
DATA MINING 

LECTURE 6 
Dimensionality Reduction 

PCA – SVD 

 

(Thanks to Jure Leskovec, Evimaria Terzi) 



The curse of dimensionality 

• Real data usually have thousands, or millions of 
dimensions 
• E.g., web documents, where the dimensionality is the 

vocabulary of words 

• Facebook graph, where the dimensionality is the 
number of users 

• Huge number of dimensions causes problems 
• Data becomes very sparse, some algorithms become 

meaningless (e.g. density based clustering) 

• The complexity of several algorithms depends on the 
dimensionality and they become infeasible (e.g. nearest 
neighbor search). 



Dimensionality Reduction 

• Usually the data can be described with fewer 

dimensions, without losing much of the meaning 

of the data. 

• The data reside in a space of lower dimensionality 

 



Example 

 

 

 

 

 

 

• In this data matrix the dimension is essentially 3 

• There are three types of products and three types of 

users 

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1



Example 

• Cloud of points 3D space: 

• Think of point positions 

as a matrix: 

 

 

• We can rewrite coordinates more efficiently! 

• Old basis vectors: [1 0 0] [0 1 0] [0 0 1] 

• New basis vectors: [1 2 1] [-2 -3 1] 

• Then A has new coordinates: [1 0]. B: [0 1], C: [1 -1] 

• Notice: We reduced the number of coordinates! 

1 row per point: 

A 

B 

C  
A 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
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Dimensionality Reduction 

• Find the “true dimension” of the data 

• In reality things are never as clear and simple as in this 

example, but we can still reduce the dimension. 

 

• Essentially, we assume that some of the data is 

useful signal and some data is noise, and that we 

can approximate the useful part with a lower 

dimensionality space. 

• Dimensionality reduction does not just reduce the 

amount of data, it often brings out the useful part of the 

data 



Dimensionality Reduction 

• Goal of dimensionality reduction is to  

discover the axis of data! 

Rather than representing 

every point with 2 coordinates 

we represent each point with 

1 coordinate (corresponding to 

the position of the point on  

the red line). 

 

By doing this we incur a bit of 

error as the points do not  

exactly lie on the line 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
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Why Reduce Dimensions? 

• Discover hidden correlations/topics 

• E.g., in documents, words that occur commonly 

together 

• Remove redundant and noisy features 

• E.g., in documents,  not all words are useful 

• Interpretation and visualization 

• Easier storage and processing of the data 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
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Dimensionality Reduction 

• We have already seen a form of dimensionality 

reduction 

 

• LSH, and random projections reduce the 

dimension while preserving the distances 



Data in the form of a matrix 

• We are given 𝑛 objects and 𝑑 attributes describing 
the objects. Each object has 𝑑 numeric values 
describing it. 

 

• We will represent the data as a 𝑛 × 𝑑 real matrix A. 
• We can now use tools from linear algebra to process the 

data matrix 

 

• Our goal is to produce a new 𝑛 × 𝑘 matrix B such that 
• It preserves as much of the information in the original matrix 

A as possible 

• It reveals something about the structure of the data in A 



Example: Document matrices 

n documents 

d terms  

(e.g., theorem, proof, etc.) 

Aij = frequency of the j-th 

term in the i-th document 

Find  subsets of terms that bring documents 

together 



Example: Recommendation systems 

n customers 

d movies 

 

Aij = rating of j-th  

product by the i-th 

customer 

Find subsets of movies that capture the 

behavior or the customers 



Linear algebra 

• We assume that vectors are column vectors.  

• We use 𝑣𝑇 for the transpose of vector 𝑣 (row vector) 

 

• Dot product: 𝑢𝑇𝑣 (1𝑛, 𝑛1 →  11)  
• The dot product is the projection of vector 𝑣 on 𝑢 (and vice versa) 

• 1, 2, 3
4
1
2

= 12  

 

• 𝑢𝑇𝑣 = 𝑣 𝑢 cos(𝑢, 𝑣) 
 

• If ||𝑢||  =  1 (unit vector) then 𝑢𝑇𝑣 is the projection length of 𝑣 on 𝑢 

 

• −1, 2, 3
4

−1
2

= 0 : orthogonal vectors 

 

• Orthonormal vectors: two unit vectors that are orthogonal 



Matrices 

• An nm matrix A is a collection of n row vectors and m column 
vectors 

 𝐴 =  
| | |

𝑎1 𝑎2 𝑎3

| | |
 𝐴 =  

− 𝛼1
𝑇 −

− 𝛼2
𝑇 −

− 𝛼3
𝑇 −

 

 

• Matrix-vector multiplication 
• Right multiplication 𝐴𝑢: projection of 𝑢 onto the row vectors of 𝐴, or 

projection of row vectors of 𝐴 onto 𝑢. 

• Left-multiplication 𝑢𝑇𝐴: projection of 𝑢 onto the column vectors of 𝐴, or 
projection of column vectors of 𝐴 onto 𝑢 

• Example: 

1 0 0
0 1 0

1
2
3

=
1
2

 



Change of basis 

• By default a vector is expressed in the axis-aligned basis. 
• For example, for vector [-1,2] we have: 

•
−1
2

= −1
1
0

+ 2
0
1

 

• With a projection we can change the basis over which a 
vector is expressed. 

√2

2

√2

2

−
√2

2

√2

2

−1
2

=

3√2

2
√2

2

 



Rank 

• Row space of A: The set of vectors that can be written as a 
linear combination of the rows of A 
• All vectors of the form 𝑣 = 𝑢𝑇𝐴 

 

• Column space of A: The set of vectors that can be written as a 
linear combination of the columns of A 
• All vectors of the form 𝑣 = 𝐴𝑢. 

 

• Rank of A: the number of linearly independent row (or column) 
vectors 
• These vectors define a basis for the row (or column) space of A 

• All vectors in the row (column) space are linear combinations of the basis vectors 

• Example 
• Matrix A =                   has rank r=2 

 

• Why? The first two rows are linearly independent, so the rank is at least 2, but all 
three rows are linearly dependent (the first is equal to the sum of the second and 
third) so the rank must be less than 3. 

 



Rank-1 matrices 

• In a rank-1 matrix, all columns (or rows) are multiples 
of the same column (or row) vector 

𝐴 =  
1 2 −1
2 4 −2
3 6 −3

 

• All rows are multiples of 𝑟𝑇 = [1,2, −1] 

• All columns are multiples of 𝑐 =  
1
2
3

 

• External product: 𝑢𝑣𝑇 (𝑛1 , 1𝑚 →  𝑛𝑚)  
• The resulting 𝑛𝑚 has rank 1: all rows (or columns) are 

linearly dependent 

• 𝐴 = 𝑐𝑟𝑇 



Eigenvectors 

• (Right) Eigenvector of matrix A: a vector v such 
that 𝐴𝑣 = 𝜆𝑣 

• 𝜆: eigenvalue of eigenvector 𝑣 

 

• A square symmetric matrix A of rank r, has r 
orthonormal eigenvectors 𝑢1, 𝑢2, … , 𝑢𝑟 with 
eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑟. 

• Eigenvectors define an orthonormal basis for the 
column space of A 

• We can write:  

𝐴 = 𝑈Λ𝑈𝑇 



Singular Value Decomposition 

𝐴 = 𝑈   Σ   𝑉𝑇 = 𝑢1, 𝑢2, ⋯ , 𝑢𝑟

𝜎1

𝜎2
0

0
⋱

𝜎𝑟

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑟

𝑇

 

 

 
• 𝜎1, ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟: singular values of matrix 𝐴 

 
• 𝑢1, 𝑢2, … , 𝑢𝑟: left singular vectors of 𝐴 

 
• 𝑣1, 𝑣2, … , 𝑣𝑟: right singular vectors of 𝐴 

 
𝐴 = 𝜎1𝑢1𝑣1

𝑇 + 𝜎2𝑢2𝑣2
𝑇 + ⋯ + 𝜎𝑟𝑢𝑟𝑣𝑟

𝑇 

[n×r] [r×r] [r×m] 

r: rank of matrix A 

[n×m] = 



Singular Value Decomposition 

• The left singular vectors are an orthonormal basis 
for the row space of A. 

• The right singular vectors are an orthonormal 
basis for the column space of A. 

 

• If A has rank r, then A can be written as the sum 
of r rank-1 matrices 

 

• There are r “linear components” (trends) in A. 
• Linear trend: the tendency of the row vectors of A to align 

with vector v 
• Strength of the i-th linear trend: ||𝐴𝒗𝒊||  = 𝝈𝒊 

 



Symmetric matrices 

• Special case: A is symmetric positive definite 

matrix 

 
𝐴 = 𝜆1𝑢1𝑢1

𝑇 + 𝜆2𝑢2𝑢2
𝑇 + ⋯ + 𝜆𝑟𝑢𝑟𝑢𝑟

𝑇 

 

• 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0: Eigenvalues of A 

• 𝑢1, 𝑢2, … , 𝑢𝑟: Eigenvectors of A 



Singular Values and Eigenvalues 

• Singular Value Decomposition 

𝐴 = 𝑈Σ𝑉𝑇 

• The left singular vectors of 𝐴 are also the 
eigenvectors of the (symmetric) matrix 𝐴𝐴𝑇 

𝐴𝐴𝑇 = 𝑈Σ2𝑈𝑇 

• The right singular vectors of 𝐴 are also the 
eigenvectors of the (symmetric) matrix 𝐴𝑇𝐴 

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇 

• The singular values of matrix 𝐴  are also the 
square roots of eigenvalues of 𝐴𝐴𝑇 and 𝐴𝑇𝐴 

𝜆𝑖 𝐴𝑇𝐴 = 𝜆𝑖 𝐴𝐴𝑇 = 𝜎𝑖
2 

 



SVD properties 

• Singular Value Decomposition has three useful 

properties that we will study now: 

• It provides the important (principal) directions 

(dimensions) in the data – Principal Component 

Analysis 

• It provides the best low rank approximation for our 

matrix 

• It minimizes the reconstruction error (squared distance 

between real data points and their estimates) 

 



Principal Component Analysis 

• Goal: reduce the dimensionality while preserving 

the “information in the data”. 

• In the new space we want to: 

• Maximize the amount of information 

• Minimize redundancy – remove the redundant 

dimensions 

• Minimize the noise in the data. 



Variability 

• Information in the data: variability in the data 
• We measure variability using the covariance matrix. 

• Sample variance for variable X: 

𝜎𝑋
2 =

1

𝑁
 𝑥𝑖 − 𝜇𝑋 𝑥𝑖 − 𝜇𝑋

𝑖

=
1

𝑁
𝑥 − 𝜇𝑋

𝑇 𝑥 − 𝜇𝑋  

• Sample covariance of variables X and Y  

𝜎𝑋𝑌
2 =

1

𝑁
 (𝑥𝑖 − 𝜇𝑋) (𝑦𝑖 − 𝜇𝑌)

𝑖

=
1

𝑁
𝑥 − 𝜇𝑋

𝑇 𝑦 − 𝜇𝑌  

 

• High variance 𝜎𝑋
2 means high information in dimension (attribute) X 

• We want to maximize the signal-to-noise ratio 
𝜎𝑠𝑖𝑔𝑛𝑎𝑙

2

𝜎𝑛𝑜𝑖𝑠𝑒
2  

 

• High co-variance 𝜎𝑋𝑌
2  means high correlation between attributes X,Y, 

and thus high redundancy.  
• Ideally we want 𝜎𝑋𝑌

2 = 0 for all pairs X,Y 

 



Example 

• In the data below the data are essentially one-

dimensional, but what is the axis we should use? 

• The direction in which the variance is maximized. 

 

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2  

𝜎𝑛𝑜𝑖𝑠𝑒
2  

The variance along the 

orthogonal direction is 

small and captures the 

noise in the data  



Covariance matrix 

• We are given the data matrix A, with 𝑛 rows and 𝑚 

columns, where the rows correspond to data samples 

over a set of features defined by the columns. 

• Remove the mean of each column from the column 

vectors to get the centered matrix 𝐴  

• The matrix C = 𝐴 𝑇𝐴 is the covariance matrix of the 

column vectors of 𝐴 . 

• We want to change the basis of the data so that the 

matrix becomes diagonal 

• All the values are in the diagonal and the off-diagonal entries 

are zero 



PCA: Principal Component Analysis 

• We will project the rows of matrix 𝐴  onto a new 
set of attributes (dimensions) such that: 
• The attributes have zero covariance to each other (they 

are orthogonal) 

• Each attribute captures the most remaining variance in 
the data, while orthogonal to the existing attributes 
• The first attribute should capture the most variance in the data 

 

• For matrix 𝐴 , the variance of the columns of 𝐴  
when projected to vector 𝑣 is given by 

𝜎2 = 𝐴 𝑣 
2
 

• The first right singular vector of 𝐴  maximizes 𝜎2! 



PCA and SVD 

• PCA is a special case of SVD on the centered 

matrix. 

• After projecting the centered matrix 𝐴  to the 

singular vectors in 𝑉 we have that the covariance 

matrix of the new dataset 𝐴 𝑉 is: 

𝐴 𝑉 𝑇 𝐴 𝑉 = Σ 

• We have achieved to make the matrix diagonal! 

 

• Dimensionality reduction: Don’t keep all the 

singular vectors in 𝑉 just the 𝑘 first ones. 



4.0 4.5 5.0 5.5 6.0
2

3

4

5

PCA 

Input: 2-d dimensional points 
 

Output:  
 

 

1st (right) 

singular vector 

1st (right) singular vector:  

direction of maximal variance, 

2nd (right) 

singular 

vector 

2nd (right) singular vector:  

direction of maximal variance, 

after removing the projection of 
the data along the first singular 

vector. 



Singular values 

1: measures data variance 

along the first singular vector. 

 

2: measures how much of the 

data variance is explained by 

the second singular vector. 
1 

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) 

singular vector 

2nd (right) 

singular 

vector 



Singular values tell us something about 

the variance 

• The variance in the direction of the k-th principal component 

is given by the corresponding singular value σk
2 

 

• Singular values can be used to estimate how many 

components to keep 

 

• Rule of thumb: keep enough to explain 85% of the 

variation:  

85.0

1

2

1

2











n

j

j

k

j

j







A VT  U = 

objects 

features 

significant 

noise 

n
o
is

e
 noise 

s
ig

n
if
ic

a
n
t 

sig. 

= 

SVD and Rank-k  approximations  

We keep the k most important singular vectors 

The matrix 𝑈𝑘Σ𝑘𝑉𝑘
𝑇 is a rank-k approximation of A 

The idea is that this is the part that has the useful information and noise is removed 

We will show that this is also the best rank-k approximation (closest to the original A) 



Example 

𝐴 =  

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

 

 

 

 
𝐴 = 𝑈Σ𝑉𝑇 

 

• First right singular vector 𝑣1 
• More or less same weight to all drugs 

• Discriminates heavy from light users 

• Second right singular vector 
• Positive values for legal drugs, negative for illegal 

students 

drugs 

legal illegal 

𝑎𝑖𝑗: usage of student i of drug j 

Drug 2 

Drug 1 



SVD for matrix reconstruction 

• We will now see how we can use the fact that 

SVD gives the best rank-k approximation for a 

data matrix A. 

• The idea is that we assume that the “true” matrix 

is rank-k, and rank is increased due to noise 

• We use SVD to find the best rank-k 

approximation for A, and thus the best 

approximation of the “true” matrix 



An (extreme) example 

• User-Movie matrix 
• Blue and Red rows (colums) are linearly dependent  

 

 

 

 

 

• There are two prototype users (vectors of movies): blue and 
red 
• To describe the data is enough to describe the two prototypes, and the 

projection weights for each row 

 

• A is a rank-2 matrix 

𝐴 =  𝑤1, 𝑤2
𝑑1

𝑇

𝑑2
𝑇  

A =  



SVD – Example: Users-to-Movies 

• A = U  VT - example: Users to Movies 

 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
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“Concepts”  

AKA Latent dimensions 

AKA Latent factors 



SVD – Example: Users-to-Movies 

• A = U  VT - example: Users to Movies 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
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SVD – Example: Users-to-Movies 

• A = U  VT - example: Users to Movies 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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U is “user-to-concept”  

similarity matrix 



SVD – Example: Users-to-Movies 

• A = U  VT - example: Users to Movies 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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V is “movie to concept” 

similarity matrix 



SVD – Example: Users-to-Movies 

• A = U  VT - example: Users to Movies 
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Σ is the “concept strength” 

matrix 



SVD – Example: Users-to-Movies 

• A = U  VT - example: Users to Movies 
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An (more realistic) example 

• User-Movie matrix 

 

 

 

 

• There are two prototype users and movies but 

they are noisy 

A =  
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SVD - Interpretation #1 

‘movies’, ‘users’ and ‘concepts’: 

 

• 𝑼: user-to-concept similarity matrix 
 

• 𝑽: movie-to-concept similarity matrix 
 

• : its diagonal elements:  
 ‘strength’ of each concept 

 



Rank-k approximation 

• In this User-Movie matrix 

 

 

 

 

• We have more than two singular vectors, but the 
strongest ones are still about the two types. 
• The third models the noise in the data 

• By keeping the two strongest singular vectors we 
obtain most of the information in the data. 
• This is a rank-2 approximation of the matrix A 

A =  



Rank-k approximations (Ak) 

𝑼𝒌 (𝑽𝒌): orthogonal matrix containing the top k left (right) 

singular vectors of A. 

𝜮𝒌: diagonal matrix containing the top k singular values of A 

 

Ak is an approximation of A 

n x d n x k k x k k x d 

Ak is the best approximation of A 



SVD as an optimization 

• The rank-k approximation matrix 𝐴𝑘 produced by 

the top-k singular vectors of A minimizes the 

Frobenious norm of the difference with the matrix A 

 

𝐴𝑘 = arg max
𝐵:𝑟𝑎𝑛𝑘 𝐵 =𝑘

𝐴 − 𝐵 𝐹
2  

𝐴 − 𝐵 𝐹
2 =  𝐴𝑖𝑗 − 𝐵𝑖𝑗

2

𝑖,𝑗

 

Explanation: The (𝑖, 𝑗) cell in 𝐴𝑘is close on average with the 𝑖, 𝑗  cell of 𝐴 



What does this mean? 

• We can project the row (and column) vectors of 

the matrix A into a k-dimensional space and 

preserve most of the information 

• (Ideally) The k dimensions reveal latent 

features/aspects/topics of the term (document) 

space. 

• (Ideally) The 𝐴𝑘 approximation of matrix A, 

contains all the useful information, and what is 

discarded is noise 



Latent factor model  

• Rows (columns) are linear combinations of k 

latent factors 

• E.g., in our extreme document example there are two 

factors 

• Some noise is added to this rank-k matrix 

resulting in higher rank 

 

• SVD retrieves the latent factors (hopefully). 



A VT  U = 

objects 

features 

significant 

noise 
n
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e
 noise 
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t 

sig. 

= 

SVD and Rank-k  approximations  



Example 

More details 

• Q: How exactly is dim. reduction done? 

• A: Compute SVD 
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More details 

• Q: How exactly is dim. reduction done? 

• A: Set smallest singular values to zero 
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Frobenius norm: 

ǁMǁF = Σij Mij
2 

ǁA-BǁF =  Σij (Aij-Bij)
2 

is “small” 



Application: Recommender systems 

• Data: Users rating movies 

• Sparse and often noisy 

• Assumption: There are k basic user profiles, and 

each user is a linear combination of these profiles 

• E.g., action, comedy, drama, romance 

• Each user is a weighted combination of these profiles 

• The “true” matrix has rank k 

• If we had the matrix A with all ratings of all users 

for all movies, the matrix 𝐴𝑘 would tell us the true 

preferences of the users for the movies 

 



Model-based Recommendation Systems 

• What we observe is a noisy, and incomplete 
version of this matrix 𝐴 ̃ 

• Given matrix 𝐴  and we would like to get the 
missing ratings that 𝐴𝑘 would produce 

 

• Algorithm: compute the rank-k approximation 𝐴 𝑘 
of and matrix 𝐴  predict for user 𝑢 and movie 𝑚, 
the value 𝐴 𝑘[𝑚, 𝑢]. 
• The rank-k approximation 𝐴 𝑘 is provably close to 𝐴𝑘 

 

• Model-based collaborative filtering 

 



Example 

Missing ratings and noise 
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Example 

• Reconstruction of missing ratings 
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Latent Factor Models 

• SVD also considers entries that are missing! 

• Use specialized methods to find P, Q 

• min
𝑃,𝑄

 𝑟𝑥𝑖 − 𝑞𝑖
𝑇 ⋅ 𝑝𝑥

2

𝑖,𝑥 ∈R  

• Note: 

• We don’t require cols of P, Q to be orthogonal/unit length 

• P, Q map users/movies to a latent space 
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Computing the latent factors  

• Want to minimize SSE for unseen test data 

• Idea: Minimize SSE on training data 

• Want large k (# of factors) to capture all the signals 

• But, SSE on test data begins to rise for k > 2 
 

• This is a classical example of overfitting: 

• With too much freedom (too many free parameters) the 

model starts fitting noise 

• That is it fits too well the training data and thus not generalizing 

well to unseen test data 

67 
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Dealing with Missing Entries 

• To solve overfitting we introduce 

regularization: 

• Allow rich model where there are sufficient data 

• Shrink aggressively where data are scarce 
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1, 2 … user set regularization parameters 

“error” “length” 

Note: We do not care about the “raw” value of the objective function, 

but we care in P,Q that achieve the minimum of the objective 
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Latent factors 

• To find the P,Q that minimize the error function we 

can use (stochastic) gradient descent  

 

• We can define different latent factor models that 

apply the same idea in different ways 

• Probabilistic/Generative models. 

 

• The latent factor methods work well in practice, 

and they are employed by most sophisticated  

recommendation systems 



Another Application 

• Latent Semantic Indexing (LSI): 

• Apply PCA on the document-term matrix, and index the 

k-dimensional vectors 

• When a query comes, project it onto the k-dimensional 

space and compute cosine similarity in this space 

• Principal components capture main topics, and enrich 

the document representation 

 



Another property of PCA/SVD 

• The chosen vectors are such that minimize the sum of square 
differences between the data vectors and the low-dimensional 
projections 
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SVD is “the Rolls-Royce and the Swiss 
Army Knife of Numerical Linear 

Algebra.”* 

*Dianne O’Leary, MMDS ’06 



Computation of eigenvectors 

• Consider a symmetric square matrix 𝑀 

• Power-method: 
• Start with the vector 𝑣 of all 1’s 

• Compute 𝑣 =  𝑀𝑣 

• Normalize by the length of 𝑣 

• Repeat until the vector does not change 

 

• This will give us the first eigenvector. 

• The first eigenvalue is 𝜆 = 𝑣𝑇𝑀𝑣 

 

• For the second one, compute the first eigenvector of 
the matrix 𝑀∗ = 𝑀 − 𝜆𝑣𝑣𝑇 



Singular Values and Eigenvalues 

• The left singular vectors of 𝐴 are also the 

eigenvectors of 𝐴𝐴𝑇 

 

• The right singular vectors of 𝐴 are also the 

eigenvectors of 𝐴𝑇𝐴 

 

• The singular values of matrix 𝐴  are also the 

square roots of eigenvalues of 𝐴𝐴𝑇 and 𝐴𝑇𝐴 

 



Computing singular vectors 

• Compute the eigenvectors and eigenvalues of the 

matrices 𝑀𝑀𝑇 and 𝑀𝑇𝑀 


