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Model-based clustering

In order to understand our data, we will assume that there is a
generative process (a model) that creates/describes the data, and we
will try to find the model that best fits the data.

- Models of different complexity can be defined, but we will assume that our model is
a distribution from which data points are sampled

- Example: the data is the height of all people in Greece

In most cases, a single distribution is not good enough to describe all
data points: different parts of the data follow a different distribution

- Example: the data is the height of all people in Greece and China

- We need a mixture model

- Different distributions correspond to different clusters in the data.



Gaussian Distribution

- Example: the data is the height of all people in Greece
- Experience has shown that this data follows a Gaussian (Normal) distribution
- Reminder: Normal distribution:
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- 4 = mean, o = standard deviation



Gaussian Model

-What is a model?

- A Gaussian distribution is fully defined by the mean i and the standard
deviation o

- We define our model as the pair of parameters ¢ = (u,0)

- This i1s a general principle: a model is defined as a vector of
parameters 6



e
Fitting the model

- We want to find the normal distribution that best fits our data
- Find the best values for yand o
- But what does best fit mean?



e
Maximum Likelihood Estimation (MLE)

Find the most likely parameters given the data. Given the data
observations X, find 8 that maximizes P(6|X)

- Problem: We do not know how to compute P(6|X)

Using Bayes Rule:
P(X|0)P(6)

P(X)

P(O|X) =

If we have no prior information about &, or X, we can assume
uniform. Maximizing P(6|X) is the same as maximizing P(X|6)



e
Maximum Likelihood Estimation (MLE)

We have a vector X = (x4, ..., x,,) of values and we want to fit a
Gaussian N(u, o) model to the data

- Our parameter setis 6 = (1, 0)
Probabllity of observing point x; given the parameters 6
We cheated a little here.

L 2
_(x;_lzt) More accurately we look at:
o P(x; < x < x; + dx)

P(x;]0) =

V2mo
Probabillity of observing all points (assume independence)
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We want to find the parameters 6 = (u, o) that maximize the probability
P(X]6)



Maximum Likelihood Estimation (MLE)

- The probability P(X]0) as a function of 8 Is called the Likelihood
function
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- It is usually easier to work with the Log-Likelihood function
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- Maximum Likelihood Estimation
- Find parameters u, o that maximize LL(6)
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(a) Histogram of 200 points from a (b) Log likelihood plot of the 200 points for
Gaussian distribution. different values of the mean and standard

deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.



Mixture of Gaussians

Suppose that you have the heights of people from Greece and
China and the distribution looks like the figure below
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

- In this case the data is the result of the mixture of two Gaussians
- One for Greek people, and one for Chinese people

- Identifying for each value which Gaussian is most likely to have generated it
will give us a clustering.
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(a) Probability density function for (b) 20,000 peints generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of twe normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture model

- Avalue x; Is generated according to the following process:

- First select the nationality
- With probability 7, select Greece, with probability 7, select China (7, + . = 1)

- Given the nationality, generate the point from the corresponding Gaussian

s NGOt chna i e e et
¢ P(xllec) ~ N(‘Llc, Uc) If China




e
Mixture Model

- Our model has the following parameters

6 = (mg, mc, lig,0c HENOR)




e
Mixture Model

- Our model has the following parameters
O = (7g, ¢, Kr 06, e Oc)

Mixture probabilities Distribution Parameters

- For value x;, we have:
P(x;|0) = mgP(x;|0s) + mcP(x;|6c)
- For all values X = (x4, ...,x5,)

Pexie) = | [Peale)
=1

- We want to estimate the parameters that maximize the Likelihood of the
data



Mixture Models

- Once we have the parameters 0 = (nt;, T, Ug, Ue, Og, Oc) WE can
estimate the membership probabilities P(G|x;) and P(C|x;) for
each point x;:

- This Is the probability that point x; belongs to the Greek or the Chinese
population (cluster)

- Using Bayes Rule: Given from the Gaussian

distribution N (u;, o) for Greek

P(x;|G)P(G)

P(Glx;) =

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|6¢)mg

- P(x166)m6 + P(x160)mc




EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in ® to some random values
Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership probabilities
P(Glxl) and P(Clxl)

- M-Step: Compute the parameter values that (in expectation) maximize the
data likelihood
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Relationship to K-means

E-Step: Assignment of points to clusters
- K-means: hard assignment, EM: soft assignment

M-Step: Computation of centroids
- K-means assumes common fixed variance (spherical clusters)

- EM: can change the variance for different clusters or different dimensions
(ellipsoid clusters)

If the variance Is fixed then both minimize the same error function
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Figure 9.4. EM clustering of a two-dimensional point set with three clusters.
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Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.



SEQUENCE SEGMENTATION




Sequential data

Sequential data (or time series) refers to data that appear in a specific order.

- The order defines a time axis, that differentiates this data from other cases we have seen so
far

Examples

- The price of a stock (or of many stocks) over time

- Environmental data (pressure, temperature, precipitation etc) over time

- The sequence of queries in a search engine, or the frequency of a single query over time

- The words in a document as they appear in order

- A DNA sequence of nucleotides

- Event occurrences in a log over time

- Etc...

Time series: usually we assume that we have a vector of numeric values that
change over time.



Time-series data

sunspot dataset
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e Financial time series, process monitoring...



Time series analysis

The addition of the time axis defines new sets of problems
- Discovering periodic patterns in time series

- Defining similarity between time series

- Finding bursts, or outliers

Also, some existing problems need to be revisited taking
sequential order into account

- Association rules and Frequent Itemsets in sequential data

- Summarization and Clustering: Sequence Segmentation



Seguence Segmentation

- Goal: discover structure in the sequence and provide a concise
summary

- Given a sequence T, segment it into K contiguous segments that
are as homogeneous as possible

- Similar to clustering but now we require the points in the cluster to
be contiguous

- Commonly used for summarization of histograms in databases



Example




Basic definitions

Sequence T = {t,,t,, ..., ty}: an ordered set of N d-dimensional real points t; € R

A K-segmentation S: a partition of T into K contiguous segments {s,,s,, ..., Sk }.

- Each segment s € S is represented by a single vector 1 € R%(the representative of the segment -
- same as the centroid of a cluster)

Error E(S): The error of replacing individual points with representatives
- Different error functions, define different representatives.

ES) = ) ) (t-u)?

SES tEs
Representative of segment s with SSE: mean u, = l—;ztes t

Sum of Squares Error (SSE):



The K-segmentation problem

Given a sequence | of length /' and a value /7, find a /' -segmentation

of | such that the error - is minimized.

Similar to K-means clustering, but now we need the points in the
clusters to respect the order of the sequence.

- This actually makes the problem easier.



Basic Definitions

- Observation: a K-segmentation S is defined by K + 1 boundary points
by, b1, ..., bg_1, bg.

RA

by =0,b, =N + 1 always.
- We only need to specify by, ..., bx_4



Optimal solution for the k-segmentation problem

Bellman’61: The K-segmentation problem can be solved
optimally using a standard dynamic programming algorithm

Dynamic Programming:
- Construct the solution of the problem by using solutions to problems of

smaller size
Define the dynamic programming recursion

- Build the solution bottom up from smaller to larger instances
Define the dynamic programming table that stores the solutions to the sub-problems



e
Rule of thumb

- Most optimization problems where order is involved can be solved
optimally in polynomial time using dynamic programming.
- The polynomial exponent may be large though



Dynamic Programming Recursion

- Terminology:
- T[1,n]: subsequence {t,,t,, ..., t,}forn < N

- E(S[1,n], k): error of optimal segmentation of subsequence T[1,n] with k£ segments
fork < K

- Dynamic Programming Recursion:

E(S[1,n], k) = ksjnéinn_l{E(S[l,j],k — 1)+ z (t - .U[j+1,n])2}

\ I\ ' | \+istsn ' |

Minimum over all possible Error of optimal Error of k-th (last) segment
placements of the last segmentation S[1, j] when the last segment is
boundary point by _4 with k-1 segments [j + 1,n]




Dynamic programming table

- Two—dimensional table A[1...K,1...N]

Alk.n]l = E(S[1,n] k 1 Lo N
[k, n] (S[1,n] )}\

k-1 N

e

k<j<n-1

K
e .
E(S[1,n],k) = min {E(S[l,J],k—1)+ Z (t — Ln])}

J+1stsn

- Fill the table, top to bottom, left to right.
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n-th point

The cell A[3,n] stores the error of the
optimal solution 3-segmentation of T'[1, n|

In the cell (or in a different table) we also
store the position n — 3 of the boundary so
we can trace back the segmentation

A WODN P




Dynamic-programming algorithm

- Input: Sequence T, length N, K segments, error function E()

- For i=1 to N //Initialize first row
— A[L1,i]=E(T[1...1]) //Error when everything is in one cluster

- For k=1 to K // Initialize diagonal
— Alk,k] =0 // Error when each point in its own cluster

- For k=2 to K
—Fori=k+1 to N
« A[K,I] = minj<i{A[k-1,j]+E(T[j+1...i])}

- To recover the actual segmentation (not just the optimal cost) store
also the minimizing values |



e
Algorithm Complexity

- What is the complexity?
- NK cells to fill

- Computation per cell E(S[1,n], k) = min {E(S[l,j],k — 1+ Xji1ceen(t — H[j+1,n])2}

k<j<n
- O(N) boundaries to check per cell
+ O(N) to compute the second term per checked boundary

- O(N®K) in the naive computation

- We can avoid the last O(N) factor by observing that

2 1 ?
D (= 3 =i 3 )
Jj+1<tsn

j+1stsn j+1stsn

- We can compute in constant time by precomputing partial sums
- Precompute Y, t and X, t2 foralln=1..N

- Algorithm Complexity: O(N?K)



Heuristics

Top-down greedy (TD): O(NK)

- Introduce boundaries one at the time so that you get the largest decrease in
error, until K segments are created.

Bottom-up greedy (BU): O(NlogN)
- Merge adjacent points each time selecting the two points that cause the
smallest increase in the error until K segments

Local Search Heuristics: O(NKI)

- Assign the breakpoints randomly and then move them so that you reduce
the error



Local Search Heuristics

Local Search refers to a class of heuristic optimization algorithms where
we start with some solution and we try to reach an optimum by
iteratively improving the solution with small (local) changes

- Each solution has a set of neighboring solutions:
The set of solutions that can be created with the allowed local changes.

- Usually we move to the best of the neighboring solutions, or one that improves our
optimization function

Local Search algorithms are surprisingly effective

- For some problems they yield optimal solutions or solutions with good
approximation bounds

They have been studied extensively
- Simulated Annealing
- Taboo Search



Other time series analysis

- Using signal processing technigues is common for defining
similarity between series

- Fast Fourier Transform
- Wavelets

- Rich literature in the field



