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-
Link Analysis Ranking

Use the graph structure in order to determine the
relative importance of the nodes
- Applications: Ranking on graphs (Web, Twitter, FB, etc)

Intuition: An edge from node p to node g denotes

endorsement

- Node p endorses/recommends/confirms the
authority/centrality/importance of node g

- Use the graph of recommendations to assign an
authority value to every node



Rank by Popularity

- Rank pages according to the number of incoming
edges (in-degree, degree centrality)
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1. Red Page

3. Blue Page
4. Purple Page
5. Green Page



-
Popularity

- It is not important only how many link to you, but
how important are the people that link to you.

- Good authorities are pointed by good authorities
- Recursive definition of importance



-
PageRank

Good authorities should be pointed by
good authorities

- The value of a node is the value of the
nodes that point to it.

How do we implement that?

- Assume that we have a unit of
authority to distribute to all nodes.
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w
- Each node distributes the authority
value they have to their neighbors
- The authority value of each node is _
the sum of the authority fractions it WH+w+w=1
collects from its neighbors. —
: . W= W+
- Solving the system of equations we
get the authority values for the W =16 w

nodes
W=Y w=Ys, w=Y, =1 w



A more complex example
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-
Random Walks on Graphs

What we described is equivalent to a random
walk on the graph

Random walk:
- Start from a node uniformly at random

- Pick one of the outgoing edges uniformly at random
- Move to the destination of the edge
- Repeat.



Example

- Step O




Example

- Step O




Example

-Step 1




Example

-Step 1




Example

- Step 2




Example

- Step 2




Example

- Step 3




Example

- Step 3




Example
- Step 4...




Memorylessness

Question: what is the probability »! of being at node i after

t steps?
= %pi‘l + %pé‘l
p%—% +p§1+§p£1
p3 = % + %pfi‘l
pi = %pé‘l
ps = p3

(4 V4
Memorylessness property: The next node on the walk
depends only at the current node and not on the past of
the process



Transition probability matrix

Since the random walk process is memoryless we
can describe it with the transition probability matrix

Transition probability matrix: A matrix P, where P|i, /]
IS the probability of transitioning from node i to node j
P[i,j] = 1/degpy (i)

Matrix P has the property that the entries of all rows

sumto 1l
ZP[i,j] =1
J

A matrix with this property is called stochastic



An example
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0 0 0 0
P={0 1 0 O
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-
Node Probability vector

The vector pt = (p!,ps, ..., pL) that stores the
probability of being at node v; at step t

p{= the probability of starting from state i (usually
set to uniform)

We can compute the vector pt at step t using a
vector-matrix multiplication

pt — pt—l p



An example

0 Y2 Y2 0 0 .,
0 0 0 0 1 o ‘
P={0 1 0 0 O O/'/ \\vg
3 13 1/3 0 0 {
/2 0 0 12 0 \ /
1 1_|_1 t—1
3194 2p5 ‘ R
1 1
Py = > +p5t +§Pfi ! Vs Y4
1 1
P§=§ +§Pi_1
1
P§=§P§_1
ps = ps



Stationary distribution

The stationary distribution of a random walk with
transition matrix P, is a probability distribution 7,
such thatr = nP

The stationary distribution is an eigenvector of
matrix P

- the principal left eigenvector of P — stochastic matrices
have maximum eigenvalue 1

The probability 7; Is the fraction of times that we
visited state i ast — oo



Computing the stationary distribution

- The Power Method
- Initialize to some distribution g°
- [teratively compute gt = g-*P
- After many iterations g'= 11 regardless of the initial

vector g°
- Power method because it computes gt = g°P!

- Rate of convergence
- determined by the second eigenvalue A



The stationary distribution

What is the meaning of the stationary distribution
m of a random walk?

m(i): the probability of being at node | after very
large (infinite) number of steps

m = poP”, where P is the transition matrix, p, the

original vector

- P(1,]): probability of going from i to | in one step

- P%(i,]): probability of going from i to j in two steps
(probability of all paths of length 2)

- P(i,j) = m(j): probability of going from i to | in infinite
steps — starting point does not matter.



The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random

walk
0 12 12 0 O = //B\\
0 0 0 0 1 '\ \
P={0 1 0 0 O
0 0 /
0

1/3 1/3 1/3
o oo |=|—7]



The PageRank random walk

- What about sink nodes?

- what happens when the random walk moves to a node
without any outgoing inks?

|0 0 0 0 0 - .

P-/0 1 0 0 0
1/3 13 1/3 0 O \\ /
12 0 0 12 0 B \

0 12 12 0 0O - /D\B




The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

Eo 12 12 0 ol - &D\

P=|0 1 0 0 0 _ /\\ B
/3 1/3 1/3 0 0
/2 0 0 12 0 \ /

o P gyt d:{1 if iis sink B E

0 otherwise



The PageRank random walk

- What about loops?
- Spider traps




The PageRank random walk

Add a random jump to vector v with prob 1-a
- typically, to a uniform vector

Restarts after 1/(1-a) steps in expectation
- Guarantees irreducibility, convergence

"0 12 12 0 0] 1/5 1/5 1/5 1/5 1/5]
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
P'=o/ 0 1 0 0 O |+(0-a)1/5 15 1/5 1/5 1/5
1/3 1/3 13 0 O 1/5 1/5 1/5 1/5 1/5
12 0 0 0 12 1/5 1/5 1/5 1/5 1/5

P” = aP’ + (1-a)uv’, where u is the vector of all 1s
Random walk with restarts



PageRank algorithm [BP98]

- The Random Surfer model
- pick a page at random

- with probability 1- a jump to a random
page \ \
- with probability a follow a random

outgoing link
- Rank according to the stationary
distribution 1. Red Page
PR 1 2. Purple Page
PR(p) =0 Y (1 g)t
ShOut(q)| n
4. Blue Page
a = 0.85 in most cases >. Green Page



Stationary distribution with random jump

- If v Is the jump vector

p’=v

pl=ap’P+ (1 —a)v=avP + (1 — a)v
p?=ap!P+ (1 —a)v = a?vP?+ (1 —a)vaP + (1 — a)v

p*=0A-a)v+(1- C()T.)CZP + (1 — a)vazpz + ...
=1-a){—aP) !

- With the random jump the shorter paths are more important,
since the weight decreases exponentially

- makes sense when thought of as a restart

- If v I1s not uniform, we can bias the random walk towards the
nodes that are close to v

- Personalized and Topic-Specific Pagerank.



Effects of random jump

- Guarantees convergence to unique distribution
- Motivated by the concept of random surfer

- Offers additional flexibility
- personalization
- anti-spam
- Controls the rate of convergence
- the second eigenvalue of matrix P" is @



Random walks on undirected graphs

For undirected graphs, the stationary distribution
IS proportional to the degrees of the nodes

- Thus In this case a random walk is the same as degree
popularity

This is not longer true if we do random jumps

- Now the short paths play a greater role, and the
previous distribution does not hold.



Pagerank implementation

Store the graph in adjacency list, or list of edges

Keep current pagerank values and new pagerank
values

Go through edges and update the values of the
destination nodes.

Repeat until the difference (L, or L, difference) is
below some small value «.



-
A (Matlab-friendly) PageRank algorithm

Performing vanilla power method is now too
expensive — the matrix is not sparse

q°=v Efficient computation of y = (P”)" x
t=1 .
repeat P y=aP X

=P | Bl -l

5=|a’~q"| y=y+Bv

t=t+1
until d < ¢ P = normalized adjacency matrix

P'=P +dv', where d;is 1ifiis sink and O o.w.

P”=aP’ + (1-a)uv’, where u is the vector of all 1s




-
Pagerank history

Huge advantage for Google in the early days

- It gave a way to get an idea for the value of a page, which
was useful in many different ways
Put an order to the web.

- After a while it became clear that the anchor text was
probably more important for ranking

- Also, link spam became a new (dark) art

Flood of research

- Numerical analysis got rejuvenated
- Huge number of variations

- Efficiency became a great issue.

- Huge number of applications in different fields
Random walk is often referred to as PageRank.



THE RHITS ALGORITHM




-
The HITS algorithm

Another algorithm proposed around the same
time as Pagerank for using the hyperlinks to rank
pages

- Kleinberg: then an intern at IBM Almaden

- IBM never made anything out of it



-
Query dependent input

Root set obtained from a text-only search engine

Root Set



-
Query dependent input




-
Query dependent input

Root Set
IN OuT



-
Query dependent input

Base Set

Root Set



Hubs and Authorities [K98]

Authority Is not necessarily
transferred directly
between authorities

Pages have double
identity
hub identity
authority identity

Good hubs point to good
authorities

Good authorities are
pointed by good hubs

- /El\ﬂ
<)

u u

hubs authorities



e
Hubs and Authorities

- Two kind of weights:
- Hub weight
- Authority weight

- The hub weight is the sum of the authority
welights of the authorities pointed to by the hub

- The authority weight is the sum of the hub
weights that point to this authority.



-
HITS Algorithm

Initialize all weights to 1.

Repeat until convergence
- O operation : hubs collect the weight of the authorities

h =) a,
i |

- I operation: authorities collect the weight of the hubs

3, = > h,

j:joi
- Normalize weights under some norm




HITS and eigenvectors

- The HITS algorithm is a power-method
eigenvector computation
- in vector terms at = A"ht"tand ht = Aa'™!
-soat = ATAa*"tand ht = AATht1

- The authority weight vector a is the eigenvector of
ATA and the hub weight vector h is the eigenvector of

AAT

- The vectors a and h are singular vectors of the
matrix A



Example

Initialize

1 [0 [1:
1 [0 [1]:
1 O [1]:
1 [0 [1:
1 [1——[1 2

hubs authorities



Example

Step 1: O operation

R NN W DN

[ -

[ :
] 1
[ 0 :
O0—0:

hubs authorities



Example

Step 1: | operation

R NN W DN

[ s

1ls
] 5
[ 0:
O0—0:

hubs authorities



Example

Step 1: Normalization (Max norm)

13 [} [1:
2/3 ] s
1 [ 5/6
213 [ ] ] 2s
1/3 u—>u 1/6

hubs authorities



Example

Step 2: O step

hubs authorities



Example

Step 2: | step

hubs authorities



Example

Step 2: Normalization

6/16 [ [1:

11/16 ] 2733
O 23/33
7116 [} ] 7ss
v [J——[] vss3

hubs authorities



Example

Convergence

04 [ [1:
0.75 ] os
O 0.6
0.3 [ ] 014
o [J]——[] o

hubs authorities



OTHER ALGORITHMS




The SALSA algorithm [LMOO]

Perform a random walk alternating [ [
between hubs and authorities ]

O

O O
What does this random walk O0—10
converge to? hubs authorities

The graph is essentially
undirected, so it will be
proportional to the degree.



Social network analysis

Evaluate the centrality of individuals in social
networks

- degree centrality
the (weighted) degree of a node

- distance centrality

the average (weighted) distance of a node to the rest in the

graph D.

V)= L
Zu¢vd(v’u)
- betweenness centrality
the average number of (weighted) shortest paths that use node v

B.(v)= 0, (V)

SEAVES Ost



-
Counting paths — Katz 53

The importance of a node is measured by the
weighted sum of paths that lead to this node

AM[I,j] = number of paths of length m from i to |
Compute

P=bA+b’A*+.-.+b™A" +...=(I-bA) " -1
converges when b < A,(A)

Rank nodes according to the column sums of the
matrix P



Bibliometrics

Impact factor (E. Garfield 72)

- counts the number of citations received for papers of
the journal in the previous two years

Pinsky-Narin 76

- perform a random walk on the set of journals

- P;; = the fraction of citations from journal i that are
directed to journal |



