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Model-based clustering

• In order to understand our data, we will assume that there is a 
generative process (a model) that creates/describes the data, and we 
will try to find the model that best fits the data.
• Models of different complexity can be defined, but we will assume that our model is 

a distribution from which data points are sampled

• Example: the data is the height of all people in Greece

• In most cases, a single distribution is not good enough to describe all 
data points: different parts of the data follow a different distribution
• Example: the data is the height of all people in Greece and China

• We need a mixture model

• Different distributions correspond to different clusters in the data.



Gaussian Distribution

• Example: the data is the height of all people in Greece

• Experience has shown that this data follows a Gaussian (Normal) distribution

• Reminder: Normal distribution:

• 𝜇 = mean, 𝜎 = standard deviation

𝑃 𝑥 =
1

2𝜋𝜎
𝑒
−
𝑥−𝜇 2

2𝜎2



Gaussian Model

• What is a model?

• A Gaussian distribution is fully defined by the mean 𝜇 and the standard 

deviation 𝜎

• We define our model as the pair of parameters 𝜃 = (𝜇, 𝜎)

• This is a general principle: a model is defined as a vector of 

parameters 𝜃



Fitting the model

• We want to find the normal distribution that best fits our data

• Find the best values for 𝜇 and 𝜎

• But what does best fit mean?



Maximum Likelihood Estimation (MLE)

• Find the most likely parameters given the data. Given the data 

observations 𝑋, find 𝜃 that maximizes 𝑃(𝜃|𝑋)

• Problem: We do not know how to compute 𝑃 𝜃 𝑋

• Using Bayes Rule:

𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃)

𝑃(𝑋)

• If we have no prior information about 𝜃, or X, we can assume 

uniform. Maximizing 𝑃 𝜃 𝑋 is the same as maximizing 𝑃 𝑋 𝜃



Maximum Likelihood Estimation (MLE)

• We have a vector 𝑋 = (𝑥1, … , 𝑥𝑛) of values and we want to fit a 
Gaussian 𝑁(𝜇, 𝜎) model to the data
• Our parameter set is 𝜃 = (𝜇, 𝜎)

• Probability of observing point 𝑥𝑖 given the parameters 𝜃

• Probability of observing all points (assume independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that maximize the probability 
𝑃(𝑋|𝜃)
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𝑃 𝑥𝑖|𝜃 =ෑ

𝑖=1

𝑛
1

2𝜋𝜎
𝑒
−
𝑥𝑖−𝜇

2

2𝜎2

We cheated a little here.

More accurately we look at: 

𝑃(𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖 + 𝑑𝑥)



Maximum Likelihood Estimation (MLE)

• The probability 𝑃(𝑋|𝜃) as a function of 𝜃 is called the Likelihood
function

• It is usually easier to work with the Log-Likelihood function

• Maximum Likelihood Estimation
• Find parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)

𝐿(𝜃) =ෑ
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Mixture of Gaussians

• Suppose that you have the heights of people from Greece and 

China and the distribution looks like the figure below 

(dramatization)



Mixture of Gaussians

• In this case the data is the result of the mixture of two Gaussians 

• One for Greek people, and one for Chinese people

• Identifying for each value which Gaussian is most likely to have generated it 

will give us a clustering.



Mixture model

• A value 𝑥𝑖 is generated according to the following process:

• First select the nationality

• With probability 𝜋𝐺 select Greece, with probability 𝜋𝐶 select China (𝜋𝐺 + 𝜋𝐶 = 1)

• Given the nationality, generate the point from the corresponding Gaussian

• 𝑃 𝑥𝑖 𝜃𝐺 ~ 𝑁 𝜇𝐺 , 𝜎𝐺 if Greece

• 𝑃 𝑥𝑖 𝜃𝐶 ~ 𝑁 𝜇𝐶 , 𝜎𝐶 if China

We can also thing of this as a Hidden Variable Z 

that takes two values: Greece and China

𝜃𝐺: parameters of the Greek distribution

𝜃𝐶: parameters of the China distribution



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

Mixture Model

Mixture probabilities

𝜃𝐶: parameters of the China distribution

𝜃𝐺: parameters of the Greek distribution



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

• For value 𝑥𝑖, we have:

𝑃 𝑥𝑖|Θ = 𝜋𝐺𝑃 𝑥𝑖 𝜃𝐺 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶)

• For all values 𝑋 = 𝑥1, … , 𝑥𝑛

𝑃 𝑋|Θ = ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖|Θ)

• We want to estimate the parameters that maximize the Likelihood of the 
data

Mixture Model

Mixture probabilities Distribution Parameters



Mixture Models

• Once we have the parameters Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜇𝐶 , 𝜎𝐺 , 𝜎𝐶) we can 

estimate the membership probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖 for 

each point 𝑥𝑖: 

• This is the probability that point 𝑥𝑖 belongs to the Greek or the Chinese 

population (cluster)

• Using Bayes Rule:

𝑃 𝐺 𝑥𝑖 =
𝑃 𝑥𝑖 𝐺 𝑃(𝐺)

𝑃 𝑥𝑖 𝐺 𝑃 𝐺 + 𝑃 𝑥𝑖 𝐶 𝑃(𝐶)

=
𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺

𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺 + 𝑃 𝑥𝑖 𝜃𝐶 𝜋𝐶

Given from the Gaussian 

distribution 𝑁(𝜇𝐺 , 𝜎𝐺) for Greek



EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in Θ to some random values

• Repeat until convergence

• E-Step: Given the parameters Θ estimate the membership probabilities 

𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖
• M-Step: Compute the parameter values that (in expectation) maximize the 

data likelihood
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Relationship to K-means

• E-Step: Assignment of points to clusters 

• K-means: hard assignment, EM: soft assignment

• M-Step: Computation of centroids

• K-means assumes common fixed variance (spherical clusters)

• EM: can change the variance for different clusters or different dimensions 

(ellipsoid clusters)

• If the variance is fixed then both minimize the same error function









SEQUENCE SEGMENTATION



Sequential data

• Sequential data (or time series) refers to data that appear in a specific order.
• The order defines a time axis, that differentiates this data from other cases we have seen so 

far

• Examples
• The price of a stock (or of many stocks) over time

• Environmental data (pressure, temperature, precipitation etc) over time

• The sequence of queries in a search engine, or the frequency of a single query over time

• The words in a document as they appear in order

• A DNA sequence of nucleotides

• Event occurrences in a log over time

• Etc…

• Time series: usually we assume that we have a vector of numeric values that 
change over time.



Time-series data

⚫ Financial time series, process monitoring…



Time series analysis

• The addition of the time axis defines new sets of problems

• Discovering periodic patterns in time series

• Defining similarity between time series

• Finding bursts, or outliers

• Also, some existing problems need to be revisited taking 

sequential order into account

• Association rules and Frequent Itemsets in sequential data

• Summarization and Clustering: Sequence Segmentation



Sequence Segmentation

• Goal: discover structure in the sequence and provide a concise 

summary

• Given a sequence T, segment it into K contiguous segments that 

are as homogeneous as possible

• Similar to clustering but now we require the  points in the cluster to 

be contiguous

• Commonly used for summarization of histograms in databases



Example

t

R

t

R

Segmentation into 4 segments

Homogeneity: points are 

close to the mean value 

(small error)



Basic definitions

• Sequence 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑁}: an ordered set of 𝑁 𝑑-dimensional real points 𝑡𝑖 ∈ 𝑅𝑑

• A 𝐾-segmentation 𝑆: a partition of 𝑇 into 𝐾 contiguous segments {𝑠1, 𝑠2, … , 𝑠𝐾}. 
• Each segment 𝑠 ∈ 𝑆 is represented by a single vector 𝜇 ∈ ℝ𝑑(the representative of the segment -

- same as the centroid of a cluster)

• Error E(S): The error of replacing individual points with representatives
• Different error functions, define different representatives.

• Sum of Squares Error (SSE):

𝐸 𝑆 = 

𝑠∈𝑆



𝑡∈𝑠

𝑡 − 𝜇𝑠
2

• Representative of segment 𝑠 with SSE: mean 𝜇𝑠 =
1

|𝑠|
σ𝑡∈𝑠 𝑡



The K-segmentation problem

• Similar to 𝐾-means clustering, but now we need the points in the 
clusters to respect the order of the sequence.
• This actually makes the problem easier.

⚫ Given a sequence 𝑇 of length 𝑁 and a value 𝐾, find a 𝐾-segmentation 
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝐾} of T such that the SSE error E is minimized.



Basic Definitions

• Observation: a 𝐾-segmentation 𝑆 is defined by 𝐾 + 1 boundary points 
𝑏0, 𝑏1, … , 𝑏𝐾−1, 𝑏𝐾.

• 𝑏0 = 0, 𝑏𝑘 = 𝑁 + 1 always. 
• We only need to specify 𝑏1, … , 𝑏𝐾−1

t

R

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4



Optimal solution for the k-segmentation problem

Bellman’61: The K-segmentation problem can be solved 
optimally using a standard dynamic programming algorithm

• Dynamic Programming:

• Construct the solution of the problem by using solutions to problems of 

smaller size

• Define the dynamic programming recursion

• Build the solution bottom up from smaller to larger instances

• Define the dynamic programming table that stores the solutions to the sub-problems



Rule of thumb

• Most optimization problems where order is involved can be solved 

optimally in polynomial time using dynamic programming. 

• The polynomial exponent may be large though



Dynamic Programming Recursion

• Terminology: 

• 𝑇[1, 𝑛]: subsequence {𝑡1, 𝑡2, … , 𝑡𝑛} for 𝑛 ≤ 𝑁

• 𝐸 𝑆[1, 𝑛], 𝑘 : error of optimal segmentation of subsequence 𝑇[1, 𝑛] with 𝑘 segments 
for 𝑘 ≤ 𝐾

• Dynamic Programming Recursion:

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 + 

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

Error of k-th (last) segment 

when the last segment is 

[𝑗 + 1, 𝑛]

Error of optimal 

segmentation 𝑆[1, 𝑗]
with k-1 segments

Minimum over all possible 

placements of the last 

boundary point 𝑏𝑘−1



• Two−dimensional table 𝐴[1…𝐾, 1…𝑁]

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 + 

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

• Fill the table, top to bottom, left to right.

N1

1

K

Dynamic programming table

k

n𝐴 𝑘, 𝑛 = 𝐸 𝑆 1, 𝑛 , 𝑘

Error of optimal K-segmentation

k-1

n-1



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n

𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1 ൝

ൡ

𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

𝑏2𝑏1

Three segnments means two boundaries 𝑏1, 𝑏2



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1 ൝

ൡ

𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

𝑏2𝑏1



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1
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3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘
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𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

𝑏2𝑏1



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1 ൝

ൡ

𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

𝑏2𝑏1



Example

R

n-th point

k = 3

Optimal segmentation S[1:n]
N1

1

2

3

4

n

𝑏2𝑏1

The cell 𝐴[3, 𝑛] stores the error of the 

optimal solution 3-segmentation of 𝑇[1, 𝑛]

In the cell (or in a different table) we also 

store the position 𝑛 − 3 of the boundary so 

we can trace back the segmentation

n-3



Dynamic-programming algorithm

• Input: Sequence T, length N, K segments, error function E()

• For i=1 to N //Initialize first row
– A[1,i]=E(T[1…i]) //Error when everything is in one cluster

• For k=1 to K // Initialize diagonal
– A[k,k] = 0 // Error when each point in its own cluster

• For k=2 to K

– For i=k+1 to N

• A[k,i] = minj<i{A[k-1,j]+E(T[j+1…i])}

• To recover the actual segmentation (not just the optimal cost) store 
also the minimizing values j



Algorithm Complexity
• What is the complexity?

• NK cells to fill

• Computation per cell 𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j<n

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 + σ𝑗+1≤𝑡≤𝑛 𝑡 − 𝜇 𝑗+1,𝑛
2

• O(N) boundaries to check per cell

• O(N) to compute the second term per checked boundary

• O(N3K) in the naïve computation

• We can avoid the last O(N) factor by observing that 



𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2
= 

𝑗+1≤𝑡≤𝑛

𝑡2 −
1

𝑛 − 𝑗


𝑗+1≤𝑡≤𝑛

𝑡

2

• We can compute in constant time by precomputing partial sums
• Precompute σ1≤𝑡≤𝑛 𝑡 and σ1≤𝑡≤𝑛 𝑡

2 for all n = 1..N

• Algorithm Complexity: O(N2K)



Heuristics

• Top-down greedy (TD): O(NK)
• Introduce boundaries one at the time so that you get the largest decrease in 

error, until K segments are created.

• Bottom-up greedy (BU): O(NlogN)
• Merge adjacent points each time selecting the two points that cause the 

smallest increase in the error until K segments

• Local Search Heuristics: O(NKI)
• Assign the breakpoints randomly and then move them so that you reduce 

the error



Local Search Heuristics

• Local Search refers to a class of heuristic optimization algorithms where 
we start with some solution and we try to reach an optimum by 
iteratively improving the solution with small (local) changes
• Each solution has a set of neighboring solutions:

• The set of solutions that can be created with the allowed local changes.

• Usually we move to the best of the neighboring solutions, or one that improves our 
optimization function

• Local Search algorithms are surprisingly effective
• For some problems they yield optimal solutions or solutions with good 

approximation bounds

• They have been studied extensively
• Simulated Annealing

• Taboo Search



Other time series analysis

• Using signal processing techniques is common for defining 

similarity between series

• Fast Fourier Transform

• Wavelets

• Rich literature in the field


