DATA MINING
LECTURE 6

Dimensionality Reduction
PCA-SVD

(Thanks to Jure Leskovec, Evimaria Terzi)



The curse of dimensionality

Real data usually have thousands, or millions of
dimensions

- E.g., web documents, where the dimensionality is the
vocabulary of words

- Facebook graph, where the dimensionality is the
number of users
Huge number of dimensions causes problems

- Data becomes very sparse, some algorithms become
meaningless (e.g. density based clustering)

- The complexity of several algorithms depends on the
dimensionality and they become infeasible (e.g. nearest
neighbor search).



Dimensionality Reduction

- Usually the data can be described with fewer
dimensions, without losing much of the meaning
of the data.

- The data reside in a space of lower dimensionality
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In this data matrix the dimension is essentially 3
- There are three types of products and three types of

USEers
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Example

- Cloud of points 3D space;,\,-
. : . 1. 355208 200 T70 007"

- Think of point positions '

as a matrix: 12 1fa

—2 -3 1|B

lrowperpoint: | 3 5 0]C

-We can rewrite coordinates more efficiently!
- Old basis vectors: [1 00][01 0] [00 1]
- New basis vectors: [12 1] [-2 -3 1]

- Then A has new coordinates: [1 0]. B: [0 1], C: [1 -1]
- Notice: We reduced the number of coordinates!



Dimensionality Reduction

Find the “true dimension” of the data

- In reality things are never as clear and simple as in this
example, but we can still reduce the dimension.

Essentially, we assume that some of the data is
useful signal and some data is noise, and that we
can approximate the useful part with a lower
dimensionality space.

- Dimensionality reduction does not just reduce the
amount of data, it often brings out the useful part of the

data
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Dimensionality Reduction

- Goal of dimensionality reduction is to
discover the axis of data!

Rather than representing
every point with 2 coordinates
we represent each point with

1 coordinate (corresponding to
the position of the point on

the red line).

By doing this we incur a bit of
error as the points do not
exactly lie on the line
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Why Reduce Dimensions?

- Discover hidden correlations/topics

- E.g., In documents, words that occur commonly
together

- Remove redundant and noisy features
- E.g., in documents, not all words are useful

- Interpretation and visualization
- Easier storage and processing of the data




Dimensionality Reduction

We have already seen a form of dimensionality
reduction

LSH, and random projections reduce the
dimension while preserving the distances



Data In the form of a matrix

We are given n objects and d attributes describing
the objects. Each object has d numeric values
describing it.

We will represent the data as a n X d real matrix A.

- We can now use tools from linear algebra to process the
data matrix

Our goal is to produce a new n X k matrix B such that

- It preserves as much of the information in the original matrix
A as possible

- It reveals something about the structure of the data in A



Example: Document matrices

d terms
(e.g., theorem, proof, etc.)

(

A

n documents

Aj; = frequency of the |-th
\ term in the i-th document

Find subsets of terms that bring documents
together



Example: Recommendation systems

d movies

N customers A

Aj; = rating of |-th
product by the i-th
\ customer /

Find subsets of movies that capture the
behavior or the customers



Linear algebra

- We assume that vectors are column vectors.
- We use v! for the transpose of vector v (row vector)

- Dot product: u"v (1xn,nx1 - 1x1)

- The dot product is the projection of vector v on u (and vice versa)

4
- [1,2,3] [1 =12
2

- uTv = ||v||||ul]l cos(u, v)

- If ||u]|] = 1 (unit vector) then uTv is the projection length of v on u

4
- [-1,2,3] [_1] = 0 : orthogonal vectors
2

- Orthonormal vectors: two unit vectors that are orthogonal

v

a0
N,




Matrices
- An nxm matrix A is a collection of n row vectors and m column
vectors
— o -
A= |la; a, aj A= |- af -
— al -

- Matrix-vector multiplication

- Right multiplication Au: projection of u onto the row vectors of 4, or
projection of row vectors of A onto u.

- Left-multiplication u" A: projection of u onto the column vectors of 4, or
projection of column vectors of A onto u

RS 12| 1



Change of basis

By default a vector is expressed in the axis-aligned basis.
- For example, for vector [-1,2] we have:

5 1=1lol 2]

With a projection we can change the basis over which a
vector Is expressed.

V2 A2 3/2

2 2 [—1]: 2
V2o 2] 2 V2
L 2 2. L2




e
Rank

Row space of A: The set of vectors that can be written as a
linear combination of the rows of A

- All vectors of the form v = u’A

Column space of A: The set of vectors that can be written as a
linear combination of the columns of A

- All vectors of the form v = Au.

Rank of A: the number of linearly independent row (or column)
vectors

- These vectors define a basis for the row (or column) space of A
All vectors in the row (column) space are linear combinations of the basis vectors

Example [1 2 1

- Matrix A=|—-2 -3 1| hasrank r=2
3 5 0
Why? The first two rows are linearly independent, so the rank is at least 2, but all
three rows are linearly dependent (the first is equal to the sum of the second and
third) so the rank must be less than 3.



Rank-1 matrices

- In a rank-1 matrix, all columns (or rows) are multiples
of the same column (or row) vector

1 2 -1
A= 1|2 4 -2
3 6 -3
- All rows are multiples of ' = [1,2, —1]
"
- All columns are multiples of c = |2
13

- External product; uv’ (nx1,1xm — nxm)

- The resulting nxm has rank 1: all rows (or columns) are
linearly dependent

e A=cr’



Eigenvectors

- (Right) Eigenvector of matrix A: a vector v such
that Av = Av

- 1. elgenvalue of eigenvector v

- A square symmetric matrix A of rank r, has r
orthonormal eigenvectors ., U, ..., u,- with
eigenvalues 1, 4,, ..., 1,.

- Elgenvectors define an orthonormal basis for the
column space of A

- We can write:
A=UAUT



Singular Value Decomposition

_0_1 0 _v]?"_

T

A=U 3 VT = [upup—wl| 72 V2
[nxm] =[nxr] [rxr] [r<m] 0 o7

r: rank of matrix A
- 0q,= 0y = - = 0, Singular values of matrix A
° Uq, Uy, ..., Uyl left singular vectors of A
- V4, V5, ..., Ul ight singular vectors of A

A = oqu vl + ouyvl + -+ oou, vl



Singular Value Decomposition

- The left singular vectors are an orthonormal basis
for the row space of A.

- The right singular vectors are an orthonormal
pasis for the column space of A.

- If A has rank r, then A can be written as the sum
of r rank-1 matrices

- There are r “linear components” (tfrends) in A.

- Linear trend: the tendency of the row vectors of A to align
with vector v

- Strength of the I-th linear trend: ||Av;|| = o;



Symmetric matrices

- Special case: A Is symmetric positive definite
matrix

A= Auud + Luul + -+ Luul

A =4, =+ = 1. = 0: Eigenvalues of A
U4, Uy, ..., U.. EIgenvectors of A



Singular Values and Eigenvalues

Singular Value Decomposition
A=UzV?!
The left singular vectors of A are also the
eigenvectors of the (symmetric) matrix AA"
AAT = UzcUT
The right singular vectors of A are also the
eigenvectors of the (symmetric) matrix A’ A
ATA =vz2y?
The singular values of matrix A are also the
square roots of eigenvalues of AA" and A’ A

2;(ATA) = 2;(AAT) = of



-
SVD properties

Singular Value Decomposition has three useful
properties that we will study now:

- It provides the important (principal) directions
(dimensions) in the data — Principal Component
Analysis

- It provides the best low rank approximation for our
matrix

- It minimizes the reconstruction error (squared distance
between real data points and their estimates)



Principal Component Analysis

- Goal: reduce the dimensionality while preserving
the “information in the data”.

- In the new space we want to:
- Maximize the amount of information

- Minimize redundancy — remove the redundant
dimensions

- Minimize the noise In the data.



-
Variability

- Information in the data: variability in the data
- We measure variability using the covariance matrix.
- Sample variance for variable X:

1 1
of =% ) (= )G — ) = 3 O = )" (= )
NZL N
l
- Sample covariance of variables X and Y

1 1
o = ) (= ) 0 = ) = G = 1) (0 = )

- High variance gz means high information in dimension (attribute) X

2
Osignal

- We want to maximize the signal-to-noise ratio =—

Onoise

- High co-variance og, means high correlation between attributes X,Y,
and thus high redundancy.

- ldeally we want o2, = 0 for all pairs X,Y



Example

In the data below the data are essentially one-
dimensional, but what is the axis we should use?

- The direction in which the variance is maximized.

The variance along the
orthogonal direction is

small and captures the o]
noise in the data

~100 -0.75 —0.50 —0.25 000 025 050 075 100



Covariance matrix

We are given the data matrix A, with n rows and m
columns, where the rows correspond to data samples
over a set of features defined by the columns.

Remove the mean of each columnjrom the column
vectors to get the centered matrix A

The matrix C = /TT/_Tis the covariance matrix of the
column vectors of A.

We want to change the basis of the data so that the
matrix becomes diagonal

- All the values are in the diagonal and the off-diagonal entries
are zero



PCA: Principal Component Analysis

We will project the rows of matrix 4 onto a new
set of attributes (dimensions) such that:

- The attributes have zero covariance to each other (they
are orthogonal)

- Each attribute captures the most remaining variance in
the data, while orthogonal to the existing attributes
The first attribute should capture the most variance in the data

For matrix A, the variance of the columns of A
when projected to vector v is given by

o2 = ||Av||°

- The first right singular vector of A maximizes ¢?!



e
PCA and SVD

PCA is a special case of SVD on the centered
matrix.

After projecting the centered matrix A to the
singular vectors in I/ we have that the covariance
matrix of the new dataset AV is:

(AT (AV) =X
We have achieved to make the matrix diagonal!

Dimensionality reduction: Don’t keep all the
singular vectors in V just the k first ones.



-
PCA

Input: 2-d dimensional points

S Output:

2nd (right)

1st (right) sinqular vector:
4L Vvector . direction of maximal variance,

2nd (right) singular vector:
direction of maximal variance,

3 - after removing the projection of
the data along the first singular
1st (right) vector.
singular vector
2 I I I

4.0 4.5 5.0 5.5 6.0



Singular values
5
2nd (right .
nd (19h) o,. measures data variance
Al | along the first singular vector.
o,. measures how much of the
data variance is explained by
3r 7 the second singular vector.
1st (right)
singular vector
2 I I I

4.0 4.5 5.0 5.5 6.0



Singular values tell us something about
the variance

The variance in the direction of the k-th principal component
is given by the corresponding singular value o, ?

Singular values can be used to estimate how many
components to keep

Rule of thumb: keep enough to explain 85% of the
variation: K




SVD and Rank-k approximations
A = U 2 VT

features

significant

significant
noise

objects

We keep the k most important singular vectors

The matrix U, Z, V) is a rank-k approximation of A

The idea is that this is the part that has the useful information and noise is removed
We will show that this is also the best rank-k approximation (closest to the original A)



Example

students
An1 [ Ann

legal illegal
a;;- usage of student i of drug |

A=UxVT
Drug 1

- First right singular vector v, o)
- More or less same weight to all drugs ®
- Discriminates heavy from light users @

- Second right singular vector S
- Positive values for legal drugs, negative for illegal Drug 2




SVD for matrix reconstruction

We will now see how we can use the fact that
SVD gives the best rank-k approximation for a
data matrix A.

The idea is that we assume that the “true” matrix
IS rank-k, and rank is increased due to noise

We use SVD to find the best rank-k
approximation for A, and thus the best
approximation of the “true” matrix



An (extreme) example

- User-Movie matrix
- Blue and Red rows (colums) are linearly dependent

A =

- There are two prototype users (vectors of movies): blue and
red

- To describe the data is enough to describe the two prototypes, and the
projection weights for each row

- Als a rank-2 matrix
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SVD — Example: Users-to-Movies

-A=UZV'-example: Users to Movies

SciFi

\

T

Romanc
\’

O Ul N W = I Matrix

o

Lo

O OO Ul b~ w k- Alen

O O O Ul w - Serenity

N O D O o o o Casablanca

N OO OO o,Amelie

“Concepts”
AKA Latent dimensions
AKA Latent factors
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

T

SciFi

\

T

Romance

V

lo o o o0 & w | Matrix

O O O Ul N W K Alen

O O O U1 M W - Serenity

SciFi-concept
Romance-concept

0.14 0.00
0.42 0.00
056 0.00 | 24 o
0.70 0.00 | X|5 " g5
0.00 0.60 -
0.00 0.75

0.00 0.30 _ 0.58 0.58 0.58 0.00 0.00
- 0.00 0.00 0.00 0.71 0.71

N O DN O O O O Casablanca
II\J O DNO OO O,Amelie
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

T
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T
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V
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O O O Ul N W K Alen

O O O U1 M W - Serenity
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S
‘;5 Q Romance-concept

S O

e £

O < - U is “user-to-concept”
00 0.00 similarity matrix

0 0] [0742 0.00 _

00| lo.56 0.00 124 0

0 0f=l070 000 [ X]g g5] X

4 41 10.00 -

5 5| 10.00

2 2
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 40

Datasets, http://www.mmds.org

SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

T

SciFi

\

T

Romance

V

lo o o o0 & w | Matrix

O O O Ul N W K Alen

O O O U1 M W - Serenity

SciFi-concept
Romance-concept

_ - V is “movie to concept”
0.14 0.00 similarity matrix

0.42 0.00
056 0.00 | 154 o
0.70 0.00 | X|5 " g5
0.00 0.60 -
0.00 0.75

0.00 0.30 | [0.58 0.58 0.58) 0.00 0.00
- I;.oo 0.00 & 0.71]
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II\J O DNO OO O,Amelie
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

T

SciFi

\

T

Romance

V

lo o o o0 & w | Matrix

O O O Ul N W K Alen

O O O U1 M W - Serenity

SciFi-concept

©
c;% 2 Romance-concept
T QO
S E
S - 2 is the “concept strength”
0 0] 0.14 0.00 matrix
0 0f Jo.42 0.00 _
0 0] 1056 0.00
| ' 0
0 0[—=]0.70 0.00 X9.5 X
4 41 10.00 0.60 -
5 5| [0.00 0.75
2 2

0.00 0.30 _ 0.58 0.58 0.58 0.00 0.00
- 0.00 0.00 0.00 0.71 0.71
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T
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

0.14 0.00
0.42 0.00
0.56 0.00
0.70 0.00
0.00 0.60
0.00 0.75

10.00 0.30 _

Movie 2

e 1stsingular
vector

— Movie 1
X I:.é@ 905 X
“d  Xis the “spread

(variance)” matrix

0.58 0.58 0.58 0.00 0.00 |
0.00 0.00 0.00 0.71 0.71J




An (more realistic) example

- User-Movie matrix

- There are two prototype users and movies but
they are noisy
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SVD — Example: Users-to-Movies

-A=UZXZV'-example: Users to Movies

S
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TlllOO
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¢44400_
555 0 0[] m
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“Concepts”
AKA Latent dimensions
AKA Latent factors
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

T

SciFi
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

9 P fgﬁ o SciFi-concept
£ =0 & 2 Romance-concept
22538 < _ The first two vectors are
T 1 1100 0.13 -0.02 -0.01 more or less unchanged
- 33300 0.41 -0.07 -0.03 —_
4 4 4 0 0| [0.55 -0.09 -0.04 1240 0
" s 5 5 0 0o[7o6s -011 005 x [0 950 | x
T 020 4 4| |015 059 0.65 0 0 13
rom |0 O 0O 5 5 0.07 0.73 -0.67
, L0102 2] 1007 0.29 0.32_

0.56 059 0.56 0.09 0.09
-0.12 0.02 -0.12 0.69 0.69
0.40 -0.80 0.40 0.09 0.09.
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

s < 3 'CSU) TEJ The third vector has a very
= Z 3 8§ < _ low singular value
T 1110 o| [013-002 -0.01
< |3 33 0 0| [041-0.07 -0.03
4 4 4 0 0| [0.55 -0.09 -0.04 1240 O
Y 15 5 5 0 0|=[068 -011 -005| x [0 950 | x
T 020 4 4| |015 0.59 0.65 0 0
~m |0 0 0 5 5| 1007 0.73 -0.67
, o102 2] 007 029 032

0.56 059 0.56 0.09 0.09
-0.12 0.02 -0.12 0.69 0.69
0.40 -0.80 0.40 0.09 0.09.
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SVD - Interpretation #1
‘movies’, ‘'users’ and ‘concepts’:

- U: user-to-concept similarity matrix
- V. movie-to-concept similarity matrix

- 2. Its diagonal elements:
‘strength’ of each concept



Rank-k approximation

In this User-Movie matrix

A =

We have more than two singular vectors, but the
strongest ones are still about the two types.
- The third models the noise in the data

By keeping the two strongest singular vectors we
obtain most of the information in the data.

- This is a rank-2 approximation of the matrix A



Rank-k approximations (A,)

/ Vo
e
\ )\

nxd n x k k x k k xd

U, (V,): orthogonal matrix containing the top k left (right)

singular vectors of A.
2. diagonal matrix containing the top k singular values of A

A, Is an approximation of A
is the approximation of




SVD as an optimization

- The rank-k approximation matrix 4, produced by
the top-k singular vectors of A minimizes the
Frobenious norm of the difference with the matrix A

_ _ 2
Ak - argB:rar#ka()lg):k”A B”F

|A — Bz = Z(Aij — Bij)2
L,j

Explanation: The (i,j) cell in A,is close on average with the (i, ;) cell of A




What does this mean?

We can project the row (and column) vectors of
the matrix A into a k-dimensional space and
preserve most of the information

(Ideally) The k dimensions reveal latent
features/aspects/topics of the term (document)
space.

(Ideally) The A, approximation of matrix A,
contains all the useful information, and what is
discarded is noise



Latent factor model

Rows (columns) are linear combinations of k
latent factors

- E.g., In our extreme document example there are two
factors

Some noise Is added to this rank-k matrix
resulting in higher rank

SVD retrieves the latent factors (hopefully).



SVD and Rank-k approximations

A

U 2 A

features

significant

|
significant
noise

objects
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Example

More detalils
How exactly is dim. reduction done?
A: Compute SVD

1110 0| (013 -0.02 -0.01

3330 0| |0.41 -0.07 -0.03 — —

4 4 4 0 0| |0.55 -0.09 -0.04 1240 0

5550 0/—]068 -0.11 -0.05| X [0 950 X

0 20 4 4| |0.15 059 0.65 0 0 13

0005 5| |007 073 -0.67| _ -
0102 2] |007 020 032 0.56 0.59 0.56 0.09 0.09

-0.12 0.02 -0.12 0.69 0.69
10.40 -0.80 0.40 0.09 0.09
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Example

More detalils
How exactly is dim. reduction done?
A:. Set smallest singular values to zero

1110 o] [013-0.02 -0.01

3 330 0| [041 -0.07 -0.03 — —

4 4 4 0 0| |0.55 -0.09 -0.04 1240 0

5550 0[—[068 -0.11 -005| X |0 950 X

020 4 4| |0.15 059 0.65 0 0 7(3_

0005 5| 007 073 -067] _ -
0102 2| [007 029 032 0.56 0.59 0.56 0.09 0.09

-0.12 0.02 -0.12 0.69 0.69
10.40 -0.80 0.40 0.09 0.09
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Example

More detalils
How exactly is dim. reduction done?
A:. Set smallest singular values to zero

1110 o] [013-0.02 -0.01

3 330 0| [041 -0.07 -0.03 — —

4 4 4 0 0| |0.55 -0.09 -0.04 1240 0

5550 0f~068 -0.11 -005/ X |0 950 X

020 4 4| |0.15 059 0.65 0 0 7(3_

0005 5| 007 073 -067] _ -
0102 2| [007 029 032 0.56 0.59 0.56 0.09 0.09

-0.12 0.02 -0.12 0.69 0.69
10.40 -0.80 0.40 0.09 0.09
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More detalils
How exactly is dim. reduction done?
A:. Set smallest singular values to zero

R O DN OB WPk

O OO~ Wk

N OO O O O

|I\)U‘I-I>OOOO

Q

0.07 0.29

0.13 -0.02 -0.0
0.41 -0.07 -Q.
0.55 -0.09 -0\p4
0.68 -0.11 -005
0.15 0.59 0/85
0.07 0.73 -0.6

X

0.56 059 0.56 0.09 0.09
-0.12 0.02 -0.12 0.69 0.69
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Datasets, http://www.mmds.org

Example

More detalils
How exactly is dim. reduction done?
A:. Set smallest singular values to zero

1110 0| [0.13 -0.02

3330 0| [0.41-0.07 _ _

4 4 4 0 0| |0.55 -0.09 12.4 0

555 0 0[~]0.68 -0.11 x |0 93 X

020 4 4| [015 059 B -

0005 5| 007 073 _ )
010 2 2] |007 029 0.56 0.59 0.56 0.09 0.09

= -0.12 0.02 -0.12 0.69 0.69
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Datasets, http://www.mmds.org

Example

More detalils
How exactly is dim. reduction done?
Set smallest singular values to zero

1 0.92 0.95 0.92 0.01 0.01]
291 3.01 2.91 -0.01 -0.01
3.90 4.04 3.90 0.01 0.01
4.82 5.00 4.82 0.03 0.03
0.70 053 0.70 4.11 4.11
-0.69 1.34 -0.69 4.78 4.78
0.32 0.23 0.32 2.01 2.01

Frobenius norm: IA-Bll.- = \/ > (A___B__)Z
"M"F = \/zij Mij2 is ”small’l’: ! -

I O O O O O
Q

R O DN OB~ WPk
N OO O O O

O OO~ Ww




Application: Recommender systems

Data: Users rating movies
- Sparse and often noisy

Assumption: There are k basic user profiles, and
each user is a linear combination of these profiles
- E.g., action, comedy, drama, romance

- Each user is a weighted combination of these profiles

- The “true” matrix has rank k

If we had the matrix A with all ratings of all users
for all movies, the matrix 4, would tell us the true
preferences of the users for the movies



Model-based Recommendation Systems

What we observe Is a noisy, and incomplete
version of this matrix A

Given matrix A and we would like to get the
missing ratings that A, would produce

Algorithm: compute the rank-k approximation A,
of and matrix A predict for user u and movie m,
the value A, [m, u].

- The rank-k approximation A4, is provably close to 4,

Model-based collaborative filtering
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Datasets, http://www.mmds.org

Example

Missing ratings and noise

1110 0| [014 -0.06 -0.04

0330 0| [030 -0.11 -0.61 _ —

4 4 0 0 0| [043 -0.16 0.76 1240 0

5550 0|—[074 -031 -018 X [0 950 X

0 2 0 4 4| (015 053 0.02 0 0 13

0005 5| [007 070 -0.03] -
010 2 2| [007 027 001 0.51 0.66 0.44 0.23 0.23

-0.24 -0.13 -0.21 0.66 0.66
0.59 0.08 -0.80 0.01 0.01]
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Datasets, http://www.mmds.org

Example

Missing ratings and noise

1110 0| [0.14 -0.06 0.0

0330 0] [030 -011 06 —

4 4 00 0| |043 -0.16 Q6 1240 O

5550 0[7j0.74 -031 -g18 X |0 3950 | X

0 2 0 4 4f (015 053 QQ2 0 0 23

0 005 5| 007 070 -0. _ )
010 2 2| [007 027 Joo 0.51 0.66 0.44 0.23 0.23

= -0.24 -0.13 -0.21 0.66 0.66




Example

Reconstruction of missing ratings

0.96 1.14 0.82 -0.01 -0.01]
1.94 2.32 1.66 0.07 0.07
2.77 3.32 2.37 0.08 0.08
4.84 5.74 4.14 -0.08 0.08
0.40 1.42 0.33 4.06 4.06
-0.42 0.63 -0.38 4.92 4.92
0.20 0.71 0.16 2.03 2.03
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Datasets, http://www.mmds.org

Latent Factor Models

Uusers factors
1 3 5 5 4 A -4 2
I 2 Tasl [-5]6 |5 users
B 13 - a2l = 2| 3 5 11 | -2 | .3 5 -2 -5 | .8 -4 | 3 14 | 24 | -9 E.)h
E ol : 2 . 1121 | 3 -.8 e 5 14 3 -1 14 (29 | -7 1.2 -1 1.3 g"
= s . o1 ) 2.1 -4 .6 1.7 24 .9 -3 4 .8 v -.6 A a
4( 3| 4] 2 2| 5 GE) K : - PT
1 3 3 2 4 = -1 e 3 Q
SVD also considers entries that are missing!

Use specialized methods to find P, Q

2 A __ T
° man(lx)eR(sz q;-r-px) Txi = q; " Px

- Note:
We don’t require cols of P, Q to be orthogonal/unit length
P, Q map users/movies to a latent space
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Datasets, http://www.mmds.org

Computing the latent factors

Want to minimize SSE for unseen test data

ldea: Minimize SSE on training data
- Want large k (# of factors) to capture all the signals
- But, SSE on test data begins to rise for k > 2

This Is a classical example of overfitting:

- With too much freedom (too many free parameters) the
model starts fitting noise

That is it fits too well the training data and thus not generalizing
well to unseen test data
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Datasets, http://www.mmds.org

Dealing with Missing Entries

To solve overfitting we introduce
regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

min 2 (hi =0 )+ A2l + 22

trammg B |
Y ~ - " -
error “length”

Ay, A, ... user set regularization parameters

Note: We do not care about the “raw” value of the objective function,
but we care in P,Q that achieve the minimum of the objective
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The Effect of Reqgularization

serious Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * Factor 1 » towards
females males
The Princess The Lion King Dumb and
Diaries
(Q\|
S Independence
min X0.-ap)+4 Sef +Zlal | 8| Day

MiN;, ., error’ + A “length” funny
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The Effect of Reqgularization

serious Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * w > towards
Factor 1
females \\\ males
N\
N\
~
> N\
The Princess The Lion King o Dumb and
Diaries s
(Q\
S Independence
min X.-ap)+4 Yp.f +Slal | g Day

MiN;, s €rror’ + A “length

funny
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The Effect of Reqgularization

serious Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * w > towards
females N Factor 1 males
The _Prmcess Dumb and
Diaries
Dumber
min T(6,-ap"+4 Tpl +Sal|

MiN;, s €rror’ + A “length
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The Effect of Reqgularization

serious Braveheart
The Color Amadeus
Purple
Lethal
Sense and Weapon
Geared Sensibility Dcean’s 11 Geared
towards * v > towards
females N Factor 1 males
The Princess Dumb and
Diaries Durmb
~ umber
S Independence
min T.-ap)+4 Spf +Xlal | g Day

MiN;, s €rror’ + A “length




Latent factors

To find the P,Q that minimize the error function we
can use (stochastic) gradient descent

We can define different latent factor models that
apply the same idea in different ways

- Probabilistic/Generative models.

The latent factor methods work well in practice,
and they are employed by most sophisticated
recommendation systems



-
Another Application

- Latent Semantic Indexing (LSI):

- Apply PCA on the document-term matrix, and index the
k-dimensional vectors

- When a query comes, project it onto the k-dimensional
space and compute cosine similarity in this space

- Principal components capture main topics, and enrich
the document representation



-
Another property of PCA/SVD

- The chosen vectors are such that minimize the sum of square
differences between the data vectors and the low-dimensional

projections
5
4 _
3 - —
1st (right)
singular vector
2 I I I

4.0 4.5 5.0 5.5 6.0



SVD is “the Rolls-Royce and the Swiss
Army Knife of Numerical Linear

Algebra.””
*Dianne O’Leary, MMDS "06



Computation of eigenvectors

Consider a symmetric square matrix M

Power-method:

- Start with the vector v of all 1’s

- Compute v = Mv

- Normalize by the length of v

- Repeat until the vector does not change

This will give us the first eigenvector.
The first eigenvalue is 1 = v Mv

For the second one, compute the first eigenvector of
the matrix M¥* = M — Avv!



Singular Values and Eigenvalues

- The left singular vectors of A are also the
eigenvectors of 44"

- The right singular vectors of A are also the
eigenvectors of A" A

- The singular values of matrix A are also the
square roots of eigenvalues of 44" and A" A



Computing singular vectors

- Compute the eigenvectors and eigenvalues of the
matrices MM" and M’ M



