DATA MINING SUPERVISED LEARNING

Regression

Classification

Decision Trees

Evaluation

Supervised learning

- In supervised learning, except for the feature variables that describe the data, we also have a target variable
- The goal is to learn a function (model) that can predict the value of the target variable given the features
- Regression: The target variable is numerical and continuous
 - The price of a stock, the grade in a class, the height of a child, the life expectancy etc
- Classification: The target variable is discrete
 - Will the stock go up or down? Will the student pass or fail? Is a transaction fraudulent or not? What is the topic of an article?
- Predictive modeling is in the heart of the data science revolution.

LINEAR REGRESSION

Regression

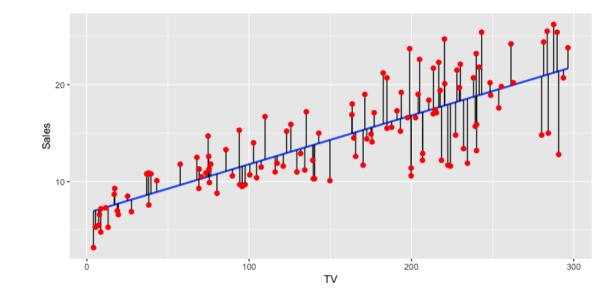
- We assume that we have k feature variables:
 - Also known as covariates, or dependent variables
- The target variable is also known as dependent variable.
- We are given a dataset of the form $\{(x_1, y_1), \dots, (x_n, y_n)\}$ where, x_i is a k-dimensional feature vector, and y_i a real value
- We want to learn a function f which given a feature vector x_i predicts a value $y'_i = f(x_i)$ that is as close as possible to the value y_i
- Minimize sum of squares:

$$\sum_{i} (y_i - f(\boldsymbol{x_i}))^2$$

Linear regression

- The simplest form of *f* is a linear function
- In linear regression the function *f* is typically of the form:

$$f(x_i) = w_0 + \sum_{j=1}^k w_j x_{ij}$$



One-dimensional linear regression

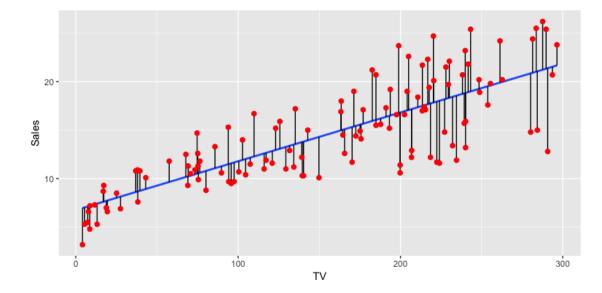
In the simplest case we have a single variable and the function is of the form:

$$f(x_i) = w_0 + w_1 x_i$$

Minimizing the error gives:

$$w_0 = \overline{y} - w_1 \overline{x}$$

$$w_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} = r_{xy} \frac{\sigma_x}{\sigma_y}$$



 \bar{x} : mean value of x_i 's \bar{y} : mean value of y_i 's r_{xy} : correlation coefficient between x, y

Multiple linear regression

- In the general case we have k features, and x_i, w are vectors.
- We simplify the notation:

$$\mathbf{x_i} = (1, x_{i1}, \dots, x_{ik})$$
$$\mathbf{w} = (w_0, w_1, \dots, w_k)$$
$$f(\mathbf{x_i}, \mathbf{w}) = \mathbf{x_i^T} \mathbf{w}$$

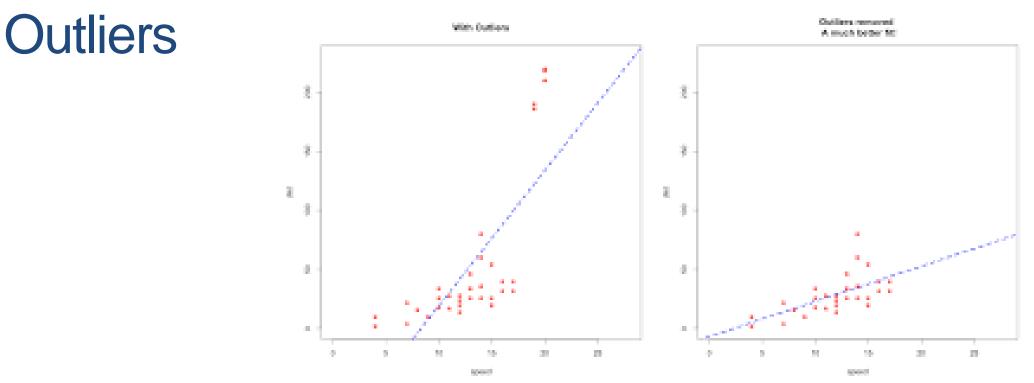
- Let X be the $n \times (k + 1)$ matrix with vectors x_i as rows.
- Let $y = (y_1, ..., y_n)$
- We can write the SSE function as:

$$SSE = \|X\boldsymbol{w} - \boldsymbol{y}\|^2$$

• There is a closed-form solution for *w*:

$$\boldsymbol{w} = \left(X^T X\right)^{-1} X^T \boldsymbol{y}$$

 Matrix inversion may be too expensive. Other optimization techniques are often used to find the optimal vector (e.g., Gradient Descent)



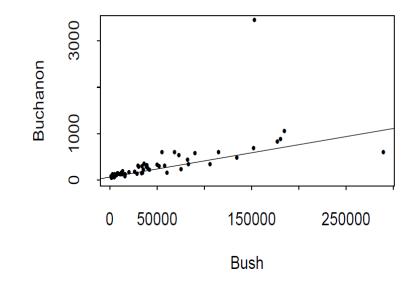
- Regression is sensitive to outliers:
 - The line will "tilt" to accommodate very extreme values
- Solution: remove the outliers
 - But make sure that they do not capture useful information

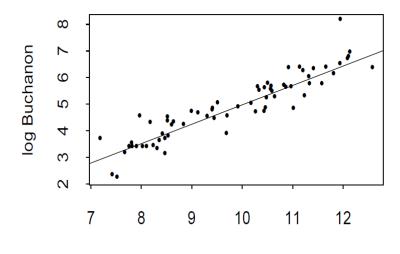
Normalization

- In the regression problem some times our features may have very different scales:
 - For example: predict the GDP of a country using as features the percentage of home owners and the income
 - The weights in this case will not be interpretable
- Solution: Normalize the features by replacing the values with the z-scores

More complex models

- The model we have is linear with respect to the parameters w but the features we consider may be nonlinear functions of the x_i values.
- To capture more complex relationships we can take a transformation of the input (e.g., logarithm $\log x_{ij}$), or add polynomial terms (e.g., x_{ij}^2).
 - However this may increase a lot the number of features





Interpretation and significance ca

- A regression model is useful for making predictions for new data.
- The coefficients for the linear regression model are also useful for understanding the effect of the independent variables to the value of the dependent variable
 - The w_j value is the effect of the increase of x_{ij} by one to the value y_i
- We can also compute the significance of the value of w_j by testing the null hypothesis that $w_j = 0$

Covariate	Least	Estimated	t value	p-value
	Squares	Standard		
	Estimate	Error		
(Intercept)	-589.39	167.59	-3.51	0.001 **
Age	1.04	0.45	2.33	0.025 *
Southern State	11.29	13.24	0.85	0.399
Education	1.18	0.68	1.7	0.093
Expenditures	0.96	0.25	3.86	0.000 ***
Labor	0.11	0.15	0.69	0.493
Number of Males	0.30	0.22	1.36	0.181
Population	0.09	0.14	0.65	0.518
Unemployment (14-24)	-0.68	0.48	-1.4	0.165
Unemployment (25-39)	2.15	0.95	2.26	0.030 *
Wealth	-0.08	0.09	-0.91	0.367

This table is typical of the output of a multiple regression program. The "t-value" is the Wald test statistic for testing H_0 : $\beta_j = 0$ versus H_1 : $\beta_j \neq 0$. The asterisks denote "degree of significance" with more asterisks being significant at a smaller level. The example raises several important questions. In particular: (1) should we eliminate some variables from this model? (2) should we interpret this relationships as causal? For example, should we conclude that low crime prevention expenditures cause high crime rates? We will address question (1) in the next section. We will not address question (2) until a later Chapter.

Predicting Crime rate

CLASSIFICATION

Classification

- Similar to the regression problem we have features and a target variable that we want to model/predict
- The target variable is now discrete. It is often called the class label
 - In the simplest case, it is a binary variable.

Example: Catching tax-evasion

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tax-return data for year 2011

A new tax return for 2012 Is this a cheating tax return?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

An instance of the classification problem: learn a method for discriminating between records of different classes (cheaters vs non-cheaters)

Classification

 Classification is the task of *learning a target function* f that maps attribute set x to one of the predefined class labels y

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

One of the attributes is the class attribute In this case: Cheat

Two class labels (or classes): Yes (1), No (0)

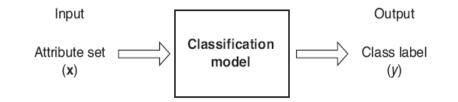


Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Why classification?

- The target function **f** is known as a classification model
- Descriptive modeling: Explanatory tool to distinguish between objects of different classes (e.g., understand why people cheat on their taxes, or what makes a hipster)
- Predictive modeling: Predict a class of a previously unseen record

Examples of Classification Tasks

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying spam email, spam web pages, adult content
- Understanding if a web query has commercial intent or not

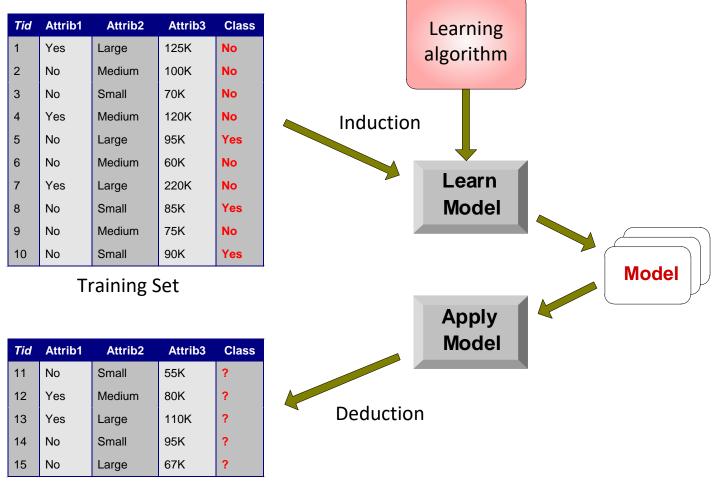
Classification is **everywhere** in data science Big data has the answers to all questions.

General approach to classification

- Obtain a training set consisting of records with known class labels
- Training set is used to build a classification model
- A labeled test set of previously unseen data records is used to evaluate the quality of the model.
- The classification model is applied to new records with unknown class labels

Important intermediate step: Decide on what features to use

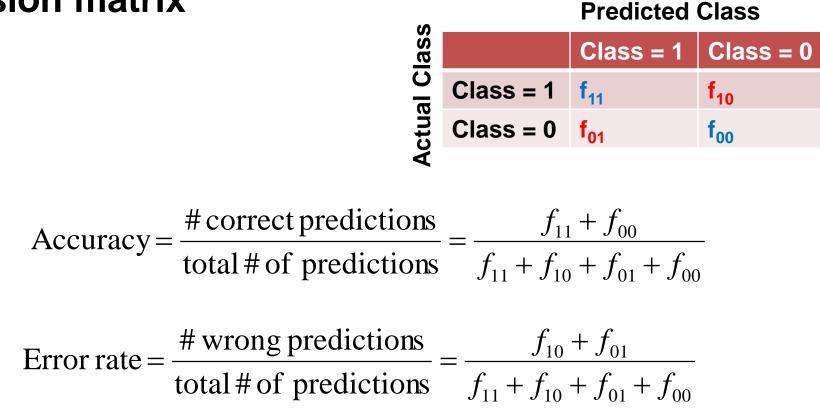
Illustrating Classification Task



Test Set

Evaluation of classification models

- Counts of test records that are correctly (or incorrectly) predicted by the classification model
- Confusion matrix



Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines
- Logistic Regression

Classification Techniques

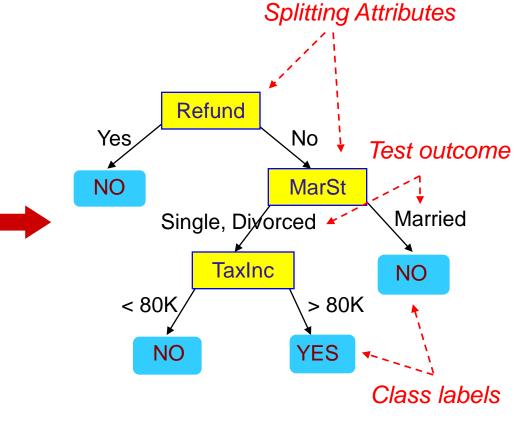
- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Decision Trees

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

Example of a Decision Tree

7	Гid	Refund	Marital Status	Taxable Income	Cheat
1	1	Yes	Single	125K	No
2	2	No	Married	100K	No
3	3	No	Single	70K	No
2	4	Yes	Married	120K	No
Ę	5	No	Divorced	95K	Yes
6	5	No	Married	60K	No
7	7	Yes	Divorced	220K	No
8	3	No	Single	85K	Yes
Q	9	No	Married	75K	No
-	10	No	Single	90K	Yes

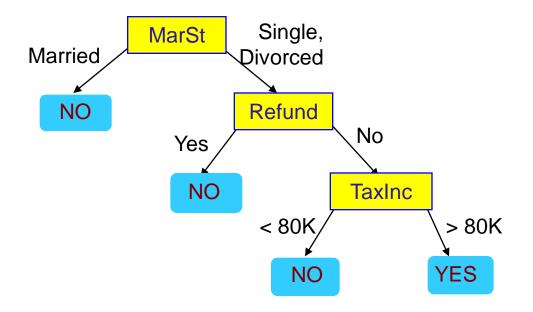


Training Data

Model: Decision Tree

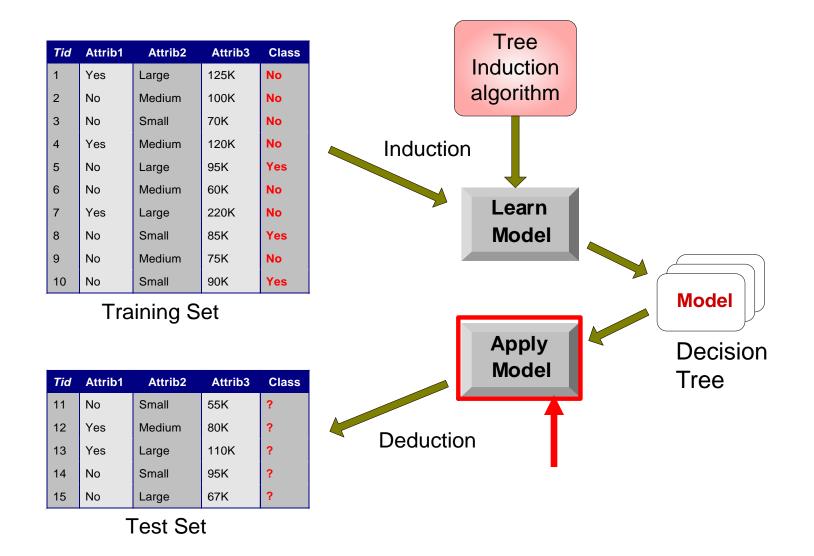
Another Example of Decision Tree

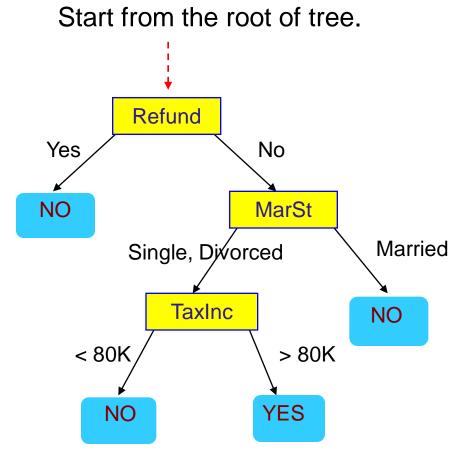
		rical	orical	JOUS
	cate	egorical cateo	o. conti	nuous clas
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



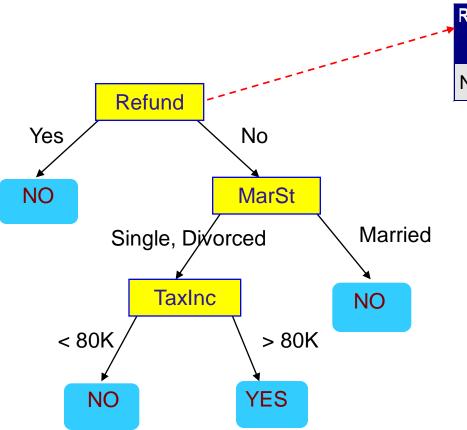
There could be more than one tree that fits the same data!

Decision Tree Classification Task

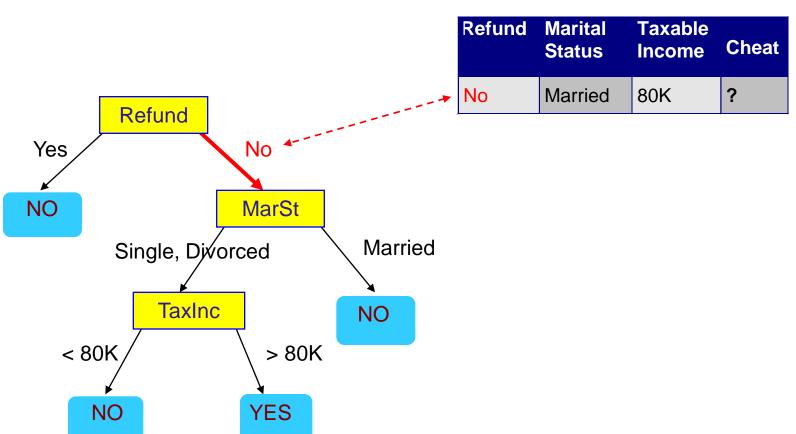


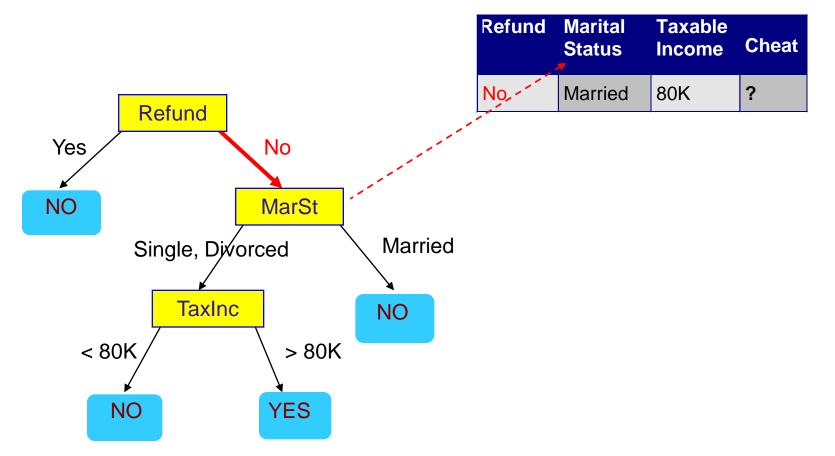


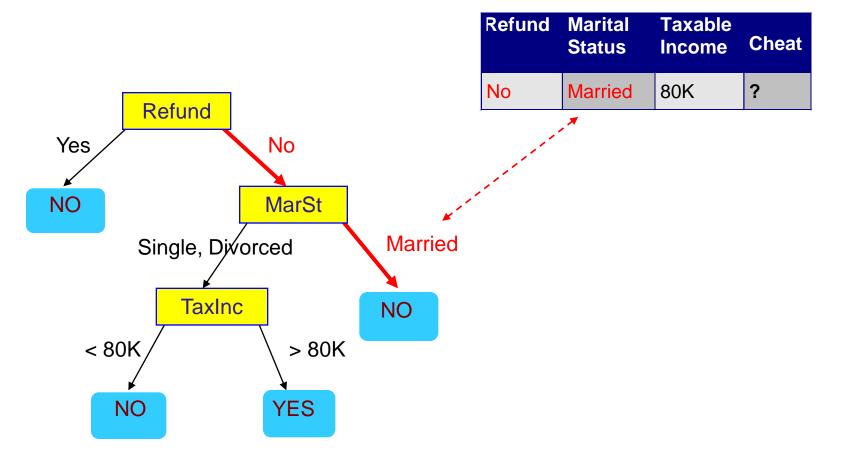
Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

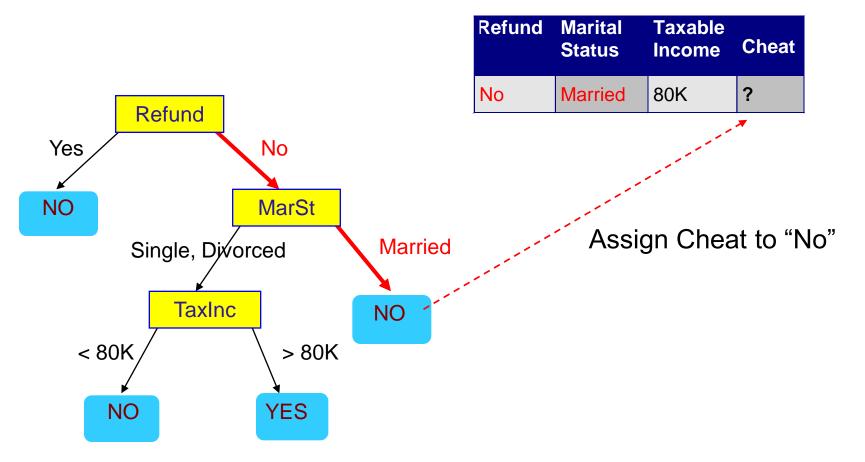


>	Refund	Marital Status	Taxable Income	Cheat
	No	Married	80K	?

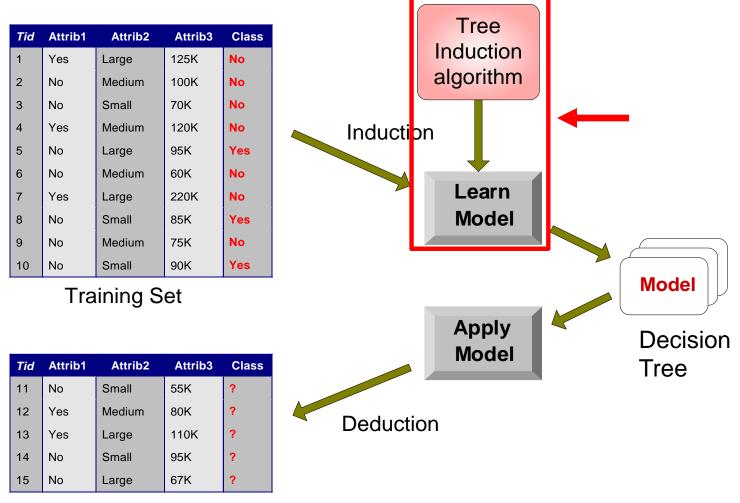








Decision Tree Classification Task



Test Set

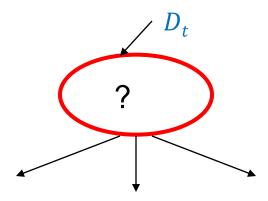
Tree Induction

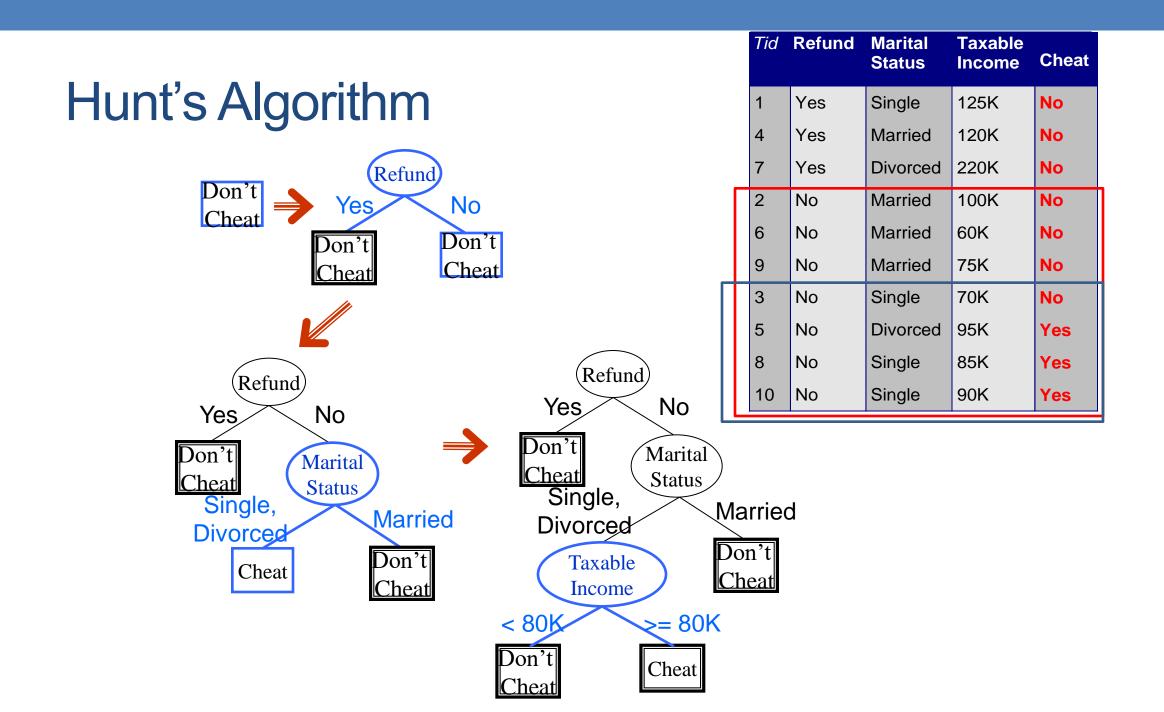
- Goal: Find the tree that has low classification error in the training data (training error)
- Finding the best decision tree (lowest training error) is NP-hard
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records with the same attribute values, then t is a leaf node labeled with the majority class y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
- Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes





Constructing decision-trees (pseudocode)

GenDecTree(Sample **S**, Features **F**)

- 1. If stopping_condition(S,F) = true then
 - a. leaf = createNode()
 - b. leaf.label= Classify(S)
 - c. return leaf
- 2. root = createNode()
- 3. root.test_condition = findBestSplit(S,F)
- 4. V = {v | v a possible outcome of root.test_condition}
- 5. for each value veV:
 - a. $S_v := \{s \mid root.test_condition(s) = v and s \in S\};$
 - b. child = GenDecTree(S_v,F);
 - c. Add child as a descent of root and label the edge (root→child) as v
- 6. return root

Tree Induction

Issues

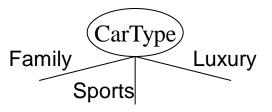
- How to Classify a leaf node
 - Assign the majority class
 - If leaf is empty, assign the default class the class that has the highest popularity (overall or in the parent node).
- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

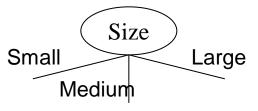
Multi-way split: Use as many partitions as distinct values.



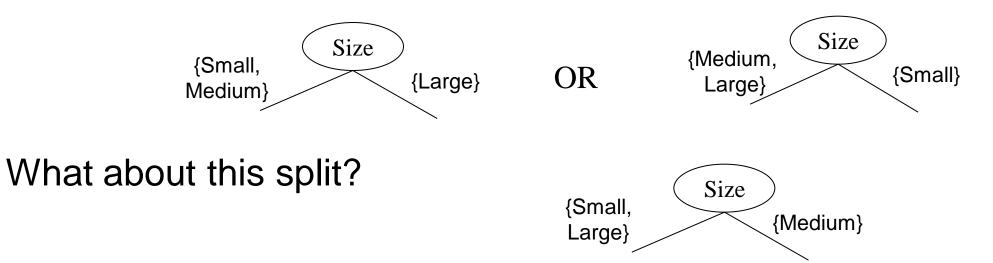
• Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.



Binary split: Divides values into two subsets – respects the order. Need to find optimal partitioning.

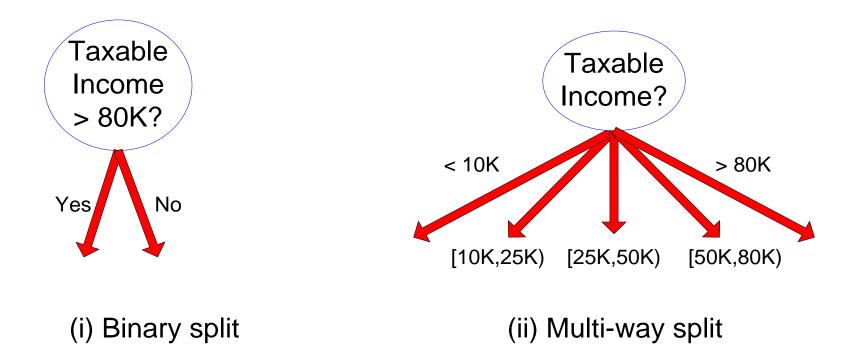


Splitting Based on Continuous Attributes

Different ways of handling

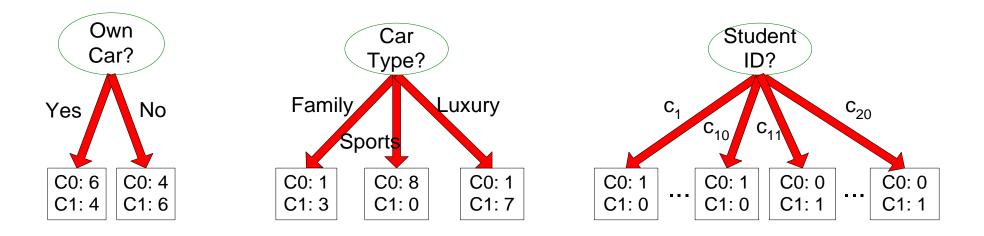
- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more computationally intensive

Splitting Based on Continuous Attributes



How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1



Which test condition is the best?

How to determine the Best Split

• Greedy approach:

- Creation of nodes with homogeneous class distribution is preferred
- Need a measure of node impurity:

C0: 9 C1: 1

Non-homogeneous, High degree of impurity Homogeneous,

Low degree of impurity

Ideas?

Measuring Node Impurity

We are at a node D_t and the samples belong to classes {1, ..., c}
p(i|t): fraction of records associated with node D_t belonging to class i
Impurity measures:

$$Entropy(D_t) = -\sum_{i=1}^{c} p(i|t) \log p(i|t)$$

• Used in ID3 and C4.5

$$Gini(D_t) = 1 - \sum_{i=1}^{c} p(i|t)^2$$

Classification Error $(D_t) = 1 - \max p(i|t)$

• Used in CART, SLIQ, SPRINT.

Gain

Gain of an attribute split into children {v₁, ..., v_k}: compare the impurity of the parent node with the average impurity of the child nodes

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- Maximizing the gain
- ⇔ Minimizing the weighted average impurity of children nodes
- ⇔ Maximizing average purity
- If I() = Entropy(), then Δ_{info} is called information gain

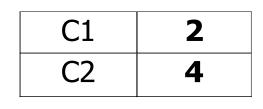
Example

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Gini = 1 - P(C1)² - P(C2)² = 1 - 0 - 1 = 0 Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0 Error = 1 - max (0, 1) = 1 - 1 = 0

C1	1
C2	5

P(C1) = 1/6 P(C2) = 5/6 Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$ Entropy = $- (1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$ Error = $1 - \max (1/6, 5/6) = 1 - 5/6 = 1/6$



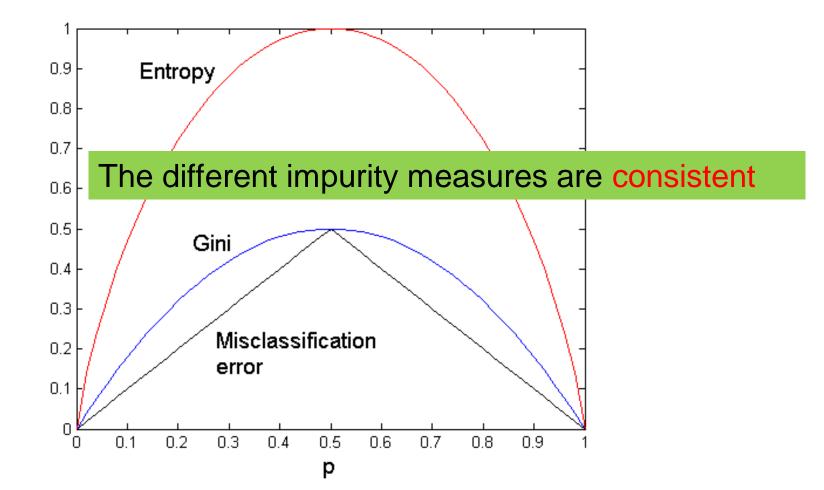
 $P(C1) = 2/6 \qquad P(C2) = 4/6$ Gini = 1 - (2/6)² - (4/6)² = 0.444 Entropy = - (2/6) log₂ (2/6) - (4/6) log₂ (4/6) = 0.92 Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Impurity measures

- All of the impurity measures take value zero (minimum) for the case of a pure node where a single value has probability 1
- All of the impurity measures take maximum value when the class distribution in a node is uniform.

Comparison among Splitting Criteria

For a 2-class problem:



Categorical Attributes

• For binary values split in two

C1

C2

Gin

- For multivalued attributes, for each distinct value, gather counts for each class in the dataset
 - Use the count matrix to make decisions

	Multi-	way sp	lit			(find)	Two-wa best parti	• 1	values)	
	(CarType				CarT	уре		CarT	уре
	Family	Sports	Luxury			{Sports, Luxury}	{Family}		{Sports}	{Family, Luxury}
1	1	2	1	i i	C1	3	1	C1	2	2
2	4	1	1	i	C2	2	4	C2	1	5
ni 0.393			i i	Gini	0.4	00	Gini	0.4	19	

Continuous Attributes

- Use Binary Decisions based on one value
- Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it

• Class counts in each of the partitions, A < v and $A \ge v$

- Exhaustive method to choose best v
 - For each v, scan the database to gather count matrix and compute the impurity index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing impurity
 - · Choose the split position that has the least impurity

	Cheat		No		No No		0	Ye	Yes		Yes Ye		es	No		N	0		0		No		
			Taxable Income																				
Sorted Values		1	60		70)	75 85 90 95 100 120 12								25 220								
Split Positions		5	5	6	65 7		2	80		8	87		92		97		0	122		172		230	
		<=	>	<=	>	<=	(= >		>	<=	~	<=	>	<=	>	<= >		<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	400 0.375		0.343		43 0.4		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420		

Splitting based on impurity

Impurity measures favor attributes with large number of values

- A test condition with large number of outcomes may not be desirable
 - # of records in each partition is too small to make predictions

Splitting based on INFO

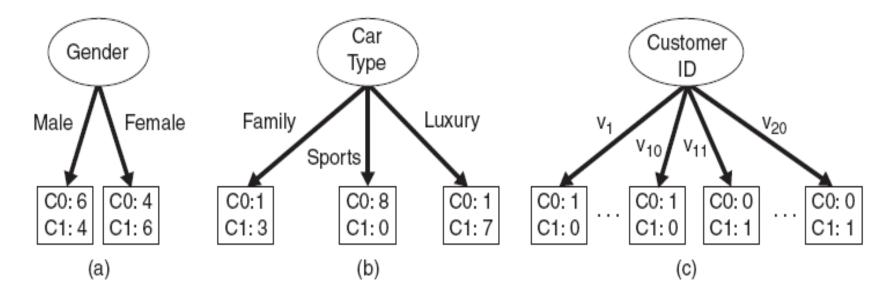


Figure 4.12. Multiway versus binary splits.

Gain Ratio

Splitting using information gain

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partition (SplitINFO). Higher entropy partition (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of impurity

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination (to be discussed later)

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-core sorting.
- You can download the software from: <u>http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz</u>

Other Issues

- Data Fragmentation
- Expressiveness

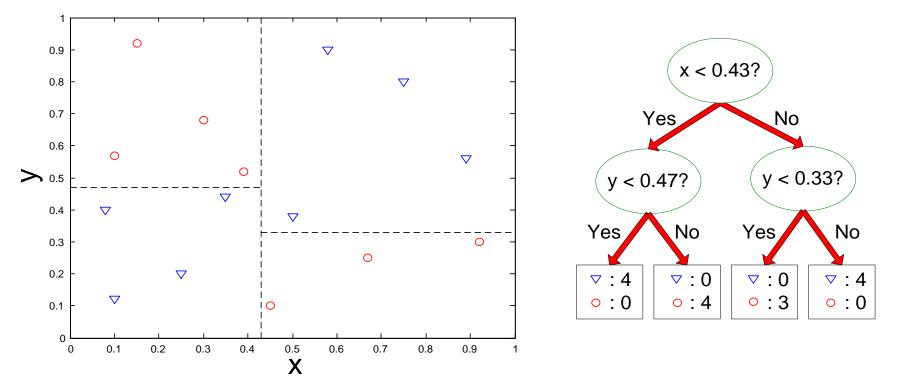
Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision
- You can introduce a lower bound on the number of items per leaf node in the stopping criterion.

Expressiveness

- A classifier defines a function that discriminates between two (or more) classes.
- The expressiveness of a classifier is the class of functions that it can model, and the kind of data that it can separate
 - When we have discrete (or binary) values, we are interested in the class of boolean functions that can be modeled
 - If the data-points are real vectors we talk about the decision boundary that the classifier can model

Decision Boundary

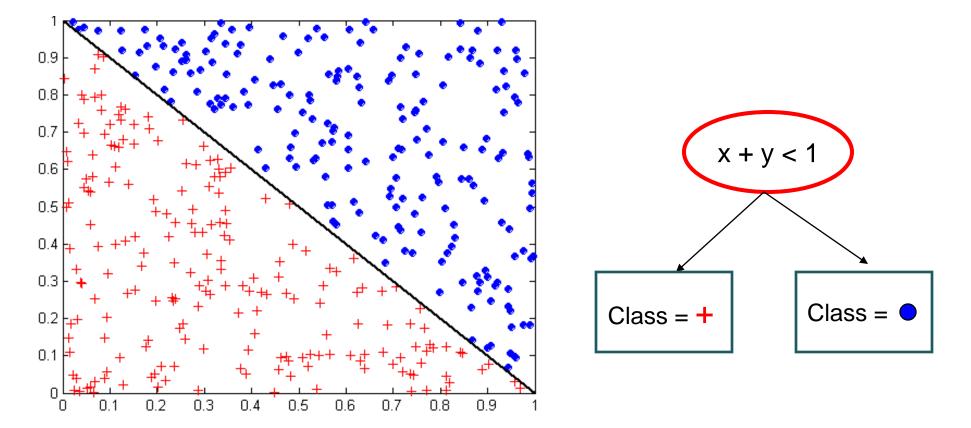


 Border line between two neighboring regions of different classes is known as decision boundary

• Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Less expressive for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time



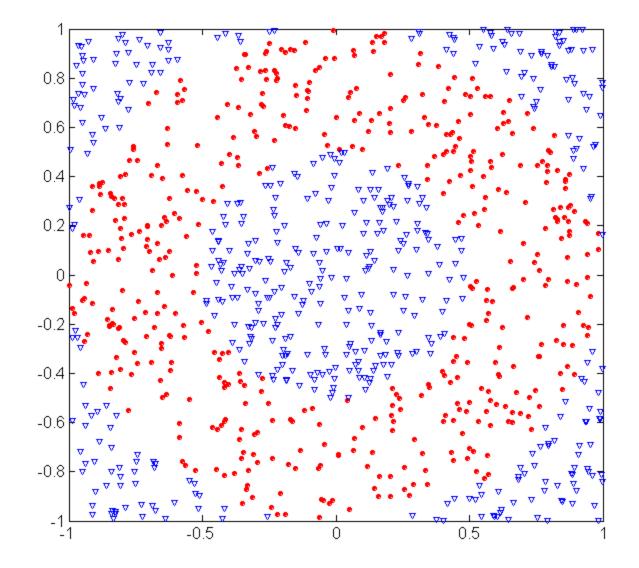
- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Practical Issues of Classification

Underfitting and Overfitting

Evaluation

Underfitting and Overfitting (Example)

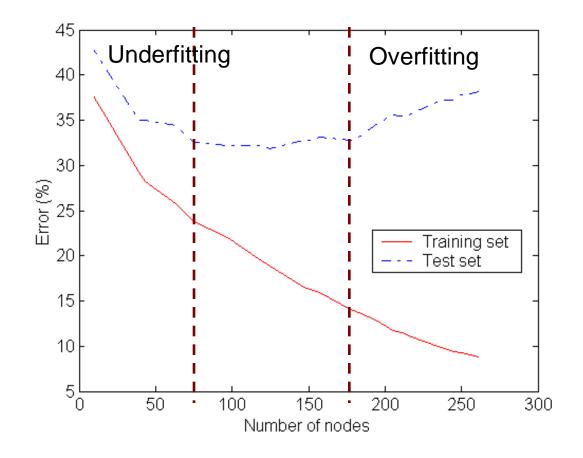


500 circular and 500 triangular data points.

Circular points: $0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$

Triangular points: sqrt($x_1^2 + x_2^2$) > 0.5 or sqrt($x_1^2 + x_2^2$) < 1

Underfitting and Overfitting



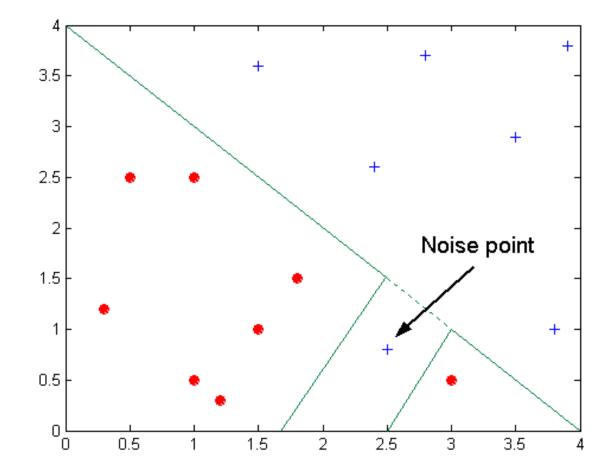
Bias-Variance tradeoff:

- Bias in the estimate:
 - Poor model due to underfitting
- Variance in the estimate:
 - Poor training data; overfitting

Underfitting: when model is too simple, both training and test errors are large

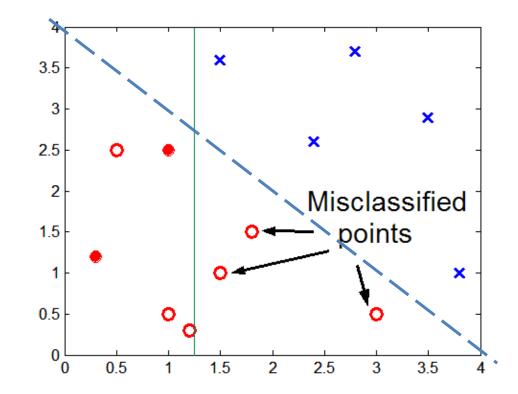
Overfitting: when model is too complex it models the details of the training set and fails on the test set

Overfitting due to Noise



Decision boundary is distorted by noise point

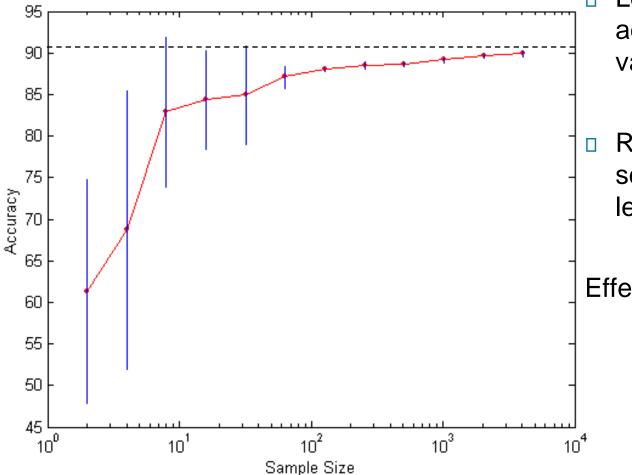
Overfitting due to Insufficient Examples



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Learning Curve



 Learning curve shows how accuracy changes with varying sample size

 Requires a sampling schedule for creating learning curve

Effect of small sample size:

- Bias in the estimate
 - Poor model
- Variance of estimate
 - Poor training data

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of test error, that is, how well the tree will perform on previously unseen records
 - The model does not generalize well
- Generalization: The ability of the model to predict data points that it has not already seen.
- Need new ways for estimating errors

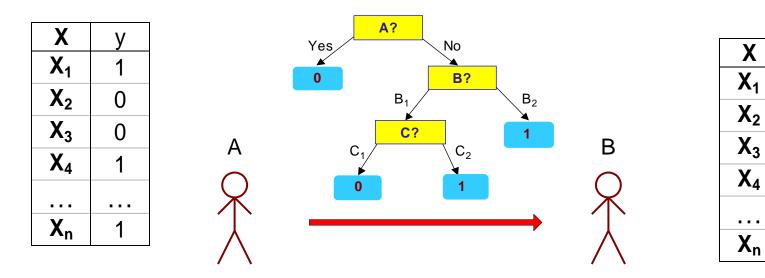
Estimating Generalization Errors

- Re-substitution errors: error on training data ($\sum e(t)$ t: leaf node)
- Generalization errors: error on testing data ($\sum e'(t)$, t: leaf node)
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach (penalize large trees):
 - For each leaf node: e'(t) = (e(t) + 0.5)
 - Total error: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances)
 - Training error = 10/1000 = 1%,
 - Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$
 - Using validation set:
 - Split data into training, validation, test
 - Use validation dataset to estimate generalization error
 - Drawback: less data for training.

Occam's Razor

- Occam's razor: All other things being equal, the simplest explanation/solution is the best.
 - A good principle for life as well
- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)



2

?

?

?

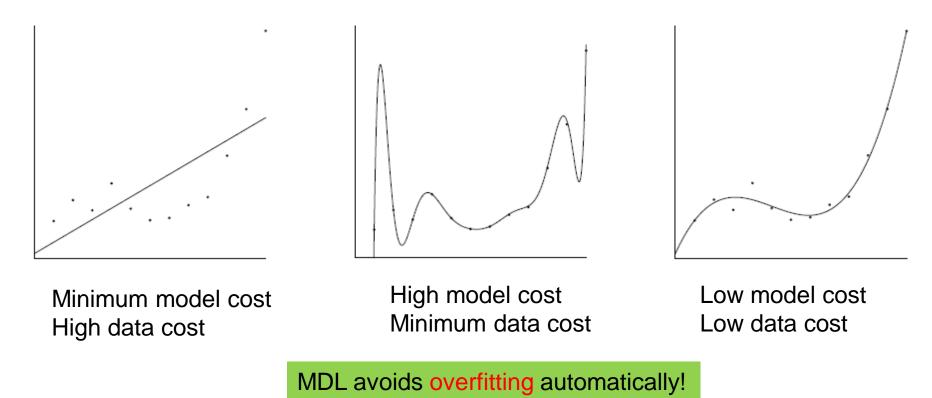
. . .

?

- Cost(Model,Data) = Cost(Model) + Cost(Data|Model)
 - · Search for the least costly model.
- Cost(Model) encodes the decision tree
 - node encoding (number of children) plus splitting condition encoding.
- Cost(Data|Model) encodes the misclassification errors.

Example

- Regression: find a polynomial for describing a set of values
 - Model complexity (model cost): polynomial coefficients
 - Goodness of fit (data cost): difference between real value and the polynomial value



Source: Grunwald et al. (2005) Tutorial on MDL.

How to Address Overfitting

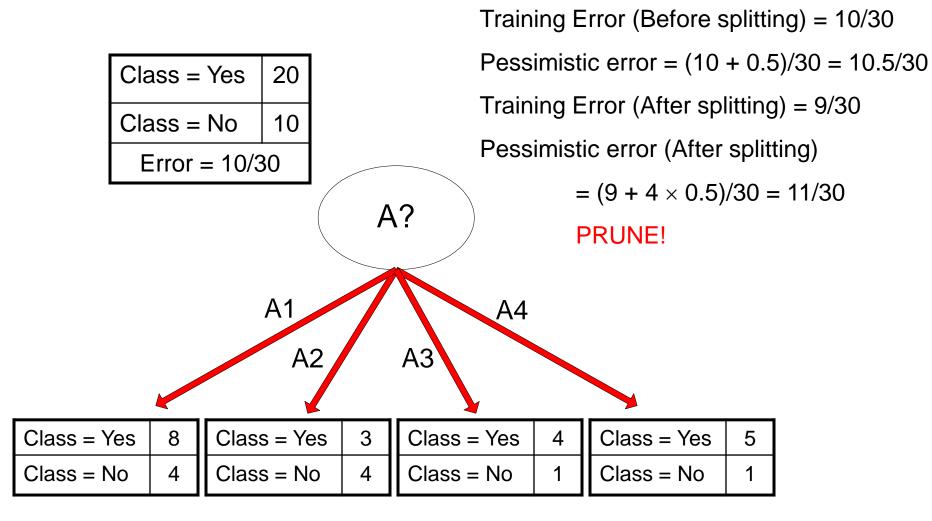
- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instance classes are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

Example of Post-Pruning



Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

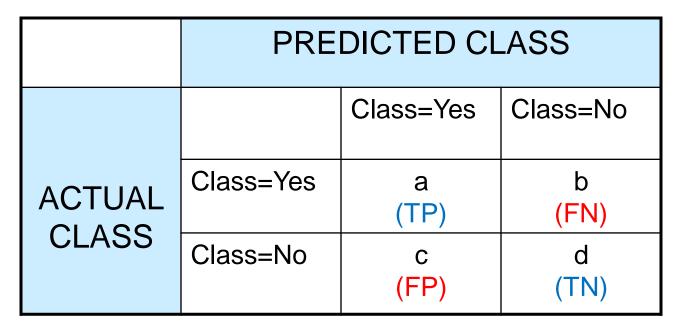
- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)b: FN (false negative)c: FP (false positive)d: TN (true negative)

Metrics for Performance Evaluation...



Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Precision-Recall

Precision (p) =
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$

Recall (r) = $\frac{a}{a+b} = \frac{TP}{TP+FN}$
F-measure (F) = $\frac{1}{\left(\frac{1/r+1/p}{2}\right)} = \frac{2rp}{r+p} = \frac{2a}{2a+b+c} = \frac{2TP}{2TP+FP+FN}$

PREDICTED CLASS

Class=No

b

d

~

Count

Assumption: The class YES is the one we care about.

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (true positive rate) (on the y-axis) against FPR (false positive rate) (on the x-axis)

Look at the **positive** predictions of the classifier and compute:

$$TPR = \frac{TP}{TP + FN}$$

What fraction of true positive instances are predicted correctly ?

$$FPR = \frac{FP}{FP + TN}$$

	PREDICTED CLASS		
		Yes	No
Actual	Yes	a (TP)	b (FN)
	No	с (FP)	d (TN)

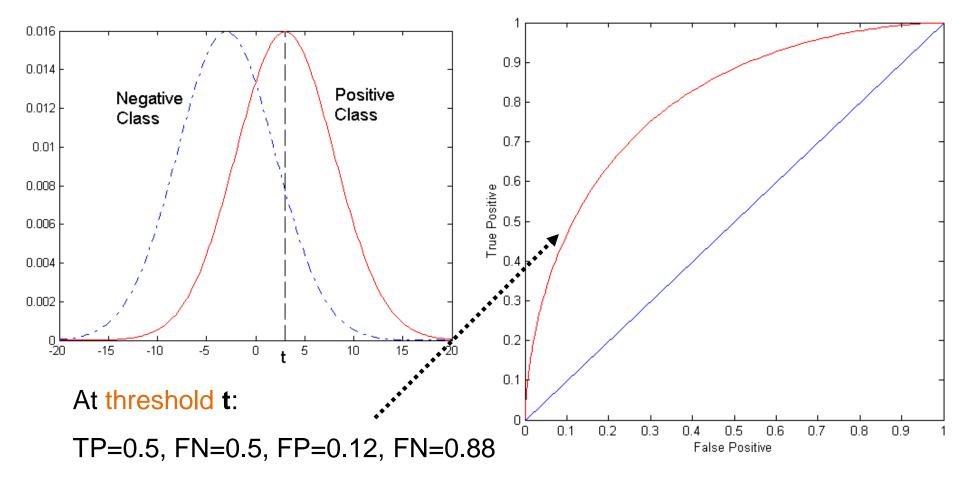
What fraction of true negative instances were predicted incorrectly?

ROC (Receiver Operating Characteristic)

- Performance of a classifier represented as a point on the ROC curve
- Changing some parameter of the algorithm, sample distribution, or cost matrix changes the location of the point

ROC Curve

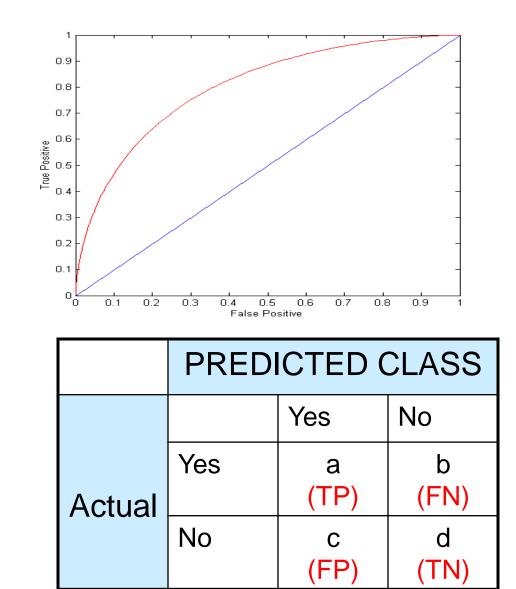
- 1-dimensional data set containing 2 classes (*positive* and *negative*)
- any points located at **x** > **t** is classified as **positive**



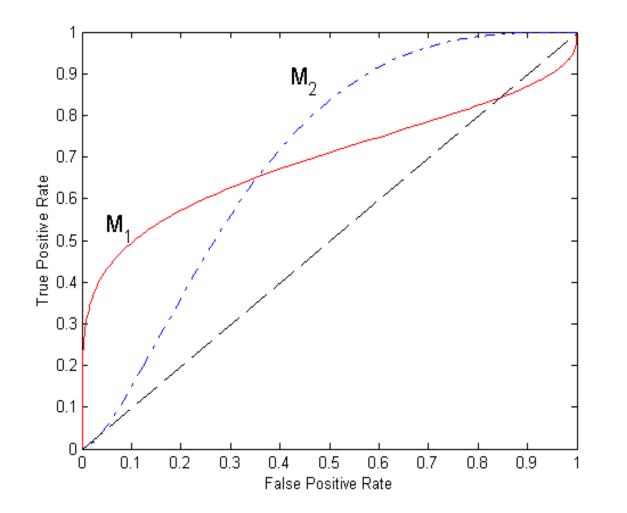
ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class



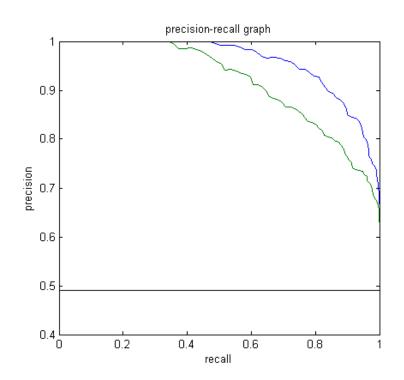
Using ROC for Model Comparison



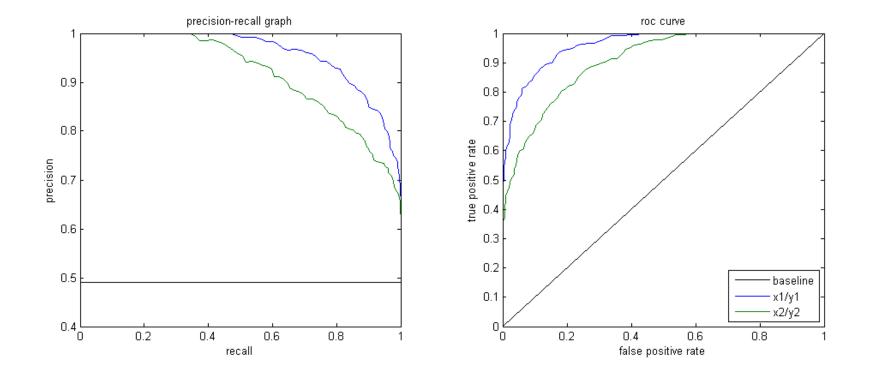
- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve (AUC)
 - □ Ideal: Area = 1
 - Random guess:
 - Area = 0.5

Precision-Recall plot

Usually for parameterized models, it controls the precision/recall tradeoff



ROC curve vs Precision-Recall curve



Area Under the Curve (AUC) as a single number for evaluation

Methods of Performance Estimation

Holdout

- Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - One sample may be biased -- Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
 - Guarantees that each record is used the same number of times for training and testing
- Bootstrap
 - Sampling with replacement
 - ~63% of records used for training, ~27% for testing

Class imbalance

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000
 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example
 - Precision and recall are better measures

Dealing with class Imbalance

- Class imbalance is a problem in training:
 - If the class we are interested in is very rare, then the classifier will ignore it.
- Solution
 - We can balance the class distribution
 - Sample from the larger class so that the size of the two classes is the same
 - Replicate the data of the class of interest so that the classes are balanced
 - Over-fitting issues
 - We can modify the optimization criterion by using a cost sensitive metric

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)
CLASS	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of classifying class j example as class i

Weighted Accuracy

CONFUSION MATRIX	PI	PREDICTED CLASS		
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	C (FP)	d (TN)	
000T	_			
COST	Р	REDICTED CL	ASS	
COST MATRIX	P	REDICTED CL	ASS	
	P C(i j)	REDICTED CL Class=Yes	ASS Class=No	
MATRIX				
	C(i j)	Class=Yes	Class=No	
MATRIX	C(i j)	Class=Yes w ₁	Class=No w ₂	

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	1	100
	-	1	1

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Accuracy = 80% Weighted Accuracy = 8.9%

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	I	5	200

Accuracy = 90% Weighted Accuracy= 9%

Classification Cost

CONFUSION	PI	PREDICTED CLASS		
MATRIX				
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	C (FP)	d (TN)	
		PREDICTED CLASS		
COST MATRIX	Ρ	REDICTED CL	ASS	
	P C(i j)	REDICTED CL Class=Yes	_ASS Class=No	
MATRIX	C(i j)	Class=Yes	Class=No	
MATRIX	C(i j)	Class=Yes w ₁	Class=No w ₂	

Classification Cost = $w_1a + w_2b + w_3c + w_4d$

Some weights can also be negative

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
	-	60	250

Accuracy = 80% Cost = 3910

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Accuracy = 90% Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy = (a + d)/N

Cost	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	р	q
	Class=No	q	р

Cost = p (a + d) + q (b + c) = p (a + d) + q (N - a - d) = q N - (q - p)(a + d) = N [q - (q-p) × Accuracy]