
DATA MINING

LECTURE 5
Sketching, Locality Sensitive Hashing

2

Jaccard Similarity

• The Jaccard similarity (Jaccard coefficient) of two sets S1,
S2 is the size of their intersection divided by the size of
their union.
• JSim (S1, S2) = |S1S2| / |S1S2|.

• Extreme behavior:
• Jsim(X,Y) = 1, iff X = Y

• Jsim(X,Y) = 0 iff X,Y have no elements in common

• JSim is symmetric

3 in intersection.

8 in union.

Jaccard similarity

 = 3/8

Cosine Similarity

• Sim(X,Y) = cos(X,Y)
• The cosine of the angle between X and Y

• If the vectors are aligned (correlated) angle is zero degrees and
cos(X,Y)=1

• If the vectors are orthogonal (no common coordinates) angle is 90
degrees and cos(X,Y) = 0

• Cosine is commonly used for comparing documents, where we
assume that the vectors are normalized by the document length.

Application: Recommendations

• Recommendation systems

• When a user buys or rates an item we want to

recommend other items that the user may like

• Initially applied to books, but now recommendations are

everywhere: songs, movies, products, restaurants, hotels, etc.

• Commonly used algorithms:

• Find the k users most similar to the user at hand and

recommend items that they like.

• Find the items most similar to the items that the user

has previously liked, and recommend these items.

Application: Finding near duplicates

• Find duplicate and near-duplicate documents

from a web crawl.

• Why is it important:

• Identify mirrored web pages, and avoid indexing them,

or serving them multiple times

• Find replicated news stories and cluster them under a

single story.

• Identify plagiarism

• Near duplicate documents differ in a few

characters, words or sentences

Finding similar items

• The problems we have seen so far have a

common component

• We need a quick way to find highly similar items to a

query item

• OR, we need a method for finding all pairs of items that

are highly similar.

• Also known as the Nearest Neighbor problem, or

the All Nearest Neighbors problem

SKETCHING

AND

LOCALITY SENSITIVE

HASHING
Thanks to:

Rajaraman and Ullman, “Mining Massive Datasets”

Evimaria Terzi, slides for Data Mining Course.

Before we start: Hash Functions

• A hash function is a function that maps
objects of arbitrary sizes (e.g., strings) to a
space of fixed size (usually, integers).
• Simple example: ℎ 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑛

• If two values are mapped to the same
integer we say that we have a collision

• Hash functions are usually randomized
• E.g., values 𝑎, 𝑏 are selected at random

• They are designed so that the probability of
collision is very small.

• Perfect hash functions: map each valid input to a
different hash value.

• Hash functions are used in Hash Tables to
implement Dictionaries

Problem

• Given a (large) collection of documents find all

pairs of documents which are near duplicates

• Their similarity is very high

• What if we want to find identical documents?

Main issues

• What is the right representation of the document

when we check for similarity?

• E.g., representing a document as a set of characters

will not do (why?)

• When we have billions of documents, keeping the

full text in memory is not an option.

• We need to find a shorter representation

• How do we do pairwise comparisons of billions of

documents?

• If we wanted exact match it would be ok, can we

replicate this idea?

11

Three Essential Techniques for Similar

Documents

1. Shingling : convert documents, emails, etc.,

to sets.

2. Minhashing : convert large sets to short

signatures, while preserving similarity.

3. Locality-Sensitive Hashing (LSH): focus on

pairs of signatures likely to be similar.

12

The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures :

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

sensitive

Hashing

Candidate

pairs :

those pairs

of signatures

that we need

to test for

similarity.

13

Shingles

• A k -shingle (or k -gram) for a document is a

sequence of k characters that appears in the

document.

• Example: document = abcab. k=2

• Set of 2-shingles = {ab, bc, ca}.

• Option: regard shingles as a bag, and count ab twice.

• Represent a document by its set of k-shingles.

Shingling

• Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

a rose is

 rose is a

 rose is a

 ose is a r

 se is a ro

 e is a ros

 is a rose

 is a rose

 s a rose i

 a rose is

 a rose is

Shingling

• Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

a rose is

 rose is a

 rose is a

 ose is a r

 se is a ro

 e is a ros

 is a rose

 is a rose

 s a rose i

 a rose is

 a rose is

a rose is

 rose is a

rose is a

ose is a r

se is a ro

e is a ros

 is a rose

is a rose

s a rose i

 a rose is

16

Working Assumption

• Documents that have lots of shingles in common
have similar text, even if the text appears in
different order.

• Careful: you must pick k large enough, or most
documents will have most shingles.
• Extreme case k = 1: all documents are the same

• k = 5 is OK for short documents; k = 10 is better for long
documents.

• Alternative ways to define shingles:
• Use words instead of characters

• Anchor on stop words (to avoid templates)

17

Shingles: Compression Option

• To compress long shingles, we can hash them to

(say) 4 bytes.

ℎ: 𝑉𝑘 → 0,1 64

• Represent a doc by the set of hash values of its k-

shingles.

• Shingle 𝑠 will be represented by the 64-bit integer ℎ(𝑠)

• From now on we will assume that shingles are

integers

• Collisions are possible, but very rare

Fingerprinting

• Hash shingles to 64-bit integers

a rose is

 rose is a

rose is a

ose is a r

se is a ro

e is a ros

 is a rose

is a rose

s a rose i

 a rose is

1111

2222

3333

4444

5555

6666

7777

8888

9999

0000

Set of Shingles Set of 64-bit integers
Hash function

(Rabin’s fingerprints)

19

Basic Data Model: Sets

• Document: A document is represented as a set
shingles (more accurately, hashes of shingles)

• Document similarity: Jaccard similarity of the sets of
shingles.
• Common shingles over the union of shingles

• Sim (C1, C2) = |C1C2|/|C1C2|.

• Although we use the documents as our driving
example the techniques we will describe apply to any
kind of sets.

• E.g., similar customers or items.

Signatures

• Problem: shingle sets are still too large to be kept in memory.

• Key idea: “hash” each set S to a small signature Sig (S), such
that:

1. Sig (S) is small enough that we can fit a signature in main memory
for each set.

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig (S1) and
Sig (S2). (signature preserves similarity).

• Warning: This method can produce false negatives, and false
positives (if an additional check is not made).
• False negatives: Similar items deemed as non-similar

• False positives: Non-similar items deemed as similar

21

From Sets to Boolean Matrices

• Represent the data as a boolean matrix M

• Rows = the universe of all possible set elements

• In our case, shingle fingerprints take values in [0…264-1]

• Columns = the sets

• In our case, documents, sets of shingle fingerprints

• M(r,S) = 1 in row r and column S if and only if r is a

member of S.

• Typical matrix is sparse.

• We do not really materialize the matrix

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

At least one of the columns has value 1

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Both columns have value 1

25

Minhashing

• Pick a random permutation of the rows (the

universe U).

• Define “hash” function for set S

• h(S) = the index of the first row (in the permuted order)

in which column S has 1.

same as:

• h(S) = the index of the first element of S in the permuted

order.

• Use k (e.g., k = 100) independent random

permutations to create a signature.

Example of minhash signatures

• Input matrix

elem

ent S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

index elem

ent S1 S2 S3 S4

1 A 1 0 1 0

2 C 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 B 1 0 0 1

6 E 0 1 1 1

7 D 0 1 0 1

1 2 1 2

Random

Permutation

Example of minhash signatures

• Input matrix

elem

ent S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

index elem

ent S1 S2 S3 S4

1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 1 1

2 1 3 1

Random

Permutation

Example of minhash signatures

• Input matrix

elem

ent S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

index elem

ent S1 S2 S3 S4

1 C 0 1 0 1

2 D 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 A 1 0 1 0

6 B 1 0 0 1

7 E 0 1 1 1

3 1 3 1

Random

Permutation

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

≈

• Sig(S) = vector of hash values
• e.g., Sig(S2) = [2,1,1]

• Sig(S,i) = value of the i-th hash

function for set S
• E.g., Sig(S2,3) = 1

Signature matrix

We now have a

smaller dataset

with just 𝑘 rows

A Subtle Point

• People sometimes ask whether the minhash

value should be the original number of the row, or

the number in the permuted order (as we did in

our example).

• Answer: it doesn’t matter.

• You only need to be consistent, and assure that

two columns get the same value if and only if

their first 1’s in the permuted order are in the

same row.

30

31

Hash function Property

Pr(h(S1) = h(S2)) = Sim(S1,S2)

• where the probability is over all choices of
permutations.

• Why?
• Recall that the union 𝑆1 ∪ 𝑆2 contains the rows with at

least one 1.
• These are the rows that we care about

• The first row in the permutation where one of the two sets has
value 1 belongs to the union.

• We have equality if both sets have value 1, and this row
belongs to the intersection

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Rows C,D could be anywhere

they do not affect the probability

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The * rows belong to the union

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The question is what is the value

of the first * element

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

If it belongs to the intersection

then h(X) = h(Y)

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Every element of the union is equally likely

to be the * element

Pr(h(X) = h(Y)) =
| A,F,G |

| A,B,E,F,G |
=

3
5

= Sim(X,Y)

Zero similarity is preserved

High similarity is well approximated

37

Similarity for Signatures

• The similarity of signatures is the fraction of the
hash functions in which they agree.

• With multiple signatures we get a good approximation

• Why? What is the expected value of the fraction of agreements?

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

1 2 1 2

2 1 3 1

3 1 3 1

≈

Actual Sig

(S1, S2) 0 0

(S1, S3) 3/5 2/3

(S1, S4) 1/7 0

(S2, S3) 0 0

(S2, S4) 3/4 1

(S3, S4) 0 0

Signature matrix

Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation
requires 1 billion entries!!!

• How about accessing rows in permuted order?

•

• Instead of permutations we will consider hash
functions that map the N rows to N buckets
• Some collisions may happen, but with well chosen

functions they are rare.

Approximating row permutations

Pick k=100 hash functions (h1,…,hk)

for each set S

 for each row r that appears in S

 for each hash function hi

 compute hi (r)

 for each hash function hi

 Sig(S,i) = min hi (r);

 Sig(S,i) will become the smallest value of hi(r) among all rows

(shingles) for which column S has value 1 (shingle belongs in S);

i.e., hi (r) gives the min index for the i-th permutation

In practice this means selecting

the function parameters

hi (r) = index of shingle r in permutation

Find the minimum index for hash

function hi

Approximating row permutations

Pick k=100 hash functions (h1,…,hk)

for each row r

 for each hash function hi

 compute hi (r)

 for each column S that has 1 in row r

 if hi (r) is a smaller value than Sig(S,i) then

 Sig(S,i) = hi (r);

 Sig(S,i) will become the smallest value of hi(r) among all rows

(shingles) for which column S has value 1 (shingle belongs in S);

i.e., hi (r) gives the min index for the i-th permutation

In practice this means

selecting the function

parameters

In practice only the rows (shingles)

that appear in the data

hi (r) = index of shingle r in permutation

S contains shingle r

Find the shingle r with minimum index

41

Example

Row S1 S2

 A 1 0

 B 0 1

 C 1 1

 D 1 0

 E 0 1

h(x) = x+1 mod 5

h(0) = 1 1 -

g(0) = 3 3 -

h(1) = 2 1 2

g(1) = 0 3 0

h(2) = 3 1 2

g(2) = 2 2 0

h(3) = 4 1 2

g(3) = 4 2 0

h(4) = 0 1 0

g(4) = 1 2 0

Sig1 Sig2

Row S1 S2

 E 0 1

 A 1 0

 B 0 1

 C 1 1

 D 1 0

Row S1 S2

 B 0 1

 E 0 1

 C 1 0

 A 1 1

 D 1 0

x

0

1

2

3

4

h(x)

1

2

3

4

0

g(x)

3

0

2

4

1

g(x) = 2x+1 mod 5

42

Implementation – (4)

• Often, data is given by column, not row.

• E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.

• And always compute hi (r) only once for each

row.

43

Finding similar pairs

• Problem: Find all pairs of documents with

similarity at least t = 0.8

• While the signatures of all columns may fit in

main memory, comparing the signatures of all

pairs of columns is quadratic in the number of

columns.

• Example: 106 columns implies 5*1011 column-

comparisons.

• At 1 microsecond/comparison: 6 days.

44

Locality-Sensitive Hashing

• What we want: a function f(X,Y) that tells whether or not X
and Y is a candidate pair: a pair of elements whose
similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have
the same min-hash signature.
• Easy to test by hashing the signatures.

• Similar sets are more likely to have the same signature.

• Likely to produce many false negatives.
• Requiring full match of signature is strict, some similar sets will be lost.

• Improvement: Compute multiple signatures; candidate
pairs should have at least one common signature.
• Reduce the probability for false negatives.

! Multiple levels of Hashing!

45

Signature matrix reminder

Matrix M

n hash functions

Sig(S):

signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)

46

Partition into Bands – (1)

• Divide the signature matrix Sig into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

47

Partitioning into bands
Matrix Sig

r rows

per band

b bands

 One

signature

n = b*r hash functions

b mini-signatures

48

Partition into Bands – (2)

• Divide the signature matrix Sig into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash

table.

• Mini-signatures that hash to the same bucket are almost

certainly identical.

49

Matrix M

r rows b bands

3 2 1 5 6 4 7

Hash Table Columns 2 and 6

are (almost certainly) identical.

Columns 6 and 7 are

surely different.

50

Partition into Bands – (2)

• Divide the signature matrix Sig into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash
table.
• Mini-signatures that hash to the same bucket are almost

certainly identical.

• Candidate column pairs are those that hash to the
same bucket for at least 1 band.
• I.e., they have at least one mini-signature in common.

• Tune b and r to catch most similar pairs, but few non-
similar pairs.

51

Analysis of LSH – What We Want

 Similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t

52

What One Band of One Row Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

Single hash signature

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)

53

What b Bands of r Rows Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

s r

All rows

of a band

are equal

1 -

Some row

of a band

unequal

()b

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r

54

Example: b = 20; r = 5

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5

55

Suppose S1, S2 are 80% Similar

• We want all 80%-similar pairs. Choose 20 bands of 5
integers/band.

• Probability S1, S2 identical in one particular band:

(0.8)5 = 0.328.

• Probability S1, S2 are not similar in any of the 20 bands:

(1-0.328)20 = 0.00035

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

• Probability S1, S2 are similar in at least one of the 20
bands:

1-0.00035 = 0.999

56

Suppose S1, S2 Only 40% Similar

• Probability S1, S2 identical in any one particular
band:

 (0.4)5 = 0.01 .

• Probability S1, S2 are not identical in any of the
20 bands:

 1 − 0.01 20 = 0.81

• False positive probability = 0.19. But false
positives much lower for similarities << 40%.

57

LSH Summary

• Tune to get almost all pairs with similar

signatures, but eliminate most pairs that do not

have similar signatures.

• Check in main memory that candidate pairs

really do have similar signatures.

• Optional: In another pass through data, check

that the remaining candidate pairs really

represent similar sets .

Locality-sensitive hashing (LSH)

• Big Picture: Construct hash functions h: Rd
 U such

that for any pair of objects p,q, for distance function D
we have:
• If D(p,q)≤r, then Pr[h(p)=h(q)] is high

• Close (similar) objects have high probability to be hashed together

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Distant (dissimilar) objects have small probability of being hashed
together

• Then, we can find close pairs by hashing

• LSH is a general framework: for a given distance
function D we need to find the right h

59

LSH for Cosine Distance

• For cosine distance, there is a technique

analogous to minhashing for generating a

Locality Sensitive Hashing functions

• Using random hyperplanes.

60

Random Hyperplanes

• Pick a random vector 𝑣, which determines a
hash function ℎ𝑣 with two buckets.
• ℎ𝑣 𝑥 = +1 if 𝑣 ⋅ 𝑥 > 0;

• ℎ𝑣 𝑥 = −1 if 𝑣 ⋅ 𝑥 < 0.

• LS-family H = set of all functions derived from
any vector.

• Claim:
• Prob[h(x)=h(y)] = 1 – (angle between x and y)/180

61

Proof of Claim

x

y

Look in the plane of x and y.

θ

hv(x) = +1

hv(x) = -1

For a random vector v the values of the

hash functions hv(x) and hv(y) depend

on where the vector v falls

hv(y) = -1

hv(y) = +1

hv(x) ≠ hv(y) when v falls into the

shaded area.

What is the probability of this for

a randomly chosen vector v?

θ

θ

P[hv(x) ≠ hv(y)] = 2θ/360 = θ/180

P[hv(x) = hv(y)] = 1- θ/180

62

Signatures for Cosine Distance

• Pick some number of vectors, and hash your

data for each vector.

• The result is a signature (sketch) of +1’s and –

1’s that can be used for LSH like the minhash

signatures for Jaccard distance.

63

Simplification

• We need not pick from among all possible vectors

v to form a component of a sketch.

• It suffices to consider only vectors v consisting of

+1 and –1 components.

