DATA MINING
LECTURE 8B

Time series analysis and
Sequence Segmentation




Sequential data

Sequential data (or time series) refers to data that appear

In a specific order.

- The order defines a time axis, that differentiates this data from
other cases we have seen so far

Examples
- The price of a stock (or of many stocks) over time
- Environmental data (pressure, temperature, precipitation etc) over
time
- The sequence of queries in a search engine, or the frequency of a
guery over time
- The words in a document as they appear in order
- A DNA seqguence of nucleotides
- Event occurrences in a log over time
- Etc...

Time series: usually we assume that we have a vector of
numeric values that change over time.



Time-series data
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e Financial time series, process monitoring...



Why deal with sequential data?

Because all data is sequential ©
- All data items arrive in the data store in some order

In some (many) cases the order does not matter

- E.g., we can assume a bag of words model for a
document

In many cases the order is of interest

- E.g., stock prices do not make sense without the time
iInformation.



Time series analysis

The addition of the time axis defines new sets of
problems

- Discovering periodic patterns in time series

- Defining similarity between time series

- Finding bursts, or outliers

Also, some existing problems need to be revisited
taking sequential order into account

- Association rules and Frequent Itemsets in sequential
data

- Summarization and Clustering: Sequence
Segmentation



Sequence Segmentation

Goal: discover structure in the sequence and
provide a concise summary

Given a sequence T, segment It into K contiguous
segments that are as homogeneous as possible

Similar to clustering but now we require the
points in the cluster to be contiguous

Commonly used for summarization of histograms
in databases



Example
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Basic definitions

Sequence T = {t;,t,,...,t}: an ordered set of N d-dimensional real
points teR®

A K-segmentation S: a partition of T into K contiguous segments

{S1,Ss,---,Sk}-
- Each segment seS is represented by a single vector p.eR¢ (the representative
of the segment -- same as the centroid of a cluster)

Error E(S): The error of replacing individual points with
representatives
- Different error functions, define different representatives.

Sum of Squares Error (SSE):

E(S) = ) ) (t-u)?

SES tes
Representative of segment s with SSE: mean . = gltheS t



Basic Definitions

- Observation: a K-segmentation S is defined by K+1
boundary points by, by, ..., by _1, br.

RA

by = 0,b, = N + 1 always.
- We only need to specify by, ..., by



The K-segmentation problem

Given a sequence | of length '/ and a value ¢, find a

-segmentation of | such that the
error - is minimized.

Similar to K-means clustering, but now we need
the points in the clusters to respect the order of
the sequence.

- This actually makes the problem easier.



Optimal solution for the k-segmentation problem

e Bellman’61: The K-segmentation problem can be
solved optimally using a standard dynamic-
programming algorithm

Dynamic Programming:
- Construct the solution of the problem by using solutions
to problems of smaller size
Define the dynamic programming recursion
- Build the solution bottom up from smaller to larger
Instances

Define the dynamic programming table that stores the solutions
to the sub-problems



e
Rule of thumb

Most optimization problems where order is
iInvolved can be solved optimally in polynomial
time using dynamic programming.

- The polynomial exponent may be large though



Dynamic Programming Recursion

- Terminology:
- T'|1,n]: subsequence {t, t,,....t } forn < N

- E(S|1,n], k): error of optimal segmentation of subsequence 7|1, n| with
k segments for k < K

- Dynamic Programming Recursion:

E(S[1,n], k)
= min JEGILLk=D+ ) (t=pgjm)
k<jsn-1 Y Hlj+1n]
| | Jy+istsn ]
| | |
Minimum over all possible  Error of optimal Error of k-th (last) segment
placements of the last segmentation S[1,]] when the last segment is

boundary point by, _4 with k-1 segments [j+1,n]



Dynamic programming table

- Two—dimensional table A|1 ... K,1 ... N|

Alk,n] = E(S[1,n],k) }1\ i N

T

K
e .
E(S[1,n],k) = min {E(S[l,J],k—1)+ z (t —uy 1,n])}

k<jsn—-1
j+1<tsn

- Fill the table top to bottom, left to right.
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The cell A[3,n] stores the error of the
optimal solution 3-segmentation of T[1,n]

In the cell (or in a different table) we also
store the position n-3 of the boundary so
we can trace back the segmentation

A WODN B




Dynamic-programming algorithm

- Input: Sequence T, length N, K segments, error function E()

- For i=1to N //Initialize first row
— A[L,iI]=E(T[1...1]) //Error when everything is in one cluster

- For k=1 to K // Initialize diagonal
— Alk k] = 0/l Error when each point in its own cluster

- Fork=2to K
—Fori=k+1to N
« Alk,i] = minj<i{A[k-1,j]+E(T[j+1...i])}

- To recover the actual segmentation (not just the optimal
cost) store also the minimizing values |



-
Algorithm Complexity

- What is the complexity?
- NK cells to fill
- Computation per cell

. . 2
E(S[1; n]) k) = kréljl<nn {E(S[l,]],k _ 1) + Zj+1$t$7’l(t _ I"[j+1,n]) }

- O(N) boundaries to check per cell
+ O(N) to compute the second term per checked boundary

- O(N3K) in the naive computation

- We can avoid the last O(N) factor by observing that

2 1 2
), Cmmpam)= ) tz_n——j< t>
+1<t<n

j+1stsn j+1stsn j

- We can compute in constant time by precomputing partial sums
- Precompute Y ;< t and Y o, t? foralln=1..N

- Algorithm Complexity: O(N?K)



Heuristics

Top-down greedy (TD): O(NK)
- Introduce boundaries one at the time so that you get the
largest decrease in error, until K segments are created.

Bottom-up greedy (BU): O(NlogN)

- Merge adjacent points each time selecting the two
points that cause the smallest increase in the error until
K segments

Local Search Heuristics: O(NKI)

- Assign the breakpoints randomly and then move them
so that you reduce the error



Other time series analysis

Using signal processing techniques is common
for defining similarity between series

- Fast Fourier Transform
- Wavelets

Rich literature in the field



