance 𝐿2(𝑥, 𝑦) = 𝑟 from point 𝑥

Red: All points y at distance 𝐿∞(𝑥, 𝑦) = 𝑟 from point 𝑥



𝐿𝑝 distances for sets 

• We can apply all the Lp distances to the cases of sets of attributes, 

with or without counts, if we represent the sets as vectors

• E.g., a transaction is a 0/1 vector

• E.g., a document is a vector of counts.



Similarities into distances

• Jaccard distance: 

𝐽𝐷𝑖𝑠𝑡(𝑋, 𝑌) = 1 – 𝐽𝑆𝑖𝑚(𝑋, 𝑌)

• Jaccard Distance is a metric

• Cosine distance:

𝐷𝑖𝑠𝑡(𝑋, 𝑌) = 1 − cos(𝑋, 𝑌)

• Cosine distance is a metric
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Hamming Distance

• Hamming distance  is the number of positions in which bit-vectors differ.
• Example: 

• p1 = 10101

• p2 = 10011.

• 𝑑(𝑝1, 𝑝2) = 2 because the bit-vectors differ in the 3rd and 4th positions.

• The L1 norm for the binary vectors

• Hamming distance between two vectors of categorical attributes is the 
number of positions in which they differ.
• Example: 

• x = (married, low income, cheat) 

• y = (single,    low income, not cheat)

• 𝑑(𝑥, 𝑦) = 2
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Why Hamming Distance Is a Distance Metric

• d(x,x) = 0 since no positions differ.

• d(x,y) = d(y,x) by symmetry of “different from.”

• d(x,y) > 0 since strings cannot differ in a negative number of 

positions.

• Triangle inequality: changing x to z and then to y is one way to 

change x to y.

• For binary vectors if follows from the fact that L1 norm is a metric



Distance between strings

• How do we define similarity between strings?

• Important for recognizing and correcting typing errors and 

analyzing DNA sequences.

weird wierd

intelligent unintelligent

Athena Athina
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Edit Distance for strings

• The edit distance  of two strings is the number of inserts and 

deletes of characters needed to turn one into the other. 

• Example: x = abcde ; y = bcduve.

• Turn x into y by deleting a, then inserting u and v after d.

• Edit distance = 3.

• Minimum number of operations can be computed using 

dynamic programming

• Common distance measure for comparing DNA sequences
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Why Edit Distance Is a Distance Metric

• d(x,x) = 0 because 0 edits suffice.

• d(x,y) = d(y,x) because insert/delete are inverses of each other.

• d(x,y) > 0: no notion of negative edits.

• Triangle inequality: changing x to z and then to y is one way to 

change x to y. The minimum is no more than that
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Variant Edit Distances

• Allow insert, delete, and mutate.

• Change one character into another.

• Minimum number of inserts, deletes, and mutates also forms a 

distance measure.

• Same for any set of operations on strings.

• Example: substring reversal or block transposition OK for DNA sequences

• Example: character transposition is used for spelling



Distance between sets of points

How do we measure the distance between the two sets?



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
𝑥∈𝑅𝑒𝑑

𝑑(𝑥, 𝐵𝑙𝑢𝑒)



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
𝑥∈𝑅𝑒𝑑

𝑑(𝑥, 𝐵𝑙𝑢𝑒)

• Compute the 𝑑 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
𝑥∈𝑅𝑒𝑑

𝑑(𝑥, 𝐵𝑙𝑢𝑒)

• Compute the 𝑑 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑
• Take the maximum of the two

𝑑𝐻 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max max
𝑥∈𝑅𝑒𝑑

min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦) , max
𝑥∈𝑅𝑒𝑑

min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)



Distances between distributions

• Some times data can be represented as a distribution (e.g., a 

document is a distribution over the words)

• How do we measure distance between distributions?

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3



Variational distance

• Variational distance: The 𝐿1 distance between the distribution vectors

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Apple Microsoft Obama Election

D1 D2 D3

Dist(D1,D2) = 0.05+0.1+0.05 = 0.2

Dist(D2,D3) = 0.35+0.35+0.5+ 0.2  = 1.4

Dist(D1,D3) = 0.3+0.45+0.5+ 0.25  = 1.5



Information theoretic distances

• KL-divergence (Kullback-Leibler) for distributions P,Q

𝐷𝐾𝐿 𝑃ԡ𝑄 =෍

𝑥

𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)

• KL-divergence is asymmetric. We can make it symmetric by taking the 
average of both sides

1

2
𝐷𝐾𝐿 𝑃ԡ𝑄 + 𝐷𝐾𝐿 𝑄ԡ𝑃

• JS-divergence (Jensen-Shannon) 

𝐽𝑆 𝑃, 𝑄 =
1

2
𝐷𝐾𝐿 𝑃ԡ𝑀 + 

1

2
𝐷𝐾𝐿 𝑄ԡ𝑀

𝑀 =
1

2
(𝑃 + 𝑄)

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3

Average distribution



Ranking distances

• The input in this case is two rankings/orderings of the same 𝑛
items. For example:

𝑅1 = 𝑥, 𝑦, 𝑧, 𝑤
𝑅2 = 𝑦,𝑤, 𝑧, 𝑥

• How do we define distance in this case?

• Kendal’s tau: Number of pairs of items that are in different order:
𝑥, 𝑦 , 𝑥, 𝑧 , 𝑥, 𝑤 , (𝑧, 𝑤) = 4

• Defines a metric. 

• Maximum: 
𝑛 𝑛−1

2
when rankings are reversed.

• Spearman rank distance: 𝐿1distance between the ranks

• 𝑆𝑅 𝑅1, 𝑅2 = 1 − 4 + 2 − 1 + 3 − 3 + 4 − 2 = 6

x y z w

𝑅1 1 2 3 4

𝑅2 4 1 3 2



Why is similarity important?

• We saw many definitions of similarity and distance

• How do we make use of similarity in practice?

• What issues do we have to deal with?



APPLICATIONS OF SIMILARITY:

RECOMMENDATION SYSTEMS



An important problem

• Recommendation systems
• When a user buys an item (initially books) we want to recommend other 

items that the user may like

• When a user rates a movie, we want to recommend movies that the user 
may like

• When a user likes a song, we want to recommend other songs that they 
may like

• A big success of data mining

• Exploits the long tail
• How Into Thin Air made Touching the Void popular



The Long Tail

Source: Chris Anderson (2004)

http://www.wired.com/wired/archive/12.10/tail.html


Utility (Preference) Matrix 

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

How can we fill the empty entries of the matrix?

Rows: Users

Columns: Movies (in general Items)

Values: The rating of the user for the movie



Recommendation Systems

• Content-based:

• Represent the items into a feature space and recommend items to customer 

C similar to previous items rated highly by C

• Movie recommendations: recommend movies with same actor(s), director, genre, …

• Websites, blogs, news: recommend other sites with “similar” content



Content-based prediction

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Someone who likes one of the Harry Potter (or Star Wars) 

movies is likely to like the rest

• Same actors, similar story, same genre



Intuition

likes

Item profiles

Red

Circles

Triangles

User profile

match

recommend
build



Approach

• Map items into a feature space:
• For movies:

• Actors, directors, genre, rating, year,…

• Challenge: make all features compatible.

• For documents?

• To compare items with users we need to map users to the same feature 
space. How?
• Take all the movies that the user has seen and take the average vector

• Other aggregation functions are also possible.

• Recommend to user C the most similar item i computing similarity in the 
common feature space
• Distributional distance measures also work well. 



Limitations of content-based approach

• Finding the appropriate features

• e.g., images, movies, music

• Embeddings and deep learning can help

• Overspecialization

• Never recommends items outside user’s content profile

• People might have multiple interests

• Recommendations for new users

• How to build a profile?



Collaborative filtering

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Two users are similar if they rate the same items in a similar way

Recommend to user C, the items 

liked by many of the most similar users.



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Which pair of users do you consider as the most similar?

What is the right definition of similarity?



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 1 1 1

B 1 1 1

C 1 1 1

D 1 1

Jaccard Similarity: users are sets of movies

Disregards the ratings.

Jsim(A,B) = 1/5 

Jsim(A,C) = 1/2

Jsim(B,D) = 1/4 



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Cosine Similarity:

Assumes zero entries are negatives:

Cos(A,B) = 0.38

Cos(A,C) = 0.32



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 2/3 5/3 -7/3

B 1/3 1/3 -2/3

C -5/3 1/3 4/3

D 0 0

Normalized Cosine Similarity: 

• Subtract the mean rating per user (without the zeros) 

and then compute Cosine (correlation coefficient)

Corr(A,B) = 0.092

Corr(A,C) = -0.559



User-User Collaborative Filtering
• For a user 𝑢, find the set 𝑇𝑜𝑝𝐾(𝑢) of the K users whose ratings are most 

“similar” to 𝑢’s ratings

• Estimate u’s ratings based on ratings of users in 𝑇𝑜𝑝𝐾 using some 
aggregation function. For item 𝑖:

ෞ𝑟𝑢𝑖 =
1

𝑍
෍

𝑣∈𝑇𝑜𝑝𝐾(𝑢)

sim 𝑢, 𝑣 𝑟𝑣𝑖

𝑍 = ෍

𝑣∈𝑇𝑜𝑝𝐾(𝑢)

sim(𝑢, 𝑣)

• Modeling deviations:

ෞ𝑟𝑢𝑖 = 𝑟𝑢 +
1
𝑍

෍

𝑣∈𝑇𝑜𝑝𝐾(𝑢)

sim 𝑢, 𝑣 ( 𝑟𝑣𝑖−ഥ𝑟𝑣)

• Advantage: for each user we have small amount of computation.

Mean rating of u

Deviation from mean for v

Mean deviation 

of similar users



Item-Item Collaborative Filtering

• We can transpose (flip) the matrix and perform the same 

computation as before to define similarity between items

• Intuition: Two items are similar if they are rated in the same way by 

many users. 

• Better defined similarity since it captures the notion of genre of an item
• Users may have multiple interests.

• Algorithm: For each user 𝑢 and item 𝑖 not rated by 𝑢
• Find the set 𝑇𝑜𝑝𝐾𝑢(𝑖) of most similar items to item 𝑖 that have been rated by user 𝑢.

• Aggregate their ratings to predict the rating for item 𝑖. 

• Disadvantage: we need to consider each user-item pair separately



Implementation details

• When removing the mean rating make sure to not take into 

account the non-rated entries

• When trying to compute the rating for pair (𝑢, 𝑖):

• When looking for the 𝑘 most similar users to a user 𝑢:

• Take the 𝑘 most similar users regardless

• Take the 𝑘 most similar users that have rated the item 𝑖

• When looking for the 𝑘 most similar items to an item 𝑖:
• Take the 𝑘 most similar items regardless

• Take the 𝑘 most similar items that have been rated by user 𝑢



Evaluation

• Split the data into train and test set
• Keep a fraction of the ratings to test the accuracy of the predictions

• Metrics:
• Root Mean Square Error (RMSE) for measuring the quality of predicted ratings: 

𝑅𝑀𝑆𝐸 =
1

𝑛
෍

𝑖,𝑗

ෞ𝑟𝑖𝑗 − 𝑟𝑖𝑗
2

• Precision/Recall for measuring the quality of binary (action/no action) predictions:
• Precision = fraction of predicted actions that were correct

• Recall = fraction of actions that were predicted correctly

• We may also consider the top-k recommendations for the evaluation

• Kendal’ tau for measuring the quality of predicting the ranking of items:
• The fraction of pairs of items that are ordered correctly (or incorrectly)



Pros and cons of collaborative filtering

• Works for any kind of item

• No feature selection needed

• New user problem

• New item problem

• Sparsity of rating matrix

• Cluster-based smoothing?



The Netflix Challenge

• 1M prize to improve the prediction accuracy by 10%


