
DATA MINING 

LECTURE 6 
Similarity and Distance 

Sketching, Locality Sensitive Hashing 



SIMILARITY AND 

DISTANCE 
Thanks to: 

Tan, Steinbach, and Kumar, “Introduction to Data Mining” 

Rajaraman and Ullman, “Mining Massive Datasets” 
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Jaccard Similarity 

• The Jaccard similarity (Jaccard coefficient) of two sets S1, 
S2 is the size of their intersection divided by the size of 
their union. 
• JSim (S1, S2) = |S1S2| / |S1S2|. 

 

 

 

 

 

 

 

• Extreme behavior: 
• Jsim(X,Y) = 1, iff X = Y 

• Jsim(X,Y) = 0 iff X,Y have no elements in common 

• JSim is symmetric 

 

 

 

 

3 in intersection. 

8 in union. 

Jaccard similarity 

   = 3/8 



Cosine Similarity 

• Sim(X,Y) = cos(X,Y) 
• The cosine of the angle between X and Y 

 

• If the vectors are aligned (correlated) angle is zero degrees and 
cos(X,Y)=1 

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(X,Y) = 0 

 

• Cosine is commonly used for comparing documents, where we 
assume that the vectors are normalized by the document length. 



Application: Recommendations 

• Recommendation systems 
• When a user buys an item (initially books) we want to 

recommend other items that the user may like 

• When a user rates a movie, we want to recommend 
movies that the user may like 

• When a user likes a song, we want to recommend other 
songs that they may like 

 

• A big success of data mining 

• Exploits the long tail 
• How Into Thin Air made Touching the Void popular 



Another important problem 

• Find duplicate and near-duplicate documents 

from a web crawl. 

• Why is it important: 

• Identify mirrored web pages, and avoid indexing them, 

or serving them multiple times 

• Find replicated news stories and cluster them under a 

single story. 

• Identify plagiarism 

 

• What if we wanted exact duplicates? 



SKETCHING  

AND  

LOCALITY SENSITIVE 

HASHING 
Thanks to: 

Rajaraman and Ullman, “Mining Massive Datasets” 

Evimaria Terzi, slides for Data Mining Course.  



Finding similar items  

• Both the problems we described have a common 
component 
• We need a quick way to find highly similar items to a 

query item 

• OR, we need a method for finding all pairs of items that 
are highly similar. 

• Also known as the Nearest Neighbor problem, or 
the All Nearest Neighbors problem 

 

• We will examine it for the case of near-duplicate 
web documents. 



Main issues 

• What is the right representation of the document 

when we check for similarity? 

• E.g., representing a document as a set of characters 

will not do (why?) 

• When we have billions of documents, keeping the 

full text in memory is not an option. 

• We need to find a shorter representation 

• How do we do pairwise comparisons of billions of 

documents? 

• If we wanted exact match it would be ok, can we 

replicate this idea? 
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Three Essential Techniques for Similar 

Documents 

1. Shingling : convert documents, emails, etc., 

to sets. 

 

2. Minhashing : convert large sets to short 

signatures, while preserving similarity. 

 

3. Locality-Sensitive Hashing (LSH): focus on 

pairs of signatures likely to be similar. 
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The Big Picture 

Docu- 

ment 

The set 

of strings 

of length k 

that appear 

in the doc- 

ument 

Signatures : 

short integer 

vectors that 

represent the 

sets, and 

reflect their 

similarity 

Locality- 

sensitive 

Hashing 

Candidate 

pairs : 

those pairs 

of signatures 

that we need 

to test for 

similarity. 
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Shingles 

• A k -shingle (or k -gram) for a document is a 

sequence of k characters that appears in the 

document. 

• Example: document = abcab. k=2   

• Set of 2-shingles = {ab, bc, ca}. 

• Option: regard shingles as a bag, and count ab twice. 

 

• Represent a document by its set of k-shingles. 



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is a rose is a rose 

a rose is  

  rose is a 

  rose is a  

   ose is a r 

    se is a ro 

     e is a ros 

       is a rose 

       is a rose  

        s a rose i 

      a rose is 

  a rose is  



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is a rose is a rose 

a rose is  

  rose is a 

  rose is a  

   ose is a r 

    se is a ro 

     e is a ros 

       is a rose 

       is a rose  

        s a rose i 

      a rose is 

  a rose is  

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 
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Working Assumption 

• Documents that have lots of shingles in common 
have similar text, even if the text appears in 
different order. 

• Careful: you must pick k  large enough, or most 
documents will have most shingles. 
• Extreme case k = 1: all documents are the same 

• k = 5 is OK for short documents; k = 10 is better for long 
documents. 

• Alternative ways to define shingles: 
• Use words instead of characters 

• Anchor on stop words (to avoid templates) 
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Shingles: Compression Option 

• To compress long shingles, we can hash them 

to (say) 4 bytes. 

• Represent a doc by the set of hash values of 

its k-shingles. 

• From now on we will assume that shingles are 

integers 

• Collisions are possible, but very rare 



Fingerprinting 

• Hash shingles to 64-bit integers 

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 

1111 

2222 

3333 

4444 

5555 

6666 

7777 

8888 

9999 

0000 

Set of Shingles Set of 64-bit integers 
Hash function 

(Rabin’s fingerprints) 
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Basic Data Model: Sets 

• Document: A document is represented as a set 
shingles (more accurately, hashes of shingles) 

 

• Document similarity: Jaccard similarity of the sets of 
shingles. 
• Common shingles over the union of shingles 

• Sim (C1, C2) = |C1C2|/|C1C2|. 

 

• Although we use the documents as our driving 
example the techniques we will describe apply to any 
kind of sets. 

• E.g., similar customers or items. 



Signatures  

• Problem: shingle sets are still too large to be kept in memory. 

 

• Key idea: “hash” each set S  to a small signature Sig (S), such 
that: 

 

1. Sig (S) is small enough that we can fit a signature in main memory 
for each set. 

 

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig (S1) and 
Sig (S2). (signature preserves similarity). 

 

• Warning: This method can produce false negatives, and false 
positives (if an additional check is not made). 
• False negatives: Similar items deemed as non-similar 

• False positives: Non-similar items deemed as similar 
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From Sets to Boolean Matrices 

• Represent the data as a boolean matrix M 

• Rows = the universe of all possible set elements  

• In our case, shingle fingerprints take values in [0…264-1] 

• Columns = the sets  

• In our case, documents, sets of shingle fingerprints 

• M(r,S) = 1 in row r  and column S  if and only if r  is a 

member of S. 

 

• Typical matrix is sparse. 

• We do not really materialize the matrix 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

At least one of the columns has value 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

Both columns have value 1 
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Minhashing 

• Pick a random permutation of the rows (the 

universe U). 

• Define “hash” function for set S 

• h(S) = the index of the first row (in the permuted order) 

in which column S has 1. 

same as:  

• h(S) = the index of the first element of S in the permuted 

order. 

• Use k (e.g., k = 100) independent random 

permutations to create a signature. 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

A 

C 

G 

F 

B 

E 

D 

S1 S2 S3 S4 

1 A 1 0 1 0 

2 C 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 B 1 0 0 1 

6 E 0 1 1 1 

7 D 0 1 0 1 

1 2 1 2 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

D 

B 

A 

C 

F 

G 

E 

S1 S2 S3 S4 

1 D 0 1 0 1 

2 B 1 0 0 1 

3 A 1 0 1 0 

4 C 0 1 0 1 

5 F 1 0 1 0 

6 G 1 0 1 0 

7 E 0 1 1 1 

2 1 3 1 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

C 

D 

G 

F 

A 

B 

E 

S1 S2 S3 S4 

1 C 0 1 0 1 

2 D 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 A 1 0 1 0 

6 B 1 0 0 1 

7 E 0 1 1 1 

3 1 3 1 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

h1 1 2 1 2 

h2 2 1 3 1 

h3 3 1 3 1 

≈ 

• Sig(S) = vector of hash values  
• e.g., Sig(S2) = [2,1,1] 

• Sig(S,i) = value of the i-th hash 

function for set S 
• E.g., Sig(S2,3) = 1 

Signature matrix 
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Hash function Property 

 

Pr(h(S1) = h(S2)) = Sim(S1,S2) 

 

• where the probability is over all choices of  
permutations.  

 

• Why? 
• The first row where one of the two sets has value 1 

belongs to the union. 
• Recall that union contains rows with at least one 1. 

• We have equality if both sets have value 1, and this row 
belongs to the intersection 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Rows C,D could be anywhere 

they do not affect the probability 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The * rows belong to the union 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The question is what is the value 

of the first * element 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

If it belongs to the intersection 

then h(X) = h(Y) 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Every element of the union is equally likely 

to be the * element 

Pr(h(X) = h(Y)) = 
| A,F,G |

| A,B,E,F,G |
= 

3
5

= Sim(X,Y) 

 



Zero similarity is preserved 

High similarity is well approximated 
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Similarity for Signatures 

• The similarity of signatures  is the fraction of the 
hash functions in which they agree. 

 

 

 

 

 

 

 

• With multiple signatures we get a good 
approximation 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

1 2 1 2 

2 1 3 1 

3 1 3 1 

≈ 

Actual Sig 

(S1, S2) 0 0 

(S1, S3) 3/5 2/3 

(S1, S4) 1/7 0 

(S2, S3) 0 0 

(S2, S4) 3/4 1 

(S3, S4) 0 0 

Signature matrix 



Is it now feasible? 

• Assume a billion rows 

• Hard to pick a random permutation of 1…billion 

• Even representing a random permutation 

requires 1 billion entries!!! 

• How about accessing rows in permuted order? 

• 



Being more practical 

Approximating row permutations: pick k=100 hash 

functions (h1,…,hk) 

for each row r  

  for each hash function hi  

      compute hi (r )  

      for each column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 
Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); 

i.e., hi (r) gives the min index for the i-th permutation 

In practice this means selecting the 

function parameters 

In practice only the rows (shingles) 

that appear in the data 

hi (r) = index of shingle r in permutation 

S contains shingle r 

Find the shingle r with minimum index 
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Example 

Row S1 S2 

  A  1  0 

  B  0  1 

  C  1  1 

  D  1  0 

  E  0  1 

h(x) = x+1 mod 5 

h(0) = 1  1 - 

g(0) = 3  3 - 

h(1) = 2  1 2 

g(1) = 0  3 0 

h(2) = 3  1 2 

g(2) = 2  2 0 

h(3) = 4  1 2 

g(3) = 4  2 0 

h(4) = 0  1 0 

g(4) = 1  2 0 

Sig1 Sig2 

Row S1 S2 

  E    0  1  

  A    1  0 

  B    0  1 

  C    1  1 

  D    1  0 

   

Row S1 S2 

  B    0  1  

  E    0  1  

  C    1  0 

  A    1  1 

  D   1  0 

   

x 

0 

1 

2 

3 

4 

h(x) 

1 

2 

3 

4 

0 

g(x) 

3 

0 

2 

4 

1 

g(x) = 2x+1 mod 5 
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Implementation – (4) 

• Often, data is given by column, not row. 

• E.g., columns = documents, rows = shingles. 

• If so, sort matrix once so it is by row. 

• And always  compute hi (r ) only once for each 

row. 
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Finding similar pairs 

• Problem: Find all pairs of documents with 

similarity at least t = 0.8 

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns. 

• Example: 106 columns implies 5*1011 column-

comparisons. 

• At 1 microsecond/comparison: 6 days. 
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Locality-Sensitive Hashing 

• What we want: a function f(X,Y) that tells whether or not X  
and Y  is a candidate pair: a pair of elements whose 
similarity must be evaluated. 

 

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature. 
• Easy to test by hashing the signatures. 

• Similar sets are more likely to have the same signature. 

• Likely to produce many false negatives. 
• Requiring full match of signature is strict, some similar sets will be lost. 

 

• Improvement: Compute multiple signatures; candidate 
pairs should have at least one common signature.  
• Reduce the probability for false negatives. 

! Multiple levels of Hashing! 
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Signature matrix reminder 

Matrix M 

n hash functions 

Sig(S): 

signature for set S 

hash function i 

Sig(S,i) 

signature for set S’ 

Sig(S’,i) 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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Partition into Bands – (1) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 
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Partitioning into bands 
Matrix Sig 

r  rows 

per band 

b  bands 

   One 

signature 

n = b*r   hash functions 

b  mini-signatures 
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Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash 

table with k  buckets. 

• Make k  as large as possible so that mini-signatures that 

hash to the same bucket are almost certainly identical. 
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Matrix M 

r  rows b  bands 

3 2 1 5 6 4 7 

Hash Table Columns 2 and 6 

are (almost certainly) identical. 

Columns 6 and 7 are 

surely different. 
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Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  
rows. 
• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash table 
with k  buckets. 
• Make k  as large as possible so that mini-signatures that hash 

to the same bucket are almost certainly identical. 

• Candidate column pairs are those that hash to the 
same bucket for at least 1 band. 

• Tune b and r  to catch most similar pairs, but few non-
similar pairs. 
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Analysis of LSH – What We Want 

       Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

No chance 

if s < t 

Probability 

= 1 if s > t 
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What One Band of One Row Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

Remember: 

probability of 

equal hash-values 

= similarity 

Single hash signature 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

s r  

All rows 

of a band 

are equal 

1 - 

Some row 

of a band 

unequal 

( )b  

 

No bands 

identical 

1 - 

At least 

one band 

identical 

t ~ (1/b)1/r  
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Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 

t = 0.5 



52 

Suppose S1, S2 are 80% Similar 

• We want all 80%-similar pairs. Choose 20 bands of 5 
integers/band. 

 

• Probability S1, S2 identical in one particular band:  

(0.8)5 = 0.328. 

 

• Probability S1, S2 are not  similar in any of the 20 bands: 

(1-0.328)20 = 0.00035  
 

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives. 

 

• Probability S1, S2 are similar in at least one of the 20 
bands:  

1-0.00035 = 0.999 
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Suppose S1, S2 Only 40% Similar 

• Probability S1, S2 identical in any one particular 
band:  

  (0.4)5  = 0.01 . 

 

• Probability S1, S2 identical in at least 1 of 20 
bands:  

   ≤ 20 * 0.01 = 0.2 . 

 

• But false positives much lower for similarities 
<< 40%.  
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LSH Summary 

• Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that do not 

have similar signatures. 

• Check in main memory that candidate pairs 

really do have similar signatures. 

• Optional: In another pass through data, check 

that the remaining candidate pairs really 

represent similar sets . 



Locality-sensitive hashing (LSH) 

• Big Picture: Construct hash functions h: Rd
 U 

such that for any pair of points p,q, for distance 

function D we have: 

• If D(p,q)≤r, then Pr[h(p)=h(q)] is high 

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small 

• Then, we can find close pairs by hashing 

 

• LSH is a general framework: for a given distance 

function D we need to find the right h 
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LSH for Cosine Distance 

• For cosine distance, there is a technique 

analogous to minhashing for generating a 

(d1,d2,(1-d1/180),(1-d2/180))- sensitive family 

for any d1 and d2. 

• Called random hyperplanes. 
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Random Hyperplanes 

• Pick a random vector v, which determines a 

hash function hv  with two buckets. 

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0. 

 

• LS-family H = set of all functions derived from 

any vector. 

 

• Claim:  

• Prob[h(x)=h(y)] = 1 – (angle between x and y)/180 
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Proof of Claim 

x 

y 

Look in the plane of x and y. 

θ 

hv(x) = +1 

hv(x) = -1 

For a random vector v the values of the 

hash functions hv(x) and hv(y) depend 

on where the vector v falls 

hv(y) = -1 

hv(y) = +1 

hv(x) ≠ hv(y) when v falls into the 

shaded area. 

What is the probability of this for 

a randomly chosen vector v? 

θ 

θ 

P[hv(x) ≠ hv(y)] = 2θ/360 = θ/180 

 

P[hv(x) = hv(y)] = 1- θ/180 
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Signatures for Cosine Distance 

• Pick some number of vectors, and hash your 

data for each vector. 

• The result is a signature (sketch ) of +1’s and –

1’s that can be used for LSH like the minhash 

signatures for Jaccard distance. 
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Simplification 

• We need not pick from among all possible vectors 

v  to form a component of a sketch. 

• It suffices to consider only vectors v  consisting of 

+1 and –1 components. 


