
Online Social Networks and 
Media  

Link Analysis and Web Search 



First try: Human curated Web directories 
Yahoo, DMOZ, LookSmart 

 

How to Organize the Web 



How to organize the web 

• Second try: Web Search 
– Information Retrieval investigates: 

• Find relevant docs in a small and trusted set e.g., 
Newspaper articles, Patents, etc. (“needle-in-a-
haystack”) 

• Limitation of keywords (synonyms, polysemy, etc) 

    But: Web is huge, full of untrusted documents, random 
 things, web spam, etc.  

 
   Everyone can create a web page of high production value 
   Rich diversity of people issuing queries 
   Dynamic and constantly-changing nature of web content 



Size of the Search Index 

http://www.worldwidewebsize.com/ 



How to organize the web 

• Third try (the Google era): using the web 
graph 

– Swift from relevance to authoritativeness 

– It is not only important that a page is relevant, but 
that it is also important on the web 

• For example, what kind of results would we 
like to get for the query “greek newspapers”? 

 



Link Analysis 
 

• Not all web pages are equal on the web 

• The links act as endorsements: 

– When page p links to q it endorses the content of 
the content of q 

What is the simplest way to 
measure importance of a 
page on the web? 
 



Rank by Popularity 

• Rank pages according to the number of 
incoming edges (in-degree, degree centrality) 

1. Red Page 

2. Yellow Page 

3. Blue Page 

4. Purple Page 

5. Green Page 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Popularity 

 

 

 

 

 

 

• It is not important only how many link to you, but also 
how important are the people that link to you. 

• Good authorities are pointed by good authorities 
– Recursive definition of importance 



THE PAGERANK ALGORITHM 



PageRank 
• Good authorities should be pointed by good 

authorities 
– The value of a node is the value of the nodes that 

point to it. 

• How do we implement that? 
– Assume that we have a unit of authority to distribute 

to all nodes. 

• Initially each node gets 
1

𝑛
 amount of authority 

– Each node distributes the authority value they have 
to their neighbors 

– The authority value of each node is the sum of the 
authority fractions it collects from its neighbors. 

𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

 
𝑤𝑣: the PageRank value of node 𝑣 

Recursive definition 



A simple example 

• Solving the system of equations we get the 
authority values for the nodes 

– w = ½  w = ¼  w = ¼  

w w 

w 

w + w + w = 1  

w =  w + w  

w = ½ w 

w = ½ w 



A more complex example 

w1 = 1/3 w4 + 1/2 w5 

w2 = 1/2 w1 + w3 + 1/3 w4 

w3 = 1/2 w1 + 1/3 w4 

w4 = 1/2 w5 

w5 = w2  

𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Computing PageRank weights 

• A simple way to compute the weights is by 
iteratively updating the weights 

• PageRank Algorithm 
 
 
 
 
 
 

• This process converges 
 

Initialize all PageRank weights to 
1

𝑛
 

Repeat: 

 𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢𝑢→𝑣  

Until the weights do not change 



Example 

w1 = 1/3 w4 + 1/2 w5 

w2 = 1/2 w1 + w3 + 1/3 w4 

w3 = 1/2 w1 + 1/3 w4 

w4 = 1/2 w5 

w5 = w2  

𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

 
𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 

t=0 0.2 0.2 0.2 0.2 0.2 

t=1 0.16 0.36 0.16 0.1 0.2 

t=2 0.13 0.28 0.11 0.1 0.36 

t=3 0.22 0.22 0.1 0.18 0.28 

t=4 0.2 0.27 0.17 0.14 0.22 

Think of the weight as a fluid: there is 
constant amount of it in the graph, but it 
moves around until it stabilizes 



The PageRank algorithm 

Think of the nodes in the 
graph as containers of 
capacity of 1 liter. 

We distribute a liter of liquid 
equally to all containers 



The edges act like pipes 
that transfer liquid 
between nodes.  

The PageRank algorithm 



The contents of each node 
are distributed to its 
neighbors. 

The PageRank algorithm 

The edges act like pipes 
that transfer liquid 
between nodes.  



The contents of each node 
are distributed to its 
neighbors. 

The PageRank algorithm 

The edges act like pipes 
that transfer liquid 
between nodes.  



The contents of each node 
are distributed to its 
neighbors. 

The PageRank algorithm 

The edges act like pipes 
that transfer liquid 
between nodes.  



The system will reach an 
equilibrium state where 
the amount of liquid in 
each node remains 
constant.  

The PageRank algorithm 



The amount of liquid in 
each node determines the 
importance of the node. 
 
Large quantity means large 
incoming flow from nodes 
with large quantity of 
liquid. 
 

The PageRank algorithm 



Example 

w1 = 1/3 w4 + 1/2 w5 

w2 = 1/2 w1 + w3 + 1/3 w4 

w3 = 1/2 w1 + 1/3 w4 

w4 = 1/2 w5 

w5 = w2  

𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

 
𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 

t=25 0.18 0.27 0.13 0.13 0.27 Think of the weight as a fluid: there is 
constant amount of it in the graph, but it 
moves around until it stabilizes 



Random Walks on Graphs 

• The algorithm defines a random walk on the graph 
 

• Random walk: 
– Start from a node chosen uniformly at random with probability 
1

𝑛
. 

– Pick one of the outgoing edges uniformly at random 
– Move to the destination of the edge 
– Repeat. 

 
• The PageRank of node v is the probability that the random 

walk is at node v after a very large number of steps. 
• The Random Surfer model 

– Users wander on the web, following links. 
 



Example 

• Step 0 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 0 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 1 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 1 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 2 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 2 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 3 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 3 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 4… 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Random walk 

• Question: what is the probability 𝑝𝑖
𝑡 of being 

at node 𝑖 after  𝑡 steps? 

 

 

 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 
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Markov chains 
• A Markov chain describes a discrete time stochastic process over a set of 

states 
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} 

    according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗} 
– 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖 

 
• Matrix 𝑃 has the property that the entries of all rows sum to 1 

 𝑃 𝑖, 𝑗 = 1

𝑗

 

     A matrix with this property is called stochastic 
 

• State probability distribution: The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2
𝑡 ,… , 𝑝𝑛

𝑡 ) that stores 
the probability of being at state 𝑠𝑖  after 𝑡 steps 

 

• Memorylessness property: The next state of the chain depends only at the 
current state and not on the past of the process (first order MC) 
– Higher order MCs are also possible 

 

• Markov Chain Theory: After infinite steps the state probability vector 
converges to a unique distribution if the chain is irreducible (possible to get from 
any state to any other state) and aperiodic 
– These are the PageRank values 



Random walks 

• Random walks on graphs correspond to Markov 
Chains 
– The set of states 𝑆 is the set of nodes of the graph 𝐺 

– The transition probability matrix is the probability that 
we follow an edge from one node to another 

𝑃 𝑖, 𝑗 =
1

d𝑜𝑢𝑡 𝑖
 

• We can compute the vector 𝑝𝑡 at step t using a 
vector-matrix multiplication 

𝑝𝑡+1 = 𝑝𝑡𝑃 

 



An example 
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An example 
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Stationary distribution 

• The stationary distribution of a random walk with 
transition matrix 𝑃, is a probability distribution 𝜋, 
such that 𝜋 =  𝜋𝑃 
 

• The stationary distribution is an eigenvector of 
matrix 𝑃 
– the principal left eigenvector of P – stochastic matrices 

have maximum eigenvalue 1 
 
• Markov Chain Theory: The random walk converges 

to a unique stationary distribution independent of 
the initial vector if the graph is strongly connected, 
and not bipartite.  
– In our case these are the PageRank values. 
 
 



Computing the stationary distribution 

• The Power Method 
 
 
 
 
 

• After many iterations 𝑝𝑡 → 𝜋 regardless of the initial 
vector 𝑝0 

• Power method because it computes 𝑝𝑡 = 𝑝0𝑃𝑡 

 
• Rate of convergence 

– determined by the second eigenvalue 
|𝜆2|

|𝜆1|
 

Initialize 𝑝0 to some distribution  
Repeat   
 𝑝𝑡 = 𝑝𝑡−1𝑃 
Until convergence 



The stationary distribution 

• What is the meaning of the stationary distribution 𝜋 of 
a random walk? 

• 𝜋(𝑖): the probability of being at node 𝑖 after very large 
(infinite) number of steps, or, the the fraction of times 
that we visited  state 𝑖 as 𝑡 →  ∞ 

• 𝜋 = 𝑝0𝑃
∞ , where 𝑃 is the transition matrix, 𝑝0 the 

original vector  
– 𝑃 𝑖, 𝑗 : probability of going from i to j in one step 

– 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps 
(probability of all paths of length 2) 

– 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in infinite 
steps – starting point does not matter. 



The PageRank random walk 

• Vanilla random walk 

– make the adjacency matrix stochastic and run a 
random walk 
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The PageRank random walk 

• What about sink nodes? 

– what happens when the random walk moves to a 
node without any outgoing inks? 
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The PageRank random walk 

• Replace these row vectors with a vector 𝑣 

– typically, the uniform vector 

P’ = P + dvT 





otherwise0

sink is i if1
d



The PageRank random walk 

• What about loops? 

– Spider traps 



















































5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P' )1( 

The PageRank random walk 

• Add a random jump to vector 𝑣 with prob 1 − 𝛼 

– typically, to a uniform vector 

• Restarts after 1/(1 − 𝛼) steps in expectation 

– Guarantees irreducibility, convergence  

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 
Random walk with restarts 



PageRank algorithm [BP98] 

• The Random Surfer model 

– pick a page at random 

– with probability 1 −  𝛼 jump to a 
random page 

– with probability 𝛼 follow a random 
outgoing link 

• Rank according to the stationary 
distribution 

• 𝑤𝑣 = 𝛼  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢𝑢→𝑣 + (1 − 𝛼)

1

𝑛
 

 

• We repeat this computation until 
convergece 

 

1. Red Page 

2. Purple Page  

3. Yellow Page 

4. Blue Page 

5. Green Page 

𝛼 =  0.85  in most cases 



PageRank: Example 



Stationary distribution with random 
jump 

• If 𝑣 is the jump vector 
𝑝0 = 𝑣 

𝑝1 = 𝛼𝑝0𝑃′ + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃′ + 1 − 𝛼 𝑣 
𝑝2 = 𝛼𝑝1𝑃′ + 1 − 𝛼 𝑣

= 𝛼2𝑣𝑃′2 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣 
⋮ 

𝑝∞ = 1 − 𝛼 𝑣 + 1− 𝛼 𝑣𝛼𝑃′ + 1− 𝛼 𝑣𝛼2𝑃′
2
+ ⋯   

= 1 − 𝛼 𝐼 − 𝛼𝑃′ −1 
 

• With the random jump the shorter paths are more 
important, since the weight decreases exponentially 
– makes sense when thought of as a restart 

 



Random walks with restarts 

• If 𝑣 is not uniform, we can bias the random walk 
towards the nodes that are close to 𝑣 

• Personalized PageRank: 
– Restart the random walk from a specific node x 
– All nodes are ranked according to their closeness to x  

• Topic-Specific Pagerank. 
– Restart the random walk from a specific set of nodes (e.g., 

nodes about a topic) 
– All nodes are ranked according to their closeness to the 

topic. 

• Random Walks with restarts is a general technique for 
measuring closeness on graphs. 
 



Effects of random jump 

• Guarantees convergence to unique 
distribution 

• Motivated by the concept of random surfer 

• Offers additional flexibility  

– personalization 

– anti-spam 

• Controls the rate of convergence 

– the second eigenvalue of matrix 𝑃′′ is 𝛼 



Random walks on undirected graphs 

• For undirected graphs, the stationary distribution 
of a random walk is proportional to the degrees 
of the nodes 
– Thus in this case a random walk is the same as degree 

popularity 
 

• This is not longer true if we do random jumps 
– Now the short paths play a greater role, and the 

previous distribution does not hold. 
– Random walks with restarts to a single node are 

commonly used on undirected graphs for measuring 
similarity between nodes 



PageRank implementation 

• Store the graph as a list of edges 

• Keep current pagerank values and new 
pagerank values 

• Go through edges and update the values of 
the destination nodes. 

• Repeat until the difference between the 
pagerank vectors (𝐿1 or 𝐿∞ difference) is 
below some small value ε.  



A (Matlab-friendly) PageRank 
algorithm 

• Performing vanilla power method is now too 
expensive – the matrix is not sparse 

q0 = v 
t = 1 
repeat 
  
  
     t = t +1  
until δ < ε 

  1tTt q'P'q 
1tt qqδ 

Efficient computation of y = (P’’)T x 

βvyy

yx β

xαPy

11

T







P = normalized adjacency matrix 

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 

P’ = P + dvT, where di is 1 if i is sink and 0 o.w. 



PageRank history 

• Huge advantage for Google in the early days 
– It gave a way to get an idea for the value of a page, which was 

useful in many different ways 
• Put an order to the web. 

– After a while it became clear that the anchor text was probably 
more important for ranking 

– Also, link spam became a new (dark) art 

• Flood of research 
– Numerical analysis got rejuvenated 
– Huge number of variations 
– Efficiency became a great issue. 
– Huge number of applications in different fields  

• Random walk is often referred to as PageRank. 



THE HITS ALGORITHM 



The HITS algorithm  

• Another algorithm proposed around the same 
time as PageRank for using the hyperlinks to 
rank pages 

– Kleinberg: then an intern at IBM Almaden  

– IBM never made anything out of it 



Query dependent input 

Root Set 

Root set obtained from a text-only search engine 



Query dependent input 

Root Set 

IN OUT 



Query dependent input 

Root Set 

IN OUT 



Query dependent input 

Root Set 

IN OUT 

Base Set 



Hubs and Authorities [K98] 

• Authority is not necessarily 
transferred directly 
between authorities 

• Pages have double identity 
– hub identity 

– authority identity 

• Good hubs point to good 
authorities 

• Good authorities are 
pointed by good hubs 

 
hubs authorities 



Hubs and Authorities 

• Two kind of weights: 
– Hub weight 

– Authority weight 

 

• The hub weight is the sum of the authority 
weights of the authorities pointed to by the hub 

 

• The authority weight is the sum of the hub 
weights that point to this authority. 



HITS Algorithm 

• Initialize all weights to 1. 

• Repeat until convergence 
– O operation : hubs collect the weight of the authorities 

 

 

– I operation: authorities collect the weight of the hubs 

 
 

– Normalize weights under some norm 
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Example 

hubs authorities 
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Initialize 



Example 

hubs authorities 
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Step 1: O operation 



Example 

hubs authorities 
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Step 1: I operation 



Example 

hubs authorities 
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Step 1: Normalization (Max norm) 



Example 

hubs authorities 
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Step 2: O step 



Example 

hubs authorities 
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Example 

hubs authorities 
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Step 2: Normalization 



Example 

hubs authorities 
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HITS and eigenvectors 

• The HITS algorithm is a power-method eigenvector 
computation 

• In vector terms  
– 𝑎𝑡 =  𝐴𝑇ℎ𝑡−1 and ℎ𝑡 =  𝐴𝑎𝑡−1 
– 𝑎𝑡 =  𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 =  𝐴𝐴𝑇ℎ𝑡−1 
– Repeated iterations will converge to the eigenvectors 

• The authority weight vector 𝑎 is the eigenvector of 
𝐴𝑇𝐴 and the hub weight vector ℎ is the eigenvector of 
𝐴𝐴𝑇 

 
• The vectors 𝑎 and ℎ are called the singular vectors of the 

matrix A 



Singular Value Decomposition 

 
 
 
 
 
 

• r : rank of matrix A 
 

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA) 
                      
•                    : left singular vectors (eig-vectors of AAT) 
                     
•                     : right singular vectors (eig-vectors of ATA) 
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Why does the Power Method work? 

• If a matrix R is real and symmetric, it has real eigenvalues 
and eigenvectors: 𝜆1 , 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟) 
– r is the rank of the matrix 

– |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟  

• For any matrix R, the eigenvectors 𝑤1 , 𝑤2 , … ,𝑤𝑟  of R define 
a basis of the vector space 
– For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟  

 

• After t multiplications we have: 

– 𝑅𝑡𝑥 = 𝜆1
𝑡−1𝛼1𝑤1 + 𝜆2

𝑡−1𝑎2𝑤2 +⋯+ 𝜆𝑟
𝑡−1𝑎𝑟𝑤𝑟  

 

• Normalizing (divide by 𝜆1
𝑡−1) leaves only the term 𝑤1. 



The SALSA algorithm 

• Perform a random walk on the 
bipartite graph of hubs and 
authorities alternating between the 
two 
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The SALSA algorithm 

• Start from an authority chosen uniformly at 
random 

– e.g. the red authority 
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• Start from an authority chosen uniformly at 
random 

– e.g. the red authority 

• Choose one of the in-coming links 
uniformly at random and move to a hub 

– e.g. move to the yellow authority with 
probability 1/3 

 

hubs authorities 

The SALSA algorithm 



• Start from an authority chosen uniformly at 
random 

– e.g. the red authority 

• Choose one of the in-coming links 
uniformly at random and move to a hub 

– e.g. move to the yellow authority with 
probability 1/3 

• Choose one of the out-going links 
uniformly at random and move to an 
authority 
– e.g. move to the blue authority with probability 

1/2 

 

hubs authorities 

The SALSA algorithm 



The SALSA algorithm 

• Formally we have probabilities: 
– 𝑎𝑖: probability of being at authority 𝑖 

– ℎ𝑗: probability of being at hub 𝑗 

• The probability of being at authority i is computed as: 

𝑎𝑖 =  
1

𝑑𝑜𝑢𝑡 𝑗
ℎ𝑗

𝑗∈𝑁𝑖𝑛(𝑖)

 

• The probability of being at hub 𝑗 is computed as 

ℎ𝑗 =  
1

𝑑𝑖𝑛 𝑖
𝑎𝑖

𝑖∈𝑁𝑜𝑢𝑡(𝑗)

 

• Repeated computation converges 



The SALSA algorithm [LM00] 

• In matrix terms 
– 𝐴𝑐 = the matrix 𝐴 where columns are 

normalized to sum to 1 

– 𝐴𝑟 = the matrix 𝐴 where rows are normalized to 
sum to 1 

• The hub computation 

– ℎ = 𝐴𝑐  𝑎 

• The authority computation 
– 𝑎 =  𝐴𝑟

𝑇 ℎ =  𝐴𝑟
𝑇 𝐴𝑐
 
𝑎 

• In MC terms the transition matrix 

– 𝑃 =  𝐴𝑟 𝐴𝑐
𝑇
  

hubs authorities 

𝒂𝟏 =  𝒉𝟏 +  𝟏/𝟐 𝒉𝟐 +  𝟏/𝟑 𝒉𝟑 

𝒉𝟐 =  𝟏/𝟑 𝒂𝟏 +  𝟏/𝟐 𝒂𝟐 


