DATA MINING
LECTURE 12

Coverage

Approximation Algorithms

Example

- Promotion campaign on a social network
- We have a social network as a graph.

- People are more likely to buy a product if they have a friend who
has the product.

- We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.

- People are more likely to buy a product if they have a friend who
has the product.

- We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

- We want the number of free products to be as small as possible

One possible selection

Example

- Promotion campaign on a social network
- We have a social network as a graph.

- People are more likely to buy a product if they have a friend who
has the product.

- We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

- We want the number of free products to be as small as possible

A better selection

Dominating set

- Qur problem is an instance of the dominating set
problem

- Dominating Set: Given a graph ¢ = (I/,E), a set
of vertices D € 1V Is a dominating set if for each
node u in V, either u is in D, or u has a neighbor
in D.

- The Dominating Set Problem: Given a graph ¢ =
(V, E) find a dominating set of minimum size.

Set Cover

- The dominating set problem is a special case of
the Set Cover problem

- The Set Cover problem:
- We have a universe of elements U = {x4, ..., xy}

- We have a collection of subsets of U, § = {5, ..., S, },
such that U;S; = U

- We want to find the smallest sub-collection € < § of §,
such that Us ccS; = U

- The sets in C cover the elements of U

An application of Set Cover

- Suppose that we want to create a catalog (with
coupons) to give to customers of a store:

- We want for every customer, the catalog to contain a
poroduct bought by the customer (this is a small store)

- How can we model this as a set cover problem?

-
Applications

- The universe U of elements Is
the set of customers of a store.

- Each set corresponds to a

product p sold in the store:
S, = {customers that bought p}

- Set cover: Find the minimum
number of products (sets) that
cover all the customers
(elements of the universe)

-
Applications

- The universe U of elements Is
the set of customers of a store.

- Each set corresponds to a

product p sold in the store:
S, = {customers that bought p}

- Set cover: Find the minimum
number of products (sets) that
cover all the customers
(elements of the universe)

-
Applications

- The universe U of elements Is
the set of customers of a store.

- Each set corresponds to a

product p sold in the store:
S, = {customers that bought p}

- Set cover: Find the minimum
number of products (sets) that
cover all the customers
(elements of the universe)

Applications

- Dominating Set (or Promotion Campaign) as Set

Cover:
- The universe U is the set of nodes V

- Each node u defines a set S,, consisting of the node u
and all of its neighbors

- We want the minimum number of sets S,, (nodes) that
cover all the nodes in the graph.

- Many more...

Best selection variant

Suppose that we have a budget K of how big our
set cover can be

- We only have K products to give out for free.

- We want to cover as many customers as possible.

Maximum-Coverage Problem: Given a universe
of elements U, a collection § of subsets of U, and
a budget K, find a sub-collection € < § of size at
most K, such that the number of covered
elements Ug ¢ S; Is maximized.

-
Complexity

Both the Set Cover and the Maximum Coverage
problems are NP-complete

- What does this mean?

- Why do we care?

There is no algorithm that can guarantee finding
the best solution in polynomial time

- Can we find an algorithm that can guarantee to find a
solution that is close to the optimal?

- Approximation Algorithms.

Approximation Algorithms

For an (combinatorial) optimization problem, where:

- X Is an instance of the problem,

- OPT(X) is the value of the optimal solution for X,

- ALG(X) is the value of the solution of an algorithm ALG for X

ALG Is a good approximation algorithm if the ratio of OPT(X) and
ALG(X) 1s bounded for all input instances X

Minimum set cover: input X = (U,S) Is the universe of elements
and the set collection, OPT(X) is the size of minimum set cover,
ALG(X) Is the size of the set cover found by an algorithm ALG.

Maximum coverage: input X = (U,S K) is the input instance,
OPT(X) is the coverage of the optimal algorithm, ALG(X) is the
coverage of the set found by an algorithm ALG.

Approximation Algorithms

- For a minimization problem, the algorithm ALG is an «-
approximation algorithm, for a > 1, if for all input
Instances X,

ALG(X) < aOPT(X)

- In simple words: the algorithm ALG Is at most « times
worse than the optimal.

-« 1S the approximation ratio of the algorithm — we want «
to be as close to 1 as possible
- Bestcase:a« =1+ eande — 0, aSn—>00(e.g.,e=%)
- Good case: o« = 0(1) Is a constant (e.g., a = 2)
- OK case: o = O(logn)
- Bad case o = 0(n°)

Approximation Algorithms

- For a maximization problem, the algorithm ALG iIs an «-
approximation algorithm, for « < 1, If for all input instances X,

ALG(X) = aOPT(X)

- In simple words: the algorithm ALG achieves at least a percent
of what the optimal achieves.

-« Is the approximation ratio of the algorithm — we want « to be
as close to 1 as possible

- Bestcase:a =1 —-¢cande — 0,asn — oo(e.qg., € =%)

- Good case: « = 0(1) is a constant (e.g., a = 0.5)
- OKcase: a = 0(!)

logn
- Badcase o« = 0(n 9)

A simple approximation ratio for set cover

- Lemma: Any algorithm for set cover has
approximation ratio o = |S, .|, where S, Is the set
In S with the largest cardinality

- Proof:
* OPT(X) =2 N/|S,uxl > N < |S,,0,|OPT (X)
«ALG(X) < N < |S,...|OPT(X)

- This is true for any algorithm.
- Not a good bound since it may be that |S, .| = O(N)

An algorithm for Set Cover

- What is a natural algorithm for Set Cover?

- Greedy: each time add to the collection C the set
S, from § that covers the most of the remaining
uncovered elements.

-
The GREEDY algorithm

GREEDY/(U,S)
X= U

C={
while X is not empty do

For all S; € S let gain(S;) = |S; N X|

Let S, be such that gain(S,) IS maximum
C=CU({S.}

X=X\S.

S=858\S.

-
Greedy Is not always optimal

-
Greedy Is not always optimal

-
Greedy Is not always optimal

-
Greedy Is not always optimal

-
Greedy Is not always optimal

Greedy Is not always optimal

- Adding Coke to
the set Is
useless.

- We need Milk
(or Coffee) and
Beer to cover
all customers

-
Approximation ratio of GREEDY

- Good news: GREEDY has approximation ratio:

n
@ = H(Smaxl) = 1+ WS, HOD =)
k=1

GREEDY (X) < (1 + In|S,,...NOPT(X), for all X

Maximum Coverage

- Greedy Is also applicable here

GREEDY(U,S,K)
X=U

C={
while |C| < K

For all S; € S let gain(S;) = |S; N X|

Let S, be such that gain(S,) IS maximum
C=CU({S.}

X=X\S.

S=S\S.

Approximation Ratio for Max-K Coverage

- Better news! The GREEDY algorithm has

1

approximation ratio a« = 1 — .

GREEDY (X) > (1 . i) OPT(X), for all X

- (e 1s the basis of the natural logarithm)

- The coverage of the Greedy solution is at least
63% that of the optimal

Proof of approximation ratios

We will now give a proof of the approximation ratios
for the SET-COVER and the MAX-COVERAGE

- We start with MAX-COVERAGE

Definitions:

- OPT': size of the optimal solution

- b;: number of covered elements at iteration i of Greedy
- a;: number of newly covered elements at iteration i

- ¢; = OPT — b;: difference between solution size of Optimal
and Greedy solutions at iteration i.

.
Lemma: a;,1 =~

Proof:

- Fori =0, itis simple to see since one of the K sets in the optimal

) ; OPT
solution has size at least —

- For larger i

Universe

Optimal solution for K =5

Greedy solution at iteration i

x;: intersection of optimal and Greedy
solutions
X < bi

y;: number of optimal subsets fully
included in the Greedy solution:
yi=0

There must be a set with
OPT—Xi S OPT—bl _ Ci

K—vy; = K K

Ajy1 =

1

-Lemma: ¢j1q < (1 — E)Hl OPT

- Proof: By induction on ..

- Basis of induction: ¢y < (1 — —) OPT
- Use the factthat ¢, = OPT, and b; = a,

- Inductive Hypothesis: ¢; < (1 — —) OPT

1

i+1
- Inductive step: ¢cj41 < (1—;) OPT

- Use the inductive hypothesis and that b; ., = 233;11 a; and
Civ1 =6 — 44

- Theorem: The Greedy algorithm has

approximation ratio (1 — i)

- Proof:

1\° 1
Cp < (1_E) OPT < —OPT

- The size of the Greedy solution is by

1

Proof for SET COVER

In the case of SET COVER, we have that OPT =
n

Let k* be the size of the optimal solution.

l
We know that after i iterations: c¢; < (1 — ki) n.

After t = k* ln% iterations ¢, < k* elements

remain to be covered
- We can cover those in at most k" iterations

- Total iterations are at most k*(In-~ + 1) < k*(Inn + 1)

Lower bound

- The approximation ratio is tight up to a constant

- Tight means that we can find a counter example with
this ratio

®o|(®@ @)@ @ @ @)@ @ @ 00 @ @ O

ﬂolko o) e @ e0/)l0oe o000 @ 0 0

e OPT(X) = 2

* GREEDY(X) =logN
1

s a= ElogN

-
Another proof of the approximation ratio

for MAX-K COVERAGE

For a collection of subsets C, let F(C) = |Ug ¢ S:| be the
number of elements that are covered.

The set function F has two properties:

F IS monotone:
F(A)<FB)ifAcSB

F i1s submodular:
F(Au{S})—F(A) 2F(BU{S}) —F(B) if ASB

The addition of set S to a set of nodes has greater effect
(more new covered items) for a smaller set.

- The diminishing returns property

-
Optimizing submodular functions

Theorem:

If we want to maximize a monotone and submodular
function F under cardinality constraints (size of set at

most K),

Then, the greedy algorithm that each time adds to the
solution C, the set S that maximizes the gain F(C U

True for any monotone and submodular set function!

e
Other variants of Set Cover

Hitting Set: select a set of elements so that you hit all
the sets (the same as the set cover, reversing the
roles)

Vertex Cover: Select a set of vertices from a graph
such that you cover all edges (for every edge an
endpoint of the edge is in the set)

- There iIs a 2-approximation algorithm

Edge Cover: Select a set of edges that cover all
vertices (for every vertex, there is one edge that has
as endpoint this vertex)

- There is a polynomial algorithm

OVERVIEW

Class Overview

In this class you saw a set of tools for analyzing data
- Frequent Itemsets, Association Rules

- Sketching

- Recommendation Systems

- Clustering

- Singular Value Decomposition

- Classification

- Link Analysis Ranking

- Random Walks

- Coverage

All these are useful when trying to make sense of the
data. A lot more tools exist.

| hope that you found this interesting, useful and fun.

