DATA MINING LECTURE 5

Similarity and Distance

Recommendation Systems

Sketching, Locality Sensitive Hashing

SIMILARITY AND DISTANCE

Thanks to:

Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
 - For an item bought by a customer, find other similar items
 - Group together the customers of a site so that similar customers are shown the same ad.
 - Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
 - Find all the near-duplicate mirrored web documents.
 - Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
 - The definition depends on the type of data that we have

Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
 - Higher when objects are more alike.
- Often falls in the range [0,1], sometimes in [-1,1]
- Desirable properties for similarity
 - s(p, q) = 1 (or maximum similarity) only if p = q.
 (Identity)
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

Similarity between sets

Consider the following documents

apple releases new ipod

apple releases new ipad

new apple pie recipe

Which ones are more similar?

How would you quantify their similarity?

Similarity: Intersection

Number of words in common

apple releases new ipod

apple releases new ipad

new apple pie recipe

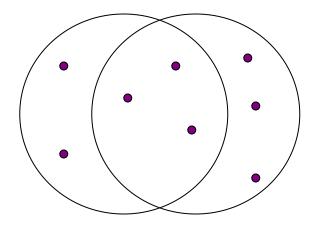
- Sim(D,D) = 3, Sim(D,D) = Sim(D,D) = 2
- What about this document?

Vefa rereases new book with apple pie recipes

• Sim(D,D) = Sim(D,D) = 3

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets S₁, S₂ is the size of their intersection divided by the size of their union.
 - JSim $(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$.



3 in intersection. 8 in union. Jaccard similarity = 3/8

- Extreme behavior:
 - Jsim(X,Y) = 1, iff X = Y
 - Jsim(X,Y) = 0 iff X,Y have no elements in common
- JSim is symmetric

Jaccard Similarity between sets

The distance for the documents

apple releases new ipod

apple releases new ipad

new apple pie recipe Vefa rereases new book with apple pie recipes

- JSim(D,D) = 3/5
- JSim(D,D) = JSim(D,D) = 2/6
- JSim(D,D) = JSim(D,D) = 3/9

Similarity between vectors

Documents (and sets in general) can also be represented as vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

How do we measure the similarity of two vectors?

- We could view them as sets of words. Jaccard Similarity will show that D4 is different form the rest
- But all pairs of the other three documents are equally similar

We want to capture how well the two vectors are aligned

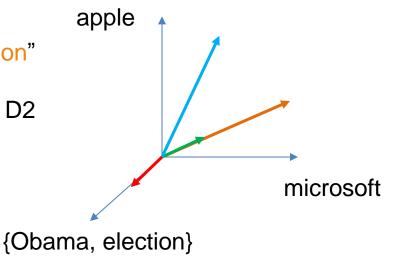
Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

Documents D1, D2 are in the "same direction"

Document D3 is on the same plane as D1, D2

Document D3 is orthogonal to the rest



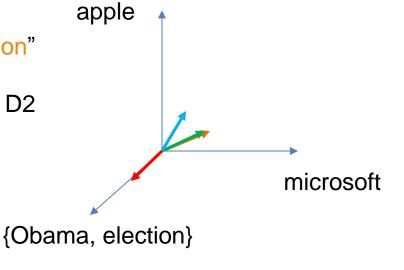
Example

document	Apple	Microsoft	Obama	Election
D1	1/3	2/3	0	0
D2	1/3	2/3	0	0
D3	2/3	1/3	0	0
D4	0	0	1/3	2/3

Documents D1, D2 are in the "same direction"

Document D3 is on the same plane as D1, D2

Document D3 is orthogonal to the rest



Cosine Similarity

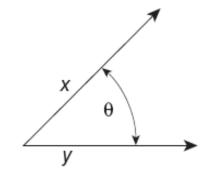


Figure 2.16. Geometric illustration of the cosine measure.

- Sim(X,Y) = cos(X,Y)
 - The cosine of the angle between X and Y
- If the vectors are aligned (correlated) angle is zero degrees and cos(X,Y)=1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X,Y) = 0
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Cosine Similarity - math

If d₁ and d₂ are two vectors, then
 cos(d₁, d₂) = (d₁ • d₂) / ||d₁|| ||d₂|| ,
 where • indicates vector dot product and || d || is the length of vector d.

Example:

```
d_{1} = 3205000200
d_{2} = 1000000102
d_{1} \cdot d_{2} = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5
||d_{1}|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481
||d_{2}|| = (1*1+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245
\cos(d_{1}, d_{2}) = .3150
```

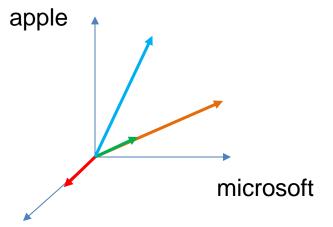
Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

$$Cos(D1,D2) = 1$$

$$Cos(D3,D1) = Cos(D3,D2) = 4/5$$

$$Cos(D4,D1) = Cos(D4,D2) = Cos(D4,D3) = 0$$



{Obama, election}

Distance

- Numerical measure of how different two data objects are
 - A function that maps pairs of objects to real values
 - Lower when objects are more alike
 - Higher when two objects are different
- Minimum distance is 0, when comparing an object with itself.
- Upper limit varies

Distance Metric

 A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:

```
1. d(x,y) \ge 0. (non-negativity)
```

- 2. d(x,y) = 0 iff x = y. (identity)
- 3. d(x,y) = d(y,x). (symmetry)
- 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Triangle Inequality

- Triangle inequality guarantees that the distance function is well-behaved.
 - The direct connection is the shortest distance
- It is useful also for proving useful properties about the data.

Distances for real vectors

- Vectors $x = (x_1, ..., x_d)$ and $y = (y_1, ..., y_d)$
- L_p norms or Minkowski distance:

$$L_p(x,y) = [|x_1 - y_1|^p + \dots + |x_d - y_d|^p]^{1/p}$$

L₂ norm: Euclidean distance:

$$L_2(x,y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_d - y_d|^2}$$

L₁ norm: Manhattan distance:

$$L_1(x, y) = |x_1 - y_1| + \dots + |x_d - y_d|$$

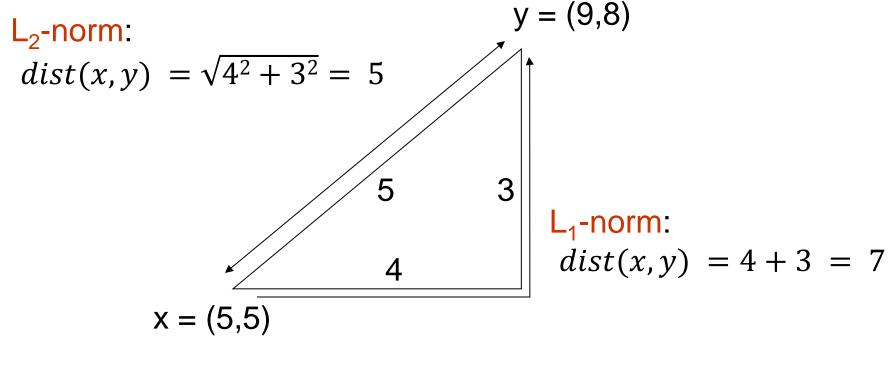
L_∞ norm:

L_p norms are known to be distance metrics

$$L_{\infty}(x, y) = \max\{|x_1 - y_1|, ..., |x_d - y_d|\}$$

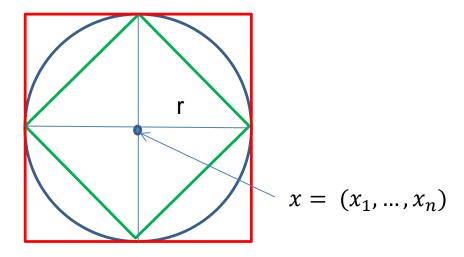
The limit of L_p as p goes to infinity.

Example of Distances



$$L_{\infty}$$
-norm:
 $dist(x, y) = max\{3,4\} = 4$

Example



Green: All points y at distance $L_1(x,y) = r$ from point x

Blue: All points y at distance $L_2(x,y) = r$ from point x

Red: All points y at distance $L_{\infty}(x,y) = r$ from point x

L_p distances for sets

- We can apply all the L_p distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
 - E.g., a transaction is a 0/1 vector
 - E.g., a document is a vector of counts.

Similarities into distances

Jaccard distance:

$$JDist(X,Y) = 1 - JSim(X,Y)$$

Jaccard Distance is a metric

Cosine distance:

$$Dist(X,Y) = 1 - \cos(X,Y)$$

Cosine distance is a metric

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
 - Example: $p_1 = 10101$ $p_2 = 10011$.
 - $d(p_1, p_2) = 2$ because the bit-vectors differ in the 3rd and 4th positions.
 - The L₁ norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.
 - Example: x = (married, low income, cheat), y = (single, low income, not cheat)
 d(x,y) = 2

Why Hamming Distance Is a Distance Metric

- d(x,x) = 0 since no positions differ.
- d(x,y) = d(y,x) by symmetry of "different from."
- $d(x,y) \ge 0$ since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.
- For binary vectors if follows from the fact that L₁ norm is a metric

Distance between strings

How do we define similarity between strings?

weird wierd

intelligent unintelligent

Athena Athina

 Important for recognizing and correcting typing errors and analyzing DNA sequences.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Example: x = abcde; y = bcduve.
 - Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance Is a Distance Metric

- d(x,x) = 0 because 0 edits suffice.
- d(x,y) = d(y,x) because insert/delete are inverses of each other.
- $d(x,y) \ge 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y. The minimum is no more than that

Variant Edit Distances

- Allow insert, delete, and mutate.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.

- Same for any set of operations on strings.
 - Example: substring reversal or block transposition OK for DNA sequences
 - Example: character transposition is used for spelling

Distances between distributions

We can view a document as a distribution over the words

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D2	0.05	0.05	0.6	0.3

KL-divergence (Kullback-Leibler) for distributions P,Q

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

 KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides

$$\frac{1}{2}D_{KL}(P\|Q) + \frac{1}{2}D_{KL}(Q\|P)$$

JS-divergence (Jensen-Shannon)

$$JS(P,Q) = \frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)$$
$$M = \frac{1}{2}(P+Q)$$

M: Average distribution

Why is similarity important?

- We saw many definitions of similarity and distance
- How do we make use of similarity in practice?
- What issues do we have to deal with?

APPLICATIONS OF SIMILARITY: RECOMMENDATION SYSTEMS

An important problem

- Recommendation systems
 - When a user buys an item (initially books) we want to recommend other items that the user may like
 - When a user rates a movie, we want to recommend movies that the user may like
 - When a user likes a song, we want to recommend other songs that they may like
- A big success of data mining
- Exploits the long tail
 - How Into Thin Air made Touching the Void popular

Utility (Preference) Matrix

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

How can we fill the empty entries of the matrix?

Recommendation Systems

Content-based:

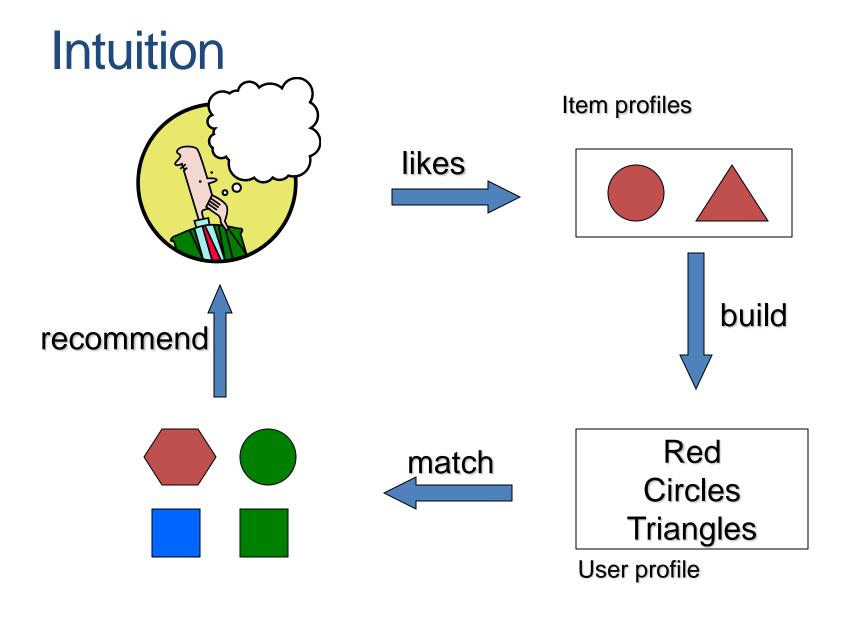
- Represent the items into a feature space and recommend items to customer C similar to previous items rated highly by C
 - Movie recommendations: recommend movies with same actor(s), director, genre, ...
 - Websites, blogs, news: recommend other sites with "similar" content

Content-based prediction

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Someone who likes one of the Harry Potter (or Star Wars) movies is likely to like the rest

Same actors, similar story, same genre



Approach

- Map items into a feature space:
 - For mocvies:
 - Actors, directors, genre, rating, year,...
 - Challenge: make all features compatible.
 - For documents?
- To compare items with users we need to map users to the same feature space. How?
 - Take all the movies that the user has seen and take the average vector
 - Other aggregation functions are also possible.
- Recommend to user C the most similar item I computing similarity in the common feature space
 - Distributional distance measures also work well.

Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Collaborative filtering

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Two users are similar if they rate the same items in a similar way

Recommend to user C, the items liked by many of the most similar users.

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Which pair of users do you consider as the most similar?

What is the right definition of similarity?

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	1			1	1		
В	1	1	1				
С				1	1	1	
D		1					1

Jaccard Similarity: users are sets of movies

Disregards the ratings.

Jsim(A,B) = 1/5

Jsim(A,C) = Jsim(B,D) = 1/2

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Cosine Similarity:

Assumes zero entries are negatives:

Cos(A,B) = 0.38

Cos(A,C) = 0.32

	Harry Potter 1	Harry Potter 2	Harry Potter 3	Twilight	Star Wars 1	Star Wars 2	Star Wars 3
Α	2/3			5/3	-7/3		
В	1/3	1/3	-2/3				
С				-5/3	1/3	4/3	
D		0					0

Normalized Cosine Similarity:

 Subtract the mean and then compute Cosine (correlation coefficient)

$$Corr(A,B) = 0.092$$

 $Cos(A,C) = -0.559$

User-User Collaborative Filtering

- Consider user c
- Find set D of other users whose ratings are most "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D using some aggregation function

 Advantage: for each user we have small amount of computation.

Item-Item Collaborative Filtering

- We can transpose (flip) the matrix and perform the same computation as before to define similarity between items
 - Intuition: Two items are similar if they are rated in the same way by many users.
 - Better defined similarity since it captures the notion of genre of an item
 - · Users may have multiple interests.
- Algorithm: For each user c and item i
 - Find the set D of most similar items to item i that have been rated by user c.
 - Aggregate their ratings to predict the rating for item i.
- Disadvantage: we need to consider each user-item pair separately

Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:

Rajaraman and Ullman, "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

Another important problem

- Find duplicate and near-duplicate documents from a web crawl.
- Why is it important:
 - Identify mirrored web pages, and avoid indexing them, or serving them multiple times
 - Find replicated news stories and cluster them under a single story.
 - Identify plagiarism
- What if we wanted exact duplicates?

Finding similar items

- Both the problems we described have a common component
 - We need a quick way to find highly similar items to a query item
 - OR, we need a method for finding all pairs of items that are highly similar.
- Also known as the Nearest Neighbor problem, or the All Nearest Neighbors problem
- We will examine it for the case of near-duplicate web documents.

Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If we wanted exact match it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

 Shingling: convert documents, emails, etc., to sets.

- Minhashing: convert large sets to short signatures, while preserving similarity.
- Locality-Sensitive Hashing (LSH): focus on pairs of signatures likely to be similar.

The Big Picture



Shingles

- A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document.
- Example: document = abcab. k=2
 - Set of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.

Represent a document by its set of k-shingles.

Shingling

Shingle: a sequence of k contiguous characters

```
rose is a rose is a rose
a rose is
  rose is a
  rose is a
   ose is a r
    se is a ro
       is a rose
          a rose
          a rose 1
          a rose is
          a rose is
```

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
 - Extreme case k = 1: all documents are the same
 - k = 5 is OK for short documents; k = 10 is better for long documents.
- Alternative ways to define shingles:
 - Use words instead of characters
 - Anchor on stop words (to avoid templates)

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- From now on we will assume that shingles are integers
 - Collisions are possible, but very rare

Fingerprinting

Hash shingles to 64-bit integers

