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Jaccard Similarity 

• The Jaccard similarity (Jaccard coefficient) of two sets S1, 
S2 is the size of their intersection divided by the size of 
their union. 
• JSim (S1, S2) = |S1S2| / |S1S2|. 

 

 

 

 

 

 

 

• Extreme behavior: 
• Jsim(X,Y) = 1, iff X = Y 

• Jsim(X,Y) = 0 iff X,Y have no elements in common 

• JSim is symmetric 

 

 

 

 

3 in intersection. 

8 in union. 

Jaccard similarity 

   = 3/8 



Cosine Similarity 

• Sim(X,Y) = cos(X,Y) 
• The cosine of the angle between X and Y 

 

• If the vectors are aligned (correlated) angle is zero degrees and 
cos(X,Y)=1 

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(X,Y) = 0 

 

• Cosine is commonly used for comparing documents, where we 
assume that the vectors are normalized by the document length. 



Application: Recommendations 

• Recommendation systems 

• When a user buys or rates an item we want to 

recommend other items that the user may like 

• Initially applied to books, but now recommendations are 

everywhere: songs, movies, products, restaurants, hotels, etc. 

 

• Commonly used algorithms: 

• Find the k users most similar to the user at hand and 

recommend items that they like. 

• Find the items most similar to the items that the user 

has previously liked, and recommend these items. 



Application: Finding near duplicates 

• Find duplicate and near-duplicate documents 

from a web crawl. 

• Why is it important: 

• Identify mirrored web pages, and avoid indexing them, 

or serving them multiple times 

• Find replicated news stories and cluster them under a 

single story. 

• Identify plagiarism 

• Near duplicate documents differ in a few 

characters, words or sentences 



Finding similar items  

• The problems we have seen so far have a 

common component 

• We need a quick way to find highly similar items to a 

query item 

• OR, we need a method for finding all pairs of items that 

are highly similar. 

• Also known as the Nearest Neighbor problem, or 

the All Nearest Neighbors problem 



SKETCHING  

AND  

LOCALITY SENSITIVE 

HASHING 
Thanks to: 

Rajaraman and Ullman, “Mining Massive Datasets” 

Evimaria Terzi, slides for Data Mining Course.  



Before we start: Hash Functions 

• A hash function is a function that maps 
objects of arbitrary sizes (e.g., strings) to a 
space of fixed size (usually, integers). 
• Simple example: ℎ 𝑥 = 𝑎𝑥 + 𝑏  𝑚𝑜𝑑 𝑛 

• If two values are mapped to the same 
integer we say that we have a collision 

• Hash functions are usually randomized  
• E.g., values 𝑎, 𝑏 are selected at random 

• They are designed so that the probability of 
collision is very small. 

• Perfect hash functions: map each valid input to a 
different hash value. 

• Hash functions are used in Hash Tables to 
implement Dictionaries 

 



Problem 

• Given a (large) collection of documents find all 

pairs of documents which are near duplicates 

• Their similarity is very high 

 

• What if we want to find identical documents? 



Main issues 

• What is the right representation of the document 

when we check for similarity? 

• E.g., representing a document as a set of characters 

will not do (why?) 

• When we have billions of documents, keeping the 

full text in memory is not an option. 

• We need to find a shorter representation 

• How do we do pairwise comparisons of billions of 

documents? 

• If we wanted exact match it would be ok, can we 

replicate this idea? 
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Three Essential Techniques for Similar 

Documents 

1. Shingling : convert documents, emails, etc., 

to sets. 

 

2. Minhashing : convert large sets to short 

signatures, while preserving similarity. 

 

3. Locality-Sensitive Hashing (LSH): focus on 

pairs of signatures likely to be similar. 
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The Big Picture 

Docu- 

ment 

The set 

of strings 

of length k 

that appear 

in the doc- 

ument 

Signatures : 

short integer 

vectors that 

represent the 

sets, and 

reflect their 

similarity 

Locality- 

sensitive 

Hashing 

Candidate 

pairs : 

those pairs 

of signatures 

that we need 

to test for 

similarity. 
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Shingles 

• A k -shingle (or k -gram) for a document is a 

sequence of k characters that appears in the 

document. 

• Example: document = abcab. k=2   

• Set of 2-shingles = {ab, bc, ca}. 

• Option: regard shingles as a bag, and count ab twice. 

 

• Represent a document by its set of k-shingles. 



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is a rose is a rose 

a rose is  

  rose is a 

  rose is a  

   ose is a r 

    se is a ro 

     e is a ros 

       is a rose 

       is a rose  

        s a rose i 

      a rose is 

  a rose is  



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is a rose is a rose 

a rose is  

  rose is a 

  rose is a  

   ose is a r 

    se is a ro 

     e is a ros 

       is a rose 

       is a rose  

        s a rose i 

      a rose is 

  a rose is  

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 
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Working Assumption 

• Documents that have lots of shingles in common 
have similar text, even if the text appears in 
different order. 

• Careful: you must pick k  large enough, or most 
documents will have most shingles. 
• Extreme case k = 1: all documents are the same 

• k = 5 is OK for short documents; k = 10 is better for long 
documents. 

• Alternative ways to define shingles: 
• Use words instead of characters 

• Anchor on stop words (to avoid templates) 
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Shingles: Compression Option 

• To compress long shingles, we can hash them to 

(say) 4 bytes. 

ℎ: 𝑉𝑘 → 0,1 64 

• Represent a doc by the set of hash values of its k-

shingles. 

• Shingle 𝑠 will be represented by the 64-bit integer ℎ(𝑠) 

• From now on we will assume that shingles are 

integers 

• Collisions are possible, but very rare 



Fingerprinting 

• Hash shingles to 64-bit integers 

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 

1111 

2222 

3333 

4444 

5555 

6666 

7777 

8888 

9999 

0000 

Set of Shingles Set of 64-bit integers 
Hash function 

(Rabin’s fingerprints) 
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Basic Data Model: Sets 

• Document: A document is represented as a set 
shingles (more accurately, hashes of shingles) 

 

• Document similarity: Jaccard similarity of the sets of 
shingles. 
• Common shingles over the union of shingles 

• Sim (C1, C2) = |C1C2|/|C1C2|. 

 

• Although we use the documents as our driving 
example the techniques we will describe apply to any 
kind of sets. 

• E.g., similar customers or items. 



Signatures  

• Problem: shingle sets are still too large to be kept in memory. 

 

• Key idea: “hash” each set S  to a small signature Sig (S), such 
that: 

 

1. Sig (S) is small enough that we can fit a signature in main memory 
for each set. 

 

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig (S1) and 
Sig (S2). (signature preserves similarity). 

 

• Warning: This method can produce false negatives, and false 
positives (if an additional check is not made). 
• False negatives: Similar items deemed as non-similar 

• False positives: Non-similar items deemed as similar 
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From Sets to Boolean Matrices 

• Represent the data as a boolean matrix M 

• Rows = the universe of all possible set elements  

• In our case, shingle fingerprints take values in [0…264-1] 

• Columns = the sets  

• In our case, documents, sets of shingle fingerprints 

• M(r,S) = 1 in row r  and column S  if and only if r  is a 

member of S. 

 

• Typical matrix is sparse. 

• We do not really materialize the matrix 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

At least one of the columns has value 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

Both columns have value 1 
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Minhashing 

• Pick a random permutation of the rows (the 

universe U). 

• Define “hash” function for set S 

• h(S) = the index of the first row (in the permuted order) 

in which column S has 1. 

same as:  

• h(S) = the index of the first element of S in the permuted 

order. 

• Use k (e.g., k = 100) independent random 

permutations to create a signature. 



Example of minhash signatures 

• Input matrix 

elem

ent S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

A 

C 

G 

F 

B 

E 

D 

index elem

ent S1 S2 S3 S4 

1 A 1 0 1 0 

2 C 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 B 1 0 0 1 

6 E 0 1 1 1 

7 D 0 1 0 1 

1 2 1 2 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

elem

ent S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

D 

B 

A 

C 

F 

G 

E 

index elem

ent S1 S2 S3 S4 

1 D 0 1 0 1 

2 B 1 0 0 1 

3 A 1 0 1 0 

4 C 0 1 0 1 

5 F 1 0 1 0 

6 G 1 0 1 0 

7 E 0 1 1 1 

2 1 3 1 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

elem

ent S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

C 

D 

G 

F 

A 

B 

E 

index elem

ent S1 S2 S3 S4 

1 C 0 1 0 1 

2 D 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 A 1 0 1 0 

6 B 1 0 0 1 

7 E 0 1 1 1 

3 1 3 1 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

h1 1 2 1 2 

h2 2 1 3 1 

h3 3 1 3 1 

≈ 

• Sig(S) = vector of hash values  
• e.g., Sig(S2) = [2,1,1] 

• Sig(S,i) = value of the i-th hash 

function for set S 
• E.g., Sig(S2,3) = 1 

Signature matrix 

We now have a 

smaller dataset 

with just 𝑘 rows 



A Subtle Point 

• People sometimes ask whether the minhash 

value should be the original number of the row, or 

the number in the permuted order (as we did in 

our example). 

• Answer: it doesn’t matter. 

• You only need to be consistent, and assure that 

two columns get the same value if and only if 

their first 1’s in the permuted order are in the 

same row. 

30 
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Hash function Property 

 

Pr(h(S1) = h(S2)) = Sim(S1,S2) 

 
• where the probability is over all choices of  
permutations.  

 

• Why? 
• Recall that the union 𝑆1 ∪ 𝑆2 contains the rows with at 

least one 1. 
• These are the rows that we care about 

• The first row in the permutation where one of the two sets has 
value 1 belongs to the union. 

• We have equality if both sets have value 1, and this row 
belongs to the intersection 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Rows C,D could be anywhere 

they do not affect the probability 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The * rows belong to the union 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The question is what is the value 

of the first * element 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

If it belongs to the intersection 

then h(X) = h(Y) 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Every element of the union is equally likely 

to be the * element 

Pr(h(X) = h(Y)) = 
| A,F,G |

| A,B,E,F,G |
= 

3
5

= Sim(X,Y) 

 



Zero similarity is preserved 

High similarity is well approximated 
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Similarity for Signatures 

• The similarity of signatures  is the fraction of the 
hash functions in which they agree. 

 

 

 

 

 

 

 
• With multiple signatures we get a good approximation 

• Why? What is the expected value of the fraction of agreements? 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

1 2 1 2 

2 1 3 1 

3 1 3 1 

≈ 

Actual Sig 

(S1, S2) 0 0 

(S1, S3) 3/5 2/3 

(S1, S4) 1/7 0 

(S2, S3) 0 0 

(S2, S4) 3/4 1 

(S3, S4) 0 0 

Signature matrix 



Is it now feasible? 

• Assume a billion rows 

• Hard to pick a random permutation of 1…billion 

• Even representing a random permutation 
requires 1 billion entries!!! 

• How about accessing rows in permuted order? 

• 

 

• Instead of permutations we will consider hash 
functions that map the N rows to N buckets 
• Some collisions may happen, but with well chosen 

functions they are rare. 



Approximating row permutations 

Pick k=100 hash functions (h1,…,hk) 

for each set S  

  for each row r that appears in S 

  for each hash function hi  

  compute hi (r )  

  for each hash function hi    

      Sig(S,i) = min hi (r); 

 

 Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); 

i.e., hi (r) gives the min index for the i-th permutation 

In practice this means selecting 

the function parameters 

hi (r) = index of shingle r in permutation 

Find the minimum index for hash 

function hi  



Approximating row permutations 

Pick k=100 hash functions (h1,…,hk) 

for each row r  

  for each hash function hi  

      compute hi (r )  

      for each column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); 

i.e., hi (r) gives the min index for the i-th permutation 

In practice this means 

selecting the function 

parameters 

In practice only the rows (shingles) 

that appear in the data 

hi (r) = index of shingle r in permutation 

S contains shingle r 

Find the shingle r with minimum index 
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Example 

Row S1 S2 

  A  1  0 

  B  0  1 

  C  1  1 

  D  1  0 

  E  0  1 

h(x) = x+1 mod 5 

h(0) = 1  1 - 

g(0) = 3  3 - 

h(1) = 2  1 2 

g(1) = 0  3 0 

h(2) = 3  1 2 

g(2) = 2  2 0 

h(3) = 4  1 2 

g(3) = 4  2 0 

h(4) = 0  1 0 

g(4) = 1  2 0 

Sig1 Sig2 

Row S1 S2 

  E    0  1  

  A    1  0 

  B    0  1 

  C    1  1 

  D    1  0 

   

Row S1 S2 

  B    0  1  

  E    0  1  

  C    1  0 

  A    1  1 

  D   1  0 

   

x 

0 

1 

2 

3 

4 

h(x) 

1 

2 

3 

4 

0 

g(x) 

3 

0 

2 

4 

1 

g(x) = 2x+1 mod 5 
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Implementation – (4) 

• Often, data is given by column, not row. 

• E.g., columns = documents, rows = shingles. 

• If so, sort matrix once so it is by row. 

• And always  compute hi (r ) only once for each 

row. 
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Finding similar pairs 

• Problem: Find all pairs of documents with 

similarity at least t = 0.8 

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns. 

• Example: 106 columns implies 5*1011 column-

comparisons. 

• At 1 microsecond/comparison: 6 days. 
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Locality-Sensitive Hashing 

• What we want: a function f(X,Y) that tells whether or not X  
and Y  is a candidate pair: a pair of elements whose 
similarity must be evaluated. 

 

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature. 
• Easy to test by hashing the signatures. 

• Similar sets are more likely to have the same signature. 

• Likely to produce many false negatives. 
• Requiring full match of signature is strict, some similar sets will be lost. 

 

• Improvement: Compute multiple signatures; candidate 
pairs should have at least one common signature.  
• Reduce the probability for false negatives. 

! Multiple levels of Hashing! 
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Signature matrix reminder 

Matrix M 

n hash functions 

Sig(S): 

signature for set S 

hash function i 

Sig(S,i) 

signature for set S’ 

Sig(S’,i) 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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Partition into Bands – (1) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 
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Partitioning into bands 
Matrix Sig 

r  rows 

per band 

b  bands 

   One 

signature 

n = b*r   hash functions 

b  mini-signatures 



48 

Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash 

table. 

• Mini-signatures that hash to the same bucket are almost 

certainly identical. 



49 

Matrix M 

r  rows b  bands 

3 2 1 5 6 4 7 

Hash Table Columns 2 and 6 

are (almost certainly) identical. 

Columns 6 and 7 are 

surely different. 
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Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  
rows. 
• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash 
table. 
• Mini-signatures that hash to the same bucket are almost 

certainly identical. 

• Candidate column pairs are those that hash to the 
same bucket for at least 1 band. 
• I.e., they have at least one mini-signature in common. 

• Tune b and r  to catch most similar pairs, but few non-
similar pairs. 
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Analysis of LSH – What We Want 

       Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

No chance 

if s < t 

Probability 

= 1 if s > t 
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What One Band of One Row Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

Remember: 

probability of 

equal hash-values 

= similarity 

Single hash signature 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

s r  

All rows 

of a band 

are equal 

1 - 

Some row 

of a band 

unequal 

( )b  

 

No bands 

identical 

1 - 

At least 

one band 

identical 

t ~ (1/b)1/r  
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Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 

t = 0.5 
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Suppose S1, S2 are 80% Similar 

• We want all 80%-similar pairs. Choose 20 bands of 5 
integers/band. 

 

• Probability S1, S2 identical in one particular band:  

(0.8)5 = 0.328. 

 

• Probability S1, S2 are not  similar in any of the 20 bands: 

(1-0.328)20 = 0.00035  
 

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives. 

 

• Probability S1, S2 are similar in at least one of the 20 
bands:  

1-0.00035 = 0.999 
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Suppose S1, S2 Only 40% Similar 

• Probability S1, S2 identical in any one particular 
band:  

  (0.4)5  =  0.01 . 

 

• Probability S1, S2 are not identical in any of the 
20 bands:  

   1 − 0.01 20 = 0.81 

 

• False positive probability = 0.19. But false 
positives much lower for similarities << 40%.  
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LSH Summary 

• Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that do not 

have similar signatures. 

• Check in main memory that candidate pairs 

really do have similar signatures. 

• Optional: In another pass through data, check 

that the remaining candidate pairs really 

represent similar sets . 



Locality-sensitive hashing (LSH) 

• Big Picture: Construct hash functions h: Rd
 U such 

that for any pair of objects p,q, for distance function D 
we have: 
• If D(p,q)≤r, then Pr[h(p)=h(q)] is high 

• Close (similar) objects have high probability to be hashed together 

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small 

• Distant (dissimilar) objects have small probability of being hashed 
together 

• Then, we can find close pairs by hashing 

 

• LSH is a general framework: for a given distance 
function D we need to find the right h 
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LSH for Cosine Distance 

• For cosine distance, there is a technique 

analogous to minhashing for generating a 

Locality Sensitive Hashing functions 

• Using random hyperplanes. 
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Random Hyperplanes 

• Pick a random vector 𝑣, which determines a 
hash function ℎ𝑣  with two buckets. 
• ℎ𝑣 𝑥 =  +1 if 𝑣 ⋅ 𝑥 > 0;  

• ℎ𝑣 𝑥 = −1 if 𝑣 ⋅ 𝑥 < 0. 

 

• LS-family H = set of all functions derived from 
any vector. 

 

• Claim:  
• Prob[h(x)=h(y)] = 1 – (angle between x and y)/180 
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Proof of Claim 

x 

y 

Look in the plane of x and y. 

θ 

hv(x) = +1 

hv(x) = -1 

For a random vector v the values of the 

hash functions hv(x) and hv(y) depend 

on where the vector v falls 

hv(y) = -1 

hv(y) = +1 

hv(x) ≠ hv(y) when v falls into the 

shaded area. 

What is the probability of this for 

a randomly chosen vector v? 

θ 

θ 

P[hv(x) ≠ hv(y)] = 2θ/360 = θ/180 

 

P[hv(x) = hv(y)] = 1- θ/180 
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Signatures for Cosine Distance 

• Pick some number of vectors, and hash your 

data for each vector. 

• The result is a signature (sketch ) of +1’s and –

1’s that can be used for LSH like the minhash 

signatures for Jaccard distance. 



63 

Simplification 

• We need not pick from among all possible vectors 

v  to form a component of a sketch. 

• It suffices to consider only vectors v  consisting of 

+1 and –1 components. 


