
Fairness-Aware PageRank
Sotiris Tsioutsiouliklis

University of Ioannina

Greece

stsiouts@cse.uoi.gr

Evaggelia Pitoura

University of Ioannina

Greece

pitoura@cse.uoi.gr

Panayiotis Tsaparas

University of Ioannina

Greece

tsap@cse.uoi.gr

Ilias Kleftakis

University of Ioannina

Greece

ikleftakis@cse.uoi.gr

Nikolaos Mamoulis

University of Ioannina

Greece

nikos@cse.uoi.gr

ABSTRACT

Algorithmic fairness has attracted significant attention in the past

years. In this paper, we consider fairness for link analysis and in par-

ticular for the celebrated Pagerank algorithm. Given that the nodes

in a network belong to groups (for example, based on demographic

or other characteristics), we provide a parity-based definition of

fairness that imposes constraints on the proportion of Pagerank

allocated to the members of each group. We propose two families

of fair Pagerank algorithms: the first (Fairness-Sensitive Pagerank)

modifies the jump vector of the Pagerank algorithm to enforce

fairness; the second (Locally Fair Pagerank) imposes a fair behavior

per node. We then define a stronger fairness requirement, termed

universal personalized fairness, that asks that the derived person-

alized pageranks of all nodes are fair. We prove that the locally

fair algorithms achieve also universal personalized fairness, and

furthermore, we prove that this is the only family of algorithms

with this property, establishing an equivalence between universal

personalized fairness and local fairness. We also consider the prob-

lem of achieving fairness while minimizing the utility loss with

respect to the original Pagerank algorithm. We present experiments

with real and synthetic networks that examine the fairness of the

original Pagerank and demonstrate qualitatively and quantitatively

the properties of our algorithms.

CCS CONCEPTS

• Information systems→ Data mining; Social networks.

KEYWORDS

networks, pagerank, link analysis, fairness, homophily

ACM Reference Format:

Sotiris Tsioutsiouliklis, Evaggelia Pitoura, Panayiotis Tsaparas, Ilias Kleft-

akis, and NikolaosMamoulis. 2021. Fairness-Aware PageRank. In Proceedings

of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3450065

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450065

1 INTRODUCTION

Today, algorithmic systems driven by large amounts of data are

increasingly being used in all aspects of life. Often, such systems

are being used to assist, or, even replace human decision-making.

This increased dependence on algorithms has given rise to the field

of algorithmic fairness, where the goal is to ensure that algorithms

do not exhibit biases towards specific individuals, or groups of users

(see e.g., [13] for a survey). We also live in a connected world where

networks, be it, social, communication, interaction, or cooperation

networks, play a central role. However, surprisingly, fairness in

networks has received less attention.

Link analysis algorithms, such as Pagerank [7], take a graph as

input and use the structure of the graph to determine the relative

importance of its nodes. The output of the algorithms is a numerical

weight for each node that reflects its importance. The weights are

used to produce a ranking of the nodes, but also as input features in

a variety of machine learning algorithms including classification [8],

and search result ranking [7].

Pagerank performs a random walk on the input graph, and

weights the nodes according to the stationary probability distri-

bution of this walk. At each step, the random walk restarts with

probability𝛾 , where the restart node is selected according to a“jump”

distribution vector v. Since its introduction in the Google search

engine, Pagerank has been the cornerstone algorithm in several

applications (see, e.g., [14]). Previous research on the fairness of cen-

trality measures has considered only degrees and found biases that

arise as a network evolves [2, 26], or has studied general notions of

fairness in graphs based on the premise that similar nodes should

get similar outputs [16]. In this work, we focus on the fairness of

the Pagerank algorithm.

As in previous research, we view fairness as lack of discrimina-

tion against a protected group defined by the value of a sensitive

attribute, such as, gender, or race [13]. We operationalize this view

by saying that a link analysis algorithm is 𝜙-fair, if the fraction of

the total weight allocated to the members of the protected group

is 𝜙 . The value of 𝜙 is a parameter that can be used to implement

different fairness policies. For example, by setting 𝜙 equal to the

ratio of the protected nodes in the graph, we ask that the protected

nodes have a share in the weights proportional to their share in the

population, a property also known as demographic parity [9]. We

also consider targeted fairness, where we focus on a specific subset

of nodes to which we want to allocate weights in a fair manner.

https://doi.org/10.1145/3442381.3450065
https://doi.org/10.1145/3442381.3450065
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We revisit Pagerank through the lens of our fairness definitions,

and we consider the problem of defining families of Pagerank algo-

rithms that are fair. We also define the utility loss of a fair algorithm

as the difference between its output and the output of the original

Pagerank algorithm, and we pose the problem of achieving fairness

while minimizing utility.

We consider two approaches for achieving fairness. The first

family of algorithms we consider is the fairness-sensitive Pagerank

family which exploits the jump vector v. There has been a lot of

work on modifying the jump vector to obtain variants of Pagerank

biased towards a specific set of nodes. The topic-sensitive Pagerank

algorithm [15] is such an example, where the probability is assigned

to nodes of a specific topic. In this paper, we take the novel approach

of using the jump vector to achieve 𝜙-fairness. We determine the

conditions under which this is feasible and formulate the problem of

finding the jump vector that achieves 𝜙-fairness while minimizing

utility loss as a convex optimization problem.

Our second family of algorithms takes a microscopic view of

fairness by looking at the behavior of each individual node in the

graph. Implicitly, a link analysis algorithm assumes that links in the

graph correspond to endorsements between the nodes. Therefore,

we can view each node, as an agent that endorses (or votes for) the

nodes that it links to. Pagerank defines a process that takes these

individual actions of the nodes and transforms them into a global

weighting of the nodes. We thus introduce, the locally fair PageRank

algorithms, where each individual node acts fairly by distributing its

own pagerank to the protected and non-protected groups according

to the fairness ratio 𝜙 . Local fairness defines a dynamic process

that can be viewed as a fair random walk, where at each step of the

random walk (not only at convergence), the probability of being at

a node of the protected group is 𝜙 .

In our first locally fair PageRank algorithm, termed the neigh-

borhood locally fair Pagerank algorithm, each node distributes its

pagerank fairly among its immediate neighbors, allocating a frac-

tion 𝜙 to the neighbors in the protected group, and 1 − 𝜙 to the

neighbors in the non-protected group. The residual-based locally

fair Pagerank algorithms generalizes this idea. Consider a node 𝑖

that has less neighbors in the protected group than 𝜙 . The node

distributes an equal portion of its pagerank to each of its neighbors

and a residual portion 𝛿 (𝑖) to members in the protected group but

not necessarily in its own neighborhood. The residual is allocated

based on a residual redistribution policy, which allows us to control

the fairness policy. In this paper, we exploit a residual redistribution

policy that minimizes the utility loss.

We then define a stronger fairness requirement, termed univer-

sal personalized fairness, that asks that the derived personalized

pageranks of all nodes are fair. We prove that the locally fair algo-

rithms achieve also universal personalized fairness. Surprisingly,

the locally fair algorithms are the only family of algorithms with

this property. Thus, we show that an algorithm is locally fair, if and

only if, it is universally personalized fair.

We use real and synthetic datasets to study the conditions un-

der which Pagerank and personalized Pagerank are fair. We also

evaluate both quantitatively and qualitatively the output of our

fairness-aware algorithms.

In summary, in this paper, we make the following contributions:

• We initiate a study of fairness for the Pagerank algorithm.

• We propose the fairness-sensitive Pagerank family that mod-

ifies the jump vector so as to achieve fairness, and the locally

fair Pagerank family that guarantees that individually each

node behaves in a fair manner.

• We prove that local fairness implies universal personalized

fairness and also that this is the only family of algorithms

with this property, establishing an equivalence between local

fairness and universal personalized fairness.

• We perform experiments on several datasets to study the

conditions under which Pagerank unfairness emerges and

evaluate the utility loss for enforcing fairness.

The remainder of this paper is structured as follows. In Section 2,

we provide definitions of fairness and we formulate our problems.

In Sections 3 and 4, we introduce the fairness sensitive and the

locally fair families of Pagerank algorithms. In Section 5, we discuss

personalized fairness and we show an equivalence between local

and universal personalized fairness. The results of our experimental

evaluation are presented in Section 6. Finally, we present related

research in Section 7 and our conclusions in Section 8.

2 DEFINITIONS

In this section, we first present background material and then we

define Pagerank fairness.

2.1 Preliminaries

The Pagerank algorithm [7] pioneered link analysis for weighting

and ranking the nodes of a graph. It was popularized by its applica-

tion in the Google search engine, but it has found a wide range of

applications in different settings [14]. The algorithm takes as input

a graph 𝐺 = (𝑉 , 𝐸), and produces a scoring vector, that assigns a

weight to each node 𝑣 ∈ 𝑉 in the graph. The scoring vector is the

stationary distribution of a random walk on the graph 𝐺 .

The Pagerank random walk is a random walk with restarts. It

is parameterized by the value 𝛾 , which is the probability that the

random walk will restart at any step. The node from which the

random walk restarts is selected according to the jump vector v,
which defines a distribution over the nodes in the graph. Typically,

the jump probability is set to 𝛾 = 0.15, and the jump vector is set to

the uniform vector.

The “organic” part of the random walk is governed by the tran-

sition matrix P, which defines the transition probability 𝑃 [𝑖, 𝑗]
between any two nodes 𝑖 and 𝑗 . The transition matrix is typically

defined as the normalized adjacency matrix of graph𝐺 . Special care

is required for the sink nodes in the graph, that is, nodes with no

outgoing edges. In our work, we adopt the convention that, when

at a sink node, the random walk performs a jump to a node chosen

uniformly at random [14]. That is, the corresponding zero-rows in

the matrix P are replaced by the uniform vector.

The Pagerank vector p satisfies the equation:

p𝑇 = (1 − 𝛾)p𝑇 P + 𝛾 v𝑇 (1)

It can be computed either by solving the above equation, or by

iteratively applying it to any initial probability vector.

The Pagerank algorithm is fully defined by the three parameters

we described above: the transition matrix P, the restart probability
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𝛾 , and the restart (or jump) vector v. Different settings for these
parameters result in different algorithms. Given a graph𝐺 = (𝑉 , 𝐸),
let PR(𝐺) denote the family of all possible Pagerank algorithms

on graph 𝐺 . Each algorithm in PR(𝐺) corresponds to a triplet

(P(𝐺), 𝛾, v(𝐺)) for the parameters of the random walk. This is a

very general family that essentially includes all possible random

walks defined over the nodes of graph 𝐺 . We will refer to the

algorithm that uses the typical settings as the original Pagerank

algorithm, OPR, and use p𝑂 to denote its pagerank vector.

Several variations of the original Pagerank algorithm have been

proposed, that modify the above parameters to achieve different

goals [14]. We are interested in defining fair Pagerank algorithms.

2.2 Fair Pagerank

We focus on graphs where a set of nodes defines a protected group

based on the value of some protected attribute. For example, in the

case of social, collaboration, or citation networks where each node

is a person, protected attributes may correspond to gender, age,

race, or religion. In the following for simplicity, we assume binary

such attributes, but our algorithms can be extended for the general

case. We consider two types of nodes, red and blue nodes, and the

corresponding groups denoted 𝑅 and 𝐵 respectively. Group 𝑅 is the

protected group. We denote with 𝑟 =
|𝑅 |
𝑛 , and 𝑏 =

|𝐵 |
𝑛 , the fraction

of nodes that belong to the red and blue group respectively.

Let PR ∈ PR(𝐺) be a Pagerank algorithm on graph 𝐺 . We will

use PR(𝑢) to denote the pagerank mass that PR assigns to node 𝑢,

and, abusing the notation, PR(𝑅) to denote the total pagerank mass

that PR assigns to the nodes in the red group (for the blue group,

PR(𝐵) = 1−PR(𝑅)). We will say that PR is fair, if it assigns weights

to each group according to a specified ratio 𝜙 .

Definition 1 (Pagerank Fairness). Given a graph 𝐺 = (𝑉 , 𝐸)
containing the protected group 𝑅 ⊆ 𝑉 , and a value 𝜙 ∈ (0, 1), a
Pagerank algorithm PR ∈ PR(𝐺) is 𝜙-fair on graph𝐺 , if PR(𝑅) = 𝜙 .

The ratio 𝜙 may be specified so as to implement specific affir-

mative action policies, or other fairness enhancing interventions.

For example, 𝜙 may be set in accordance to the 80-percent rule

advocated by the US Equal Employment Opportunity Commission

(EEOC), or some other formulation of disparate impact [12]. Setting

𝜙 = 𝑟 , we ask for a fair Pagerank algorithm that assigns weights

proportionally to the sizes of the two groups. In this case, fairness

is analogous to demographic parity, i.e., the requirement that the

demographics of those receiving a positive outcome are identical

to the demographics of the population as a whole [9].

Our goal is to define fair Pagerank algorithms. We say that a

family of Pagerank algorithms FPR ⊆ PR(𝐺) is 𝜙-fair if all the
Pagerank algorithms in the family are 𝜙-fair. The first problem we

consider is to find such families of algorithms.

Problem 1. Given a graph 𝐺 = (𝑉 , 𝐸) containing a protected

group of nodes 𝑅 ⊆ 𝑉 , and a value 𝜙 ∈ (0, 1), define a family of

algorithms FPR ⊆ PR(𝐺) that is 𝜙-fair.

We can achieve fairness by modifying the parameters of the

Pagerank algorithm. For the following, we assume the jump prob-

ability 𝛾 to be fixed, and we only consider modifications to the

transition matrix P and the jump vector v. A 𝜙-fair family of al-

gorithms is defined by a specific process, parameterized by 𝜙 , for

defining P and v.
A fair Pagerank algorithm will clearly output a different weight

vector than the original Pagerank algorithm. We assume that the

weights of the original Pagerank algorithm carry some utility, and

use these weights to measure the utility loss for achieving fairness.

Concretely, if f is the output of a fair Pagerank algorithm FPR and

p𝑂 is the output of the original Pagerank algorithm OPR, we define

the utility loss of FPR as: 𝐿(FPR) = 𝐿(f, p𝑂 ) = ∥f − p𝑂 ∥2.
The second problem we consider is finding a fair algorithm that

minimizes the utility loss.

Problem 2. Given a 𝜙-fair family of algorithms FPR ⊂ PR(𝐺),
find an algorithm PR ∈ FPR that minimizes the utility loss 𝐿(PR).

Finally, we introduce an extension of the fairness definition,

termed targeted fairness, that asks for a fair distribution of weights

among a specific set of nodes 𝑆 that is given as input. The subset 𝑆

contains a protected group of nodes 𝑆𝑅 . Targeted fairness asks that

a fraction 𝜙 of the pagerank mass that PR assigns to 𝑆 goes to the

protected group 𝑆𝑅 . For example, assume a co-authorship graph 𝐺 ,

where 𝑆 is the set of authors of a particular male-dominated field.

We want to allocate to the female authors 𝑆𝑅 in this field a fraction

𝜙 of the total pagerank allocated to 𝑆 .

Definition 2 (Targeted Fairness). Given a graph 𝐺 = (𝑉 , 𝐸),
a subset of nodes 𝑆 ⊆ 𝑉 containing a protected group 𝑆𝑅 ⊆ 𝑆 , and

a value 𝜙 ∈ (0, 1), a Pagerank algorithm PR ∈ PR(𝐺), is targeted
𝜙-fair on the subset 𝑆 of 𝐺 , if PR(𝑆𝑅) = 𝜙PR(𝑆).

The two problems we defined above can also be defined for

targeted fairness.

3 FAIRNESS SENSITIVE PAGERANK

Our first family of algorithms achieves fairness by keeping the

transition matrix P fixed and changing the jump vector v so as to

meet the fairness criterion. We denote this family of algorithms as

the Fairness-Sensitive Pagerank (FSPR) algorithms.

3.1 The FSPR Algorithm

First, we note that that pagerank vector p can be written as a linear

function of the jump vector v. Solving Equation (1) for p, we have
that p𝑇 = v𝑇Q, where

Q = 𝛾 [I − (1 − 𝛾)P]−1

Note that if we set v = e𝑗 , the vector with e𝑗 [ 𝑗] = 1 and zero

elsewhere, then p𝑇 = Q𝑇
𝑗
, the 𝑗-th row of matrix Q. Therefore, the

row vector Q𝑇
𝑗
corresponds to the personalized pagerank vector

of node 𝑗 . The pagerank vector p is a linear combination of the

personalized pagerank vectors of all nodes, as defined by the jump

vector.

Let p[𝑅] denote the pagerank mass that is allocated to the nodes

of the protected category. We have that

p[𝑅] =
∑
𝑖∈𝑅

(
v𝑇Q

)
[𝑖] = v𝑇

(∑
𝑖∈𝑅

Q𝑖

)
= v𝑇Q𝑅
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where Q𝑖 is the 𝑖-th column of matrix Q, and Q𝑅 is the vector that

is the sum of the columns of Q in the set 𝑅. Q𝑅 [ 𝑗] is the total

personalized pagerank that node 𝑗 allocates to the red group.

For the algorithm to be fair, we need p[𝑅] = 𝜙 . Thus, our goal
is to find a jump vector v such that v𝑇Q𝑅 = 𝜙 . Does such a vector

always exist? We prove the following:

Lemma 1. Given the vector Q𝑅 , there exists a vector v such that

v𝑇Q𝑅 = 𝜙 , if and only if, there exist nodes 𝑖, 𝑗 such that Q𝑅 [𝑖] ≤ 𝜙
and Q𝑅 [ 𝑗] ≥ 𝜙

Proof. We have p[𝑅] = v𝑇Q𝑅 =
∑𝑁

𝑗=1 v[ 𝑗]Q𝑅 [ 𝑗], with 0 ≤
v[ 𝑗] ≤ 1. If v𝑇Q𝑅 = 𝜙 , there must exist 𝑖, 𝑗 with Q𝑅 [𝑖] ≤ 𝜙 , and

Q𝑅 [ 𝑗] ≥ 𝜙 . Conversely, if there exists two such entries 𝑖, 𝑗 , then

we can find values 𝜋𝑖 and 𝜋 𝑗 , such that 𝜋𝑖Q𝑅 [𝑖] +𝜋 𝑗Q𝑅 [ 𝑗] = 𝜙 and

𝜋𝑖 + 𝜋 𝑗 = 1. □

Complexity. Note that there is a very efficient way to compute

the personalized pagerank, Q𝑅 [ 𝑗], that node 𝑗 allocates to the red

group. We can add a red and a blue absorbing node in the random

walk and estimate the probability for each node 𝑗 to be absorbed

by the corresponding absorbing node. This can be done in the time

required for running Pagerank. Thus, it is possible to compute the

Q𝑅 vector without doing matrix inversion to compute Q.

3.2 Minimizing Utility Loss

An implication of Lemma 1 is that, in most cases, there are multiple

jump vectors that give a fair pagerank vector. We are interested in

the solution that minimizes the utility loss.

To solve this problem we exploit the fact that the utility loss

function 𝐿(pv, p𝑂 ) = ∥pv − p𝑂 ∥2, where pv is the fair pagerank

vector and p𝑂 the original vector, is convex. We also can express

the fairness requirement as a linear constraint. Thus, we define the

following convex optimization problem.

minimize

x
∥x𝑇Q − p𝑂 ∥2

subject to x𝑇Q𝑅 = 𝜙

𝑛∑
𝑖=1

x[𝑖] = 1

0 ≤ x[𝑖] ≤ 1, 𝑖 = 1, . . . , 𝑛

This problem can be solved using standard convex optimization

solvers. In our work, we used the CVXOPT software package
1
. The

complexity of the algorithm is dominated by the computation of

matrix Q which requires a matrix inversion. We can speed up this

process by exploiting the fact that the rows of Q are personalized

pagerank vectors, which can be computed (in parallel) by perform-

ing multiple random walks. We can improve performance further

using approximate computation, e.g., [3].

3.3 Targeted Fairness FSPR Algorithm

We can formulate a similar convex optimization problem for the

targeted fairness problem. LetQ𝑆 =
∑
𝑖∈𝑆 Q𝑖 be the sum of columns

of Q for the nodes in 𝑆 , and Q𝑆𝑅 =
∑
𝑖∈𝑆𝑅 Q𝑖be the sum of columns

of Q for the nodes in 𝑆𝑅 . We define a convex optimization problem

1
https://cvxopt.org/

that is exactly the same as in Section 3.2, except for the fact that

we replace the constraint x𝑇Q𝑅 = 𝜙 with the constraint x𝑇Q𝑆𝑅 =

𝜙x𝑇Q𝑆 .

4 LOCALLY FAIR PAGERANK

Our second family of fair Pagerank algorithms, termed Locally Fair

Pagerank (LFPR), takes a microscopic view of fairness, by asking

that each individual node acts fairly, i.e., each node distributes its

own pagerank to red and blue nodes fairly. In random walk terms,

local fairness defines a dynamic process that can be viewed as a

random walk that is fair at each step, and not just at convergence.

The LFPR contains all Pagerank algorithms, where all rows of the

transition matrix P are 𝜙-fair vectors. That is, for every node 𝑖 ∈ 𝑉 ,∑
𝑗 ∈𝑅 𝑃 [𝑖, 𝑗] = 𝜙 . Also, the jump vector v is 𝜙-fair:

∑
𝑗 ∈𝑅 v[ 𝑗] = 𝜙 .

We now consider specific algorithms from the family of locally

fair algorithms.

4.1 The Neighborhood LFPR Algorithm

We first consider a node that treats its neighbors fairly by allocating

a fraction 𝜙 of its pagerank to its red neighbors and the remaining

1 − 𝜙 fraction to its blue neighbors. In random walk terms, at each

node the probability of transitioning to a red neighbor is 𝜙 and the

probability of transitioning to a blue neighbor 1 − 𝜙 .
Formally, we define the neighborhood locally fair pagerank (LFPR𝑁 )

as follows. Let 𝑜𝑢𝑡𝑅 (𝑖) and 𝑜𝑢𝑡𝐵 (𝑖) be the number of outgoing edges

from node 𝑖 to red nodes and blue nodes respectively. We define P𝑅
as the stochastic transition matrix that handles transitions to red

nodes, or random jumps to red nodes if such links do not exist:

P𝑅 [𝑖, 𝑗] =


1

𝑜𝑢𝑡𝑅 (𝑖) , if (𝑖, 𝑗) ∈ E and 𝑗 ∈ 𝑅
1

|𝑅 | , if 𝑜𝑢𝑡𝑅 (𝑖) = 0 and 𝑗 ∈ 𝑅
0, otherwise

The transition matrix P𝐵 for the blue nodes is defined similarly.

The transition matrix P𝑁 of the LFPR𝑁 algorithm is defined as:

P𝑁 = 𝜙 P𝑅 + (1 − 𝜙) P𝐵
We also define a 𝜙-fair jump vector v𝑁 with v𝑁 [𝑖] = 𝜙

|𝑅 | , if 𝑖 ∈ 𝑅,

and v𝑁 [𝑖] = 1−𝜙
|𝐵 | , if 𝑖 ∈ 𝐵. The neighborhood locally-fair pagerank

vector p𝑁 is defined as:

p𝑇𝑁 = (1 − 𝛾)p𝑇𝑁 P𝑁 + 𝛾 v𝑇𝑁

4.2 The Residual-based LFPR Algorithms

We consider an alternative fair behavior for individual nodes. Simi-

larly to the LFPR𝑁 algorithm, each node 𝑖 acts fairly by respecting

the 𝜙 ratio when distributing its own pagerank to red and blue

nodes. However, now node 𝑖 treats its neighbors the same, indepen-

dently of their color and assigns to each of them the same portion

of its pagerank. When a node is in a “biased” neighborhood, i.e.,

the ratio of its red neighbors is different than 𝜙 , to be fair, node

𝑖 distributes only a fraction of its pagerank to its neigbors, and

the remaining portion of its pagerank to nodes in the underrepre-

sented group. We call the remaining portion residual and denote it

by 𝛿 (𝑖). How 𝛿 (𝑖) is distributed to the underrepresented group is

determined by a residual policy.
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Intuitively, this corresponds to a fair randomwalker that upon ar-

riving at a node 𝑖 , with probability 1-𝛿 (𝑖) follows one of 𝑖’s outlinks
and with probability 𝛿 (𝑖) jumps to one or more node belonging to

the group that is locally underrepresented.

We now describe the algorithm formally. We divide the (non

sink) nodes in 𝑉 into two sets, 𝐿𝑅 and 𝐿𝐵 , based on the fraction of

their red and blue neighbors. Set 𝐿𝑅 includes all nodes 𝑖 such that

𝑜𝑢𝑡𝑅 (𝑖)/𝑜𝑢𝑡 (𝑖) < 𝜙 , where 𝑜𝑢𝑡 (𝑖) the out-degree of node 𝑖 , that is,
the nodes for which the ratio of red nodes in their neighborhoods

is smaller than the required 𝜙 ratio. These nodes have a residual

that needs to be distributed to red nodes. Analogously, 𝐿𝐵 includes

all nodes 𝑖 such that 𝑜𝑢𝑡𝑅 (𝑖)/𝑜𝑢𝑡 (𝑖) ≥ 𝜙 , that have a residual to be

distributed to blue nodes.

Consider a node 𝑖 in 𝐿𝑅 . To compute 𝛿𝑅 (𝑖) note that each neigh-

bor of 𝑖 gets a fraction 𝜌𝑅 (𝑖) = 1−𝛿𝑅 (𝑖)
𝑜𝑢𝑡 (𝑖) of 𝑖’s pagerank. The residual

𝛿𝑅 (𝑖) of 𝑖’s pagerank goes to red nodes. In order for node 𝑖 to be

𝜙-fair, we have:

1 − 𝛿𝑅 (𝑖)
𝑜𝑢𝑡 (𝑖) 𝑜𝑢𝑡𝑅 (𝑖) + 𝛿𝑅 (𝑖) = 𝜙 (2)

Solving for 𝛿𝑅 (𝑖) and using the fact that 𝑜𝑢𝑡 (𝑖) = 𝑜𝑢𝑡𝑅 (𝑖) + 𝑜𝑢𝑡𝐵 (𝑖)
we get 𝛿𝑅 (𝑖) = 𝜙 − (1−𝜙) 𝑜𝑢𝑡𝑅 (𝑖)

𝑜𝑢𝑡𝐵 (𝑖) , and 𝜌𝑅 (𝑖) =
1−𝜙

𝑜𝑢𝑡𝐵 (𝑖) .
Analogously, for a node 𝑖 in 𝐿𝐵 , we get a residual 𝛿𝐵 (𝑖) = (1 −

𝜙) − 𝜙 𝑜𝑢𝑡𝐵 (𝑖)
𝑜𝑢𝑡𝑅 (𝑖) that goes to the blue nodes, and 𝜌𝐵 (𝑖) =

𝜙

𝑜𝑢𝑡𝑅 (𝑖) .
For a sink node 𝑖 , we assume that 𝑖 belongs to both 𝐿𝑅 and 𝐿𝐵

with residual 𝛿𝑅 (𝑖) = 𝜙 and 𝛿𝐵 (𝑖) = 1 − 𝜙 .

Example. Consider a node 𝑖 with 5 out-neighbors, 1 red and 4 blue,

and let 𝜙 be 0.5. This is a “blue-biased”node, that is, 𝑖 ∈ 𝐿𝑅 . With the

residual algorithm, each of 𝑖’s neighbors gets 𝜌𝑅 (𝑖) = 0.5/4 = 1/8
portion of 𝑖’s pagerank, resulting in red neighbors getting 1/8 and
blue neighbors 4/8 of i’s pagerank. The residual 𝛿𝐵 (𝑖) = 3/8 goes
to nodes in the red group so as to attain the 𝜙 ratio and make 𝑖 fair.

In terms of the random walker interpretation, a random walker

that arrives at 𝑖 , with probability 5/8 chooses one of 𝑖’s outlinks
uniformly at random and with probability 3/8 jumps to nodes in

the red group. □.
Formally, we define P𝐿 as follows:

P𝐿 [𝑖, 𝑗] =


1−𝜙

𝑜𝑢𝑡𝐵 (𝑖) , if (𝑖, 𝑗) ∈ 𝐸 and 𝑖 ∈ 𝐿𝑅
𝜙

𝑜𝑢𝑡𝑅 (𝑖) , if (𝑖, 𝑗) ∈ 𝐸 and 𝑖 ∈ 𝐿𝐵
0 otherwise

P𝐿 handles the transitions of nodes to their neighborhood. To

express the residual distribution policy, we introduce matrices X
and Y, that capture the policy for distributing the residual to red

and blue nodes respectively. Specifically,X[𝑖, 𝑗] denotes the portion
of the 𝛿𝑅 (𝑖) of node 𝑖 ∈ 𝐿𝑅 that goes to node 𝑗 ∈ 𝑅, and Y[𝑖, 𝑗] the
portion of the 𝛿𝐵 (𝑖) of node 𝑖 ∈ 𝐿𝐵 that goes to node 𝑗 ∈ 𝐵.

The locally-fair pagerank vector p𝐿 is defined as:

p𝑇𝐿 = (1 − 𝛾)p𝑇𝐿 (P𝐿 + X + Y) + 𝛾 v𝑇𝑁

Residual Distribution Policies. The X and Y allocation matrices

allow us the flexibility to specify appropriate policies for distribut-

ing the residual. For example, the LFPR𝑁 algorithm is a special case

of the residual-based algorithm, with

X𝑁 [𝑖, 𝑗] =


𝛿𝑅 (𝑖)
𝑜𝑢𝑡𝑅 (𝑖) , if 𝑖 ∈ 𝐿𝑅 , (𝑖, 𝑗) ∈ 𝐸, and 𝑗 ∈ 𝑅
𝛿𝑅 (𝑖)
|𝑅 | , if 𝑖 ∈ 𝐿𝑅 , 𝑜𝑢𝑡𝑅 (𝑖) = 0, and 𝑗 ∈ 𝑅
0 otherwise

and Y𝑁 [𝑖, 𝑗] defined analogously.

We also consider residual policies where all nodes follow the

same policy in distributing their residual, that is, each red node

gets the same portion of the red residuals and each blue node the

same portion and the blue residuals. In this case, the residual policy

is expressed through two (column) vectors x and y, with x[ 𝑗] =
0 if 𝑗 ∈ 𝐵 and y[ 𝑗] = 0, 𝑗 ∈ 𝑅. Each node 𝑖 ∈ 𝐿𝑅 sends a fraction

𝛿𝑅 (𝑖)x[ 𝑗] of its pagerank to red node 𝑗 , while each node 𝑖 ∈ 𝐿𝐵
sends a fraction 𝛿𝐵 (𝑖)y[ 𝑗] of its pagerank to blue node 𝑗 .

Let 𝛿𝑅 be the vector carrying the red residual, and 𝛿𝐵 the vector

carrying the blue residual. We have:

p𝑇𝐿 = (1 − 𝛾)p𝑇𝐿 (P𝐿 + 𝛿𝑅 x𝑇 + 𝛿𝐵 y𝑇 ) + 𝛾 v𝑇𝑁 .

We define two locally fair Pagerank algorithms based on two

intuitive policies of distributing the residual:

The Uniform Locally Fair Pagerank (LFPR𝑈 ) algorithm distributes

the residual uniformly. Specifically, we define the vector x, as x[𝑖]
=

1

|𝑅 | for 𝑖 ∈ 𝑅, and the vector y, as y[𝑖] = 1

|𝐵 | , for 𝑖 ∈ 𝐵.

The Proportional Locally Fair Pagerank (LFPR𝑃 ) algorithm distributes

the residual proportionally to the original pagerank weights p𝑂
Specifically, we define the vector x, as x[𝑖] = p𝑂 [𝑖 ]∑

𝑖∈𝑅 p𝑂 [𝑖 ] , for 𝑖 ∈ 𝑅,

and the vector y, as y[𝑖] = p𝑂 [𝑖 ]∑
𝑖∈𝐵 p𝑂 [𝑖 ] , for 𝑖 ∈ 𝐵.

4.3 Fairness of the LFPR Algorithms

Although each node acts independently of the other nodes in the

network, this microscopic view of fairness results in a macroscopic

view of fairness. Specifically, we prove the following theorem.

Theorem 1. The locally fair Pagerank algorithms are 𝜙-fair.

Proof. Let e𝑅 denote the vector with 1’s at the red nodes and

zero at the blue nodes. The amount of pagerank that vector p𝐿 gives

to the red nodes can be expressed as p𝑇
𝐿
e𝑅 . Let P𝐷 = P𝐿 +X +Y, we

have:

p𝑇𝐿 e𝑅 = (1 − 𝛾)p𝑇𝐿P𝐷e𝑅 + 𝛾v𝑇𝑁 e𝑅

By design we have that v𝑇
𝑁
e𝑅 = 𝜙 . For transition matrix P𝐷 , due to

the local fairness property, we know that each row has probability

𝜙 of transitioning to a red node. Therefore, P𝐷e𝑅 = 𝜙e, where e is
the vector of all ones. Note that since p𝐿 is a distribution we have

that p𝑇
𝐿
e = 1. We thus have: p𝑇

𝐿
e𝑅 = (1 − 𝛾)𝜙 + 𝛾𝜙 = 𝜙 . □

4.4 Minimizing Utility Loss

We now consider how to distribute the residual so as to minimize

the utility loss of the locally fair Pagerank.We denote this algorithm

as LFPR𝑂 . To this end, we compute the x and y residual distribution

vectors by formulating an optimization problem.

We can write the vector p𝐿 as a function of the vectors x and y
as follows:

p𝑇𝐿 (x, y) = 𝛾 v
𝑇
𝑁

[
I − (1 − 𝛾) (P𝐿 + 𝛿𝑅 x𝑇 + 𝛿𝐵 y𝑇 )

]−1
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We can now define the optimization problem of finding the vectors

x and y that minimize the loss function 𝐿(p𝐿, p𝑂 ) = ∥p𝐿 (x, y) −
p𝑂 ∥2 subject to the constraint that the vectors x and y define a

distribution over the nodes in 𝑅 and 𝐵 respectively.

Since our problem is not convex, we implement a Stochastic

Random Search algorithm for solving it, that looks at randomly se-

lected directions for the gradient, and selects the one that causes the

largest decrease. We enforce the distribution constraints by adding

a penalty term 𝜆
(
(∑𝑛

𝑖=1 x𝑖 − 1)2 + (∑𝑛
𝑖=1 y𝑖 − 1)2

)
. We enforce the

positivity constraints through proper bracketing at the line-search

step. The complexity of the algorithm is 𝑂 (𝐼 · 𝐾 ·𝑇𝑃𝑅), where 𝐼
is the number of iterations, 𝐾 the number of random directions

that are examined, and 𝑇𝑃𝑅 the cost of running Pagerank. In our

experiments, 𝐼 and 𝐾 are in the order of a few hundreds.

4.5 Targeted Fairness LFPR Algorithms

We can apply the locally fair algorithms to the targeted fairness

problem. Let 𝑆𝑅 and 𝑆𝐵 be the red and blue nodes in the set 𝑆

respectively, and let 𝐼𝑆 be the set of in-neighbors of 𝑆 . The idea is

that the nodes in 𝐼𝑆 should distribute their pagerank to 𝑆𝑅 and 𝑆𝐵
fairly, such that the portion that goes to nodes in 𝑆𝑅 is a 𝜙 fraction

of the total pagerank that goes to the set 𝑆 . We can implement the

same redistribution policies as in the case of the neighborhood local

and the residual-based local fair algorithms.

We also need the (global) jump vector v to obey the 𝜙 ratio for

the nodes in 𝑆 . We can achieve this by redistributing the probability

|𝑆 |/𝑛 of the jump vector according to the 𝜙 ratio.

5 PERSONALIZED FAIRNESS

A special case of the Pagerank algorithm is when the restart vector

is defined to be the unit vector e𝑖 that puts all the mass at a single

node 𝑖 . For any Pagerank algorithm PR ∈ PR, we can define the

corresponding personalized algorithm PR𝑖 by setting v = e𝑖 .
The output of the algorithm PR𝑖 is a probability vector, where

PR𝑖 (𝑢) is the probability that a random walk that always restarts

at node 𝑖 is at 𝑢 after infinite number of steps. We say that node

𝑖 allocates this probability to node 𝑢. Personalized random walks

have found several applications in network analysis [14]. For exam-

ple, the probability PR𝑖 (𝑢) can be seen as a measure of proximity

between node 𝑖 and node 𝑢, and it has been used for recommenda-

tions.

For a personalized Pagerank algorithm PR𝑖 , we define PR𝑖 (𝑅)
and PR𝑖 (𝐵) to be the probability that node 𝑖 allocates to the red and
blue groups respectively. Recall that if v is the jump vector, then

PR(𝑅) = ∑
𝑖∈𝑉 v[𝑖]PR𝑖 (𝑅). We can think of the probability PR𝑖 (𝑅),

as a measure of how a specific node 𝑖 “views” the red group, while

PR(𝑅) captures the value that the network places on the red nodes

on aggregate.

We could define fairness for the PR𝑖 algorithm using the standard

fairness definition. However, note that since the randomwalk jumps

with probability 𝛾 to node 𝑖 at every step, this immediately adds

probability 𝛾 to the category of node 𝑖 . This probability is due

to the random jump and not due to the ”organic” random walk,

and the structure of the graph. We thus subtract this probability,

and we define the vector PR𝑖 , where PR𝑖 (𝑖) = PR𝑖 (𝑖) − 𝛾 , and
PR𝑖 (𝑢) = PR𝑖 (𝑢), for 𝑢 ≠ 𝑖 . Another way to think of this is that an
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Figure 1: Histogram of personalized red ratio values.

amount𝛾 of probability is reserved for restarting, and the remaining

1 − 𝛾 is allocated through the random walk. This is the probability

mass that we want to allocate fairly. We say that the personalized

Pagerank algorithm PR𝑖 is 𝜙-fair if PR𝑖 (𝑅) = 𝜙 (1 − 𝛾).
Intuitively, fairness of PR𝑖 implies that node 𝑖 treats the red and

blue groups fairly. For example, if we think of PR𝑖 (𝑅) as a proximity

measure, and 𝜙 = 0.5, 𝜙-fairness implies that node 𝑖 is equally close

to the red and blue groups. Given that this probability is often used

for recommendations, this has also implications to the fairness of

the recommendations.

Note that a Pagerank algorithm PR may be fair, while the corre-

sponding personalized Pagerank algorithms are not. In Figure 1, we

consider the original Pagerank algorithm OPR, and we show the

histogram of the OPR𝑖 (𝑅) values for the books dataset (described
in Section 6), for the red and blue nodes, in red and blue respec-

tively. For this dataset, we have that 𝑟 = 0.47 and OPR(𝑅) is 0.46.
That is, the original Pagerank algorithm is almost fair for 𝜙 = 𝑟 .

However, we observe that the distribution of the OPR𝑖 (𝑅) values
is highly polarized. The values for the red nodes (shown in red)

are concentrated in the interval [0.8, 1], while the values for the
blue nodes (in blue) are concentrated in the interval [0, 0.2]. Thus,
although the network as a whole has a fair view of the two groups,

the individual nodes are highly biased in favor of their own group.

Motivated by this observation, we consider a stronger definition

of fairness, where given an algorithm PR we require that all deriva-

tive Personalized Pagerank versions of this algorithm are fair. That

is, it is not sufficient that the algorithm treats the red group fairly

on aggregate, but we require that each individual node is also fair.

Definition 3 (Universal Personalized Fairness). Given a

graph 𝐺 = (𝑉 , 𝐸) containing the protected group 𝑅 ⊆ 𝑉 , and a value
𝜙 ∈ (0, 1), a Pagerank algorithm PR ∈ PR(𝐺) is universally person-

alized 𝜙-fair on graph 𝐺 , if for every node 𝑖 ∈ 𝑉 , the personalized
Pagerank algorithm PR𝑖 is personalized 𝜙-fair.

Since we want all personalized algorithms to be fair, universal

personalized fairness (universal fairness for short) is a property

of the transition matrix P of the Pagerank algorithm. Since the

FSPR family does not change the matrix P, it is not universally
fair. We will show that the locally fair algorithms are universally

fair. Furthermore, we can prove that universally fair algorithms
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are locally fair. Therefore, universal fairness is equivalent to local

fairness.

Theorem 2. A Pagerank algorithm PR is universally personalized

𝜙-fair if and only if it is locally fair.

Proof. We first prove that if an algorithm PR is locally fair then

it is personalized fair. The proof is similar to that of Theorem 1. Let

p𝑖 denote the personalized pagerank vector of algorithm PR𝑖 . We

know that p𝑇
𝑖
= (1 − 𝛾)p𝑇

𝑖
P + 𝛾e𝑇

𝑖
where e𝑖 is the vector with 1 at

the position 𝑖 , and 0 everywhere else. The amount of probability

that PR𝑖 allocates to the red category can be computed as PR𝑖 (𝑅) =
p𝑇
𝑖
e𝑅 , where e𝑅 is the vector with 1 at the positions of all red nodes

and 0 everywhere else. Multiplying the equation for p𝑇
𝑖
with e𝑅 we

have:

PR𝑖 (𝑅) = (1 − 𝛾)p𝑇𝑖 Pe𝑅 + 𝛾e𝑇𝑖 e𝑅
Since PR is fair, for every row of the transition matrix P, the prob-
ability of transitioning to a red node is 𝜙 . Therefore we have that

Pe𝑅 = 𝜙e, where e is the vector of all 1’s. Also, since p𝑖 defines a
distribution p𝑇

𝑖
e = 1. Therefore (1 − 𝛾)p𝑇

𝑖
Pe𝑅 = 𝜙 (1 − 𝛾). We have:

PR𝑖 (𝑅) = 𝜙 (1 − 𝛾) + 𝛾e𝑇𝑖 e𝑅

The value of the second term 𝛾e𝑇
𝑖
e𝑅 depends on whether the node 𝑖

is red or blue. If 𝑖 is blue, 𝛾e𝑇
𝑖
e𝑅 = 0, and we have PR𝑖 (𝑅) = 𝜙 (1−𝛾).

If 𝑖 is red, 𝛾e𝑇
𝑖
e𝑅 = 𝛾 , and thus PR𝑖 (𝑅) = 𝜙 (1−𝛾) +𝛾 , which proves

our claim.

For the opposite direction we make use of the fact that the pager-

ank vector can be written as p𝑇 = v𝑇Q, where v is the jump vector

and Q = 𝛾 [I − (1 − 𝛾)P]−1. From Section 3 we know that the 𝑖-th

row of matrix Q is equal to the personalized pagerank vector p𝑖 .
The product r = Qe𝑅 is a vector where r[𝑖] = PR𝑖 (𝑅). We have

assumed that the PR algorithm is universally personalized 𝜙-fair.

Therefore r[𝑖] = 𝜙 (1−𝛾) +𝛾 if 𝑖 is red, and r[𝑖] = 𝜙 (1−𝛾) if 𝑖 is blue.
That is, r = 𝜙 (1 − 𝛾)e + 𝛾e𝑅 . Using the fact that r = Qe𝑅 , and that

Qe = e, since Q is stochastic, we have the following derivations:

Qe𝑅 = 𝜙 (1 − 𝛾)Qe + 𝛾e𝑅
Q−1Qe𝑅 = 𝜙 (1 − 𝛾)Q−1Qe + 𝛾Q−1e𝑅

e𝑅 = 𝜙 (1 − 𝛾)e + 𝛾 1
𝛾
(I − (1 − 𝛾)P) e𝑅

e𝑅 = 𝜙 (1 − 𝛾)e + e𝑅 − (1 − 𝛾)Pe𝑅
Pe𝑅 = 𝜙e

The last equation means that the probability of transitioning from

any node in the graph to a red node is𝜙 , which proves our claim. □

The theorem holds also when we consider targeted fairness. We

can prove that an algorithm is universally personalized targeted

fair, if and only if it is locally fair. We omit the details of the proof

due to lack of space.

6 EXPERIMENTAL EVALUATION

Our goal is to evaluate Pagerank fairness in different kinds of net-

works, identify the conditions under which Pagerank unfairness

emerges and evaluate the effect of the proposed fair Pagerank al-

gorithms. Previous research has shown that homophily and size
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Figure 2: Red Pagerank with varying 𝑟 and 𝛼 , 𝜙-fairness cor-

responds to the identical line.

imbalance may lead to degree unfairness [2, 11, 26]. Is this the case

for Pagerank unfairness?

Specifically, we address the following three research questions:

RQ1: Under which conditions are the original Pagerank and per-

sonalized Pagerank algorithms fair?

RQ2:What is the utility loss incurred by the proposed fair Pagerank

algorithms in different networks?

RQ3:What are the qualitative characteristics of the proposed fair

Pagerank algorithms?

Datasets.We use both real and synthetic datasets. Our real datasets

are the following:

• books: A network of books about US politics where edges

between books represented co-purchasing
2
.

• blogs: A directed network of hyperlinks between weblogs

on US politic [1].

• dblp: An author collaboration network constructed from

DBLP including a subset of data mining and database con-

ferences.

• twitter: A political retweet graph from [24].

The characteristics of the real datasets are summarized in Table

1. To infer the gender in dblp, we used the python gender guesser

package
3
. Regarding ℎ𝑜𝑚𝑜𝑝ℎ𝑖𝑙𝑦, we measure for each group, the

percentage of the edges that are cross-edges that is they point to

nodes of the other group divided by the expected number of such

edges. We denote these quantities as cross𝑅 and cross𝐵 . Values sig-

nificantly smaller than 1 indicate that the corresponding group

exhibits homophily [10].

Synthetic networks are generated using the biased preferential

attachment model introduced in [2]. The graph evolves over time

as follows. Let 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) and 𝑑𝑡 (𝑣) denote the graph and the

degree of node 𝑣 at time 𝑡 , respectively. The process starts with

an arbitrary connected graph 𝐺0, with 𝑛0 𝑟 red and 𝑛0 (1 − 𝑟 ) blue
nodes. At time step 𝑡 + 1, 𝑡 > 0, a new node 𝑣 enters the graph. The

color of 𝑣 is red with probability 𝑟 and blue with probability 1 − 𝑟 .
Node 𝑣 chooses to connect with an existing node 𝑢 with probability

𝑑𝑡 (𝑢)∑
𝑤∈𝐺𝑡𝑑𝑡 (𝑤)

. If the color of the chosen node 𝑢 is the same with the

color of the new node 𝑣 , then an edge between them is inserted

with probability 𝛼 ; otherwise an edge is inserted with probability

2
http://www-personal.umich.edu/~mejn/netdata/

3
https://pypi.org/project/gender-guesser/

http://www-personal.umich.edu/~mejn/netdata/
https://pypi.org/project/gender-guesser/
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Table 1: Real dataset characteristics. 𝑟 , 𝑏: relative size, cross𝑅 , cross𝐵 : percentage of cross-edges, 𝑝𝑅 , 𝑝𝐵 : original pagerank as-

signed to the protected and unprotected group respectively.

Dataset #nodes #edges Protected attribute 𝑟 𝑏 cross𝑅 cross𝐵 𝑝𝑅 𝑝𝐵

books 92 748 political (left) 0.47 0.53 0.063 0.065 0.46 0.54

blogs 1,222 19,089 political (left) 0.48 0.52 0.284 0.036 0.33 0.67

dblp 13,015 79,972 gender (women) 0.17 0.83 0.96 0.86 0.16 0.84

twitter 18,470 61,157 political (left) 0.61 0.39 0.07 0.03 0.57 0.43

0.10 0.30 0.50 0.70 0.90
 Heterophily           Neutral            Homophily

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
d 

Pa
ge

ra
nk

Red
Blue

(a) 𝑟 = 0.1

0.10 0.30 0.50 0.70 0.90
 Heterophily           Neutral            Homophily

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
d 

Pa
ge

ra
nk

Red
Blue

(b) 𝑟 = 0.3

0.10 0.30 0.50 0.70 0.90
 Heterophily           Neutral            Homophily

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
d 

Pa
ge

ra
nk

Red
Blue

(c) 𝑟 = 0.5

Figure 3: Distribution of the red personalized pagerank of the red and blue nodes with varying 𝛼 in the symmetric case, 𝜙-

fairness achieved when the red pagerank is 𝑟 .
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Figure 4: Distribution of the red personalized pagerank of the red and blue nodes for varying 𝛼 in the asymmetric case, 𝜙-

fairness achieved when the red pagerank is 𝑟 .

1 − 𝛼 . If no edge is inserted, the process of selecting a neighbor for

node 𝑣 is repeated until an edge is created.

Parameter 𝑟 controls the group size imbalance. Parameter 𝛼

controls the level of homophily: 𝛼 < 0.5 corresponds to heterophily,

𝛼 = 0.5 to neutrality and 𝛼 > 0.5 to homophily. We consider: (a)

a symmetric case, where 𝛼 is the same for both groups and (b) an

asymmetric case, where we set 𝛼 = 0.5 for the blue group, making

it neutral, and vary 𝛼 for the red group.

The datasets and code are available in GitHub
4
.

4
https://github.com/SotirisTsioutsiouliklis/FairLaR

6.1 When is Pagerank Fair?

We study the conditions under which the original Pagerank and

personalized Pagerank algorithms are fair. We assume that the

algorithms are fair, if they respect demographic parity, that is, if each

group gets pagerank equal to its ratio in the overall population (𝜙

= 𝑟 ). For brevity, we shall call the (personalized) pagerank allocated

to red nodes red (personalized) pagerank and the (personalized)

pagerank allocated to blue nodes blue (personalized) pagerank .

First, we study homophily and size imbalance using synthetic

datasets. In Figure 2(a), we report the red pagerank for the symmet-

ric and in Figure 2(b) for the asymmetric case. Fairness corresponds

to the identity line (red pagerank = 𝑟 ). Values above the line indi-

cate unfairness towards the blue group, while values below the line

unfairness towards the red group.

https://github.com/SotirisTsioutsiouliklis/FairLaR
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Figure 5: Distribution of the red personalized pagerank of

the red and blue nodes for the real datasets, 𝜙-fairness when

the red pagerank is 𝑟 (books 𝑟 = 0.47, blogs 𝑟 = 0.48, dblp 𝑟 =

0.17, and twitter 𝑟 = 0.61).

We also plot the distribution of the red personalized pagerank in

Figures 3 and 4 for the symmetric and asymmetric case respectively.

To test whether the red personalized pagerank of a node depends

on its color, we plot two distributions, one for the red personalized

pagerank of the red nodes and one for the red personalized pagerank

of the blue nodes. Distributions are plotted in the form of violin

plots. Personalized pagerank fairness corresponds to the case in

which the two distributions overlap, with their mean on value 𝑟 .

Note that when a group is homophilic, it is expected that a large

part of its personalized pagerannk goes to nodes of its own color,

e.g., red homophilic nodes have large red personalized pageranks.

Symmetric case (Figures 2(a) and 3): When both groups are ho-

mophilic (𝛼 = 0.7, 0.9), the nodes tend to form two clusters, one with

red nodes and one with blue nodes sparsely connected to each other.

This leads to an almost fair pagerank (with a very slight unfairness

towards the minority group), but highly unfair personalized pager-

anks. On the contrary, when there is heterophily (𝛼 = 0.1, 0.3), there

are no clusters, nodes tend to connect with nodes of the opposite

color, and the larger group favors the smaller one. In this case, the

pagerank and personalized pageranks of both the blue and the red

nodes are all unfair towards the majority group. This is especially

evident when the imbalance in size is large (small 𝑟 ).

Asymmetric case (Figures 2(b) and 4): When the red nodes are

homophilic (𝛼 = 0.7, 0.9), the red group keeps the pagerank to

itself. As a result both pagerank and personalized pageranks are

unfair towards the blue nodes, especially for larger 𝑟 . When the

red nodes are heterophilic (𝛼 = 0.1, 0.3), the red group favors the

blue group, and as a result, both the pagerank and the personalized

pagerank are unfair towards the red nodes, especially for larger 𝑟 .

Thus, independently of the size 𝑟 , pagerank is unfair to the blue (the

neutral) group in case of homophily, and unfair to the red group in

the case of heterophily.

Universal fairness: The only case when both pagerank and per-

sonalized pageranks are all fair is in a neutral network (𝛼 = 0.5)

with same-size groups (𝑟 = 0.5) (middle violin plots in Figures 3(c)

and 4(c)).

Real datasets: For the real datasets, we report the red pagerank in

Table 1 (𝑝𝑅 value) and plot the distributions of the red personalized

pagerank of the blue and red nodes in Figure 5. For books, there is

no size imbalance and there is strong symmetric homophily leading

to fair pagerank and highly unfair personalized pageranks. For

blogs, there is no size imbalance, but the blue group is slightly more

homophilic, which leads both to unfairness in pagerank for the red

group, and unfairness of the personalized pagerank of the blue

nodes towards the red ones. For dblp, we have large size imbalance

with the red group being the minority but almost neutral behavior

in terms of homophily, leading to an almost fair pagepank, and the

majority of personalized pageranks being fair. Finally, for twitter,

the red group is larger than the blue group but less homophilic

which leads to a slight unfairness towards the red group for both

pagerank and personalized pageranks.

6.2 What is the Utility Loss for Fairness?

We now look into the utility loss for achieving fairness. We can

view utility loss for each network as a measure of the cost we have

to pay to achieve 𝜙-fairness for this network. First, to assess the

utility loss of our algorithms in absolute terms we compute a lower

bound for the utility loss.

Lower Bound.We compute a lower bound on the utility loss, by

constructing the probability vector w that is 𝜙-fair, and it has the

minimum utility loss compared to the original pagerank vector p𝑂 .

Note that vector w is not necessarily attainable by any Pagerank

algorithm in PR.
To compute w, we start with p𝑂 and we redistribute the prob-

ability between the two groups to make it fair. Let p𝑂 (𝑅) be the
probability assigned to the red group by p. Without loss of gen-

erality, assume that p𝑂 (𝑅) < 𝜙 , and let Δ = 𝜙 − p𝑂 (𝑅). To make

the vector fair, we need to remove Δ probability mass from the

nodes in 𝐵, and redistribute it to the nodes in 𝑅. It is easy to show

that to minimize the loss, the optimal redistribution will remove

uniformly Δ/|𝐵 | probability from all nodes in 𝐵, and add uniformly

Δ/|𝑅 | to all nodes in 𝑅. This follows from the fact that among all

distribution vectors the one with the smallest length is the uniform

one. However, this process does not guarantee that the resulting

vector will not have negative entries, since some blue nodes may

have probability less than Δ/|𝐵 |. Let 𝛽 be the smallest non-zero

such probability of any blue node. Our algorithm transfers 𝛽 proba-

bility from all the non-zero blue nodes to the red nodes, and then

recursively applies the same procedure for the residual amount of

probability that has not been transferred. It is not hard to show that

this process will produce a fair vector with the minimum utility

loss with respect to p𝑂 .
Figures 6 and 7 report the utility loss for selected synthetic net-

works and Figure 8 for different values of 𝜙 for the real datasets.

𝐿𝐵 is the lower bound on utility loss.

Effect of 𝜙 : In all cases, loss increases as the requested 𝜙 deviates

from the red pagerank originally assigned to the red group (Figures

7 and 8).

FSPR: In some cases FSPR incurs high utility loss and, occasionally,

it is even unable to find an appropriate solution. FSPR achieves fair-

ness by changing the jump vector of the Pagerank algorithm. The

overall pagerank vector is a linear combination of the personalized

pagerank vectors, with the jump vector providing the coefficients

of this linear combination. FSPR increases the jump probability for
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(d) asymmetric, 𝑟 = 0.5

Figure 6: Utility loss for synthetic networks, 𝜙 = 0.5.
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Figure 7: Utility loss for the synthetic datasets, 𝛼 = 0.5.

the vectors that favor the group it wants to promote and takes away

probability from the vectors that favor the other group. However,

when there are few, or no appropriate such vectors, FSPR is forced

to make extreme choices (assign a lot of probability to a few vectors)

thus incurring high utility loss, or it is unable to find any solution.

There are several such examples in our datasets. For the dblp

dataset (Figure 8(c)), for small values of 𝜙 (𝜙 ≤ 0.3), the utility

loss of FSPR is close to the optimal, but for 𝜙 ≥ 0.4, it skyrockets.

Looking at Figure 5, we see that there are very few personalized

pagerank vectors with red pagerank larger than 0.4. As a result,

for 𝜙 ≥ 0.4, FSPR is forced to allocate all the probability of the

jump vector to these nodes, leading to high utility loss. It is also

interesting to observe the effect of homophily, or lack of, on the

utility loss of FSPR. In Figure 6(a) and (b), utility loss peaks when the

network is neutral (𝛼 = 0.5). In this case, there is no personalized

pagerank vector that strongly favors one group over the other.

LFPR: Overall, for the locally fair family of algorithms, the utility

loss function is smoother, avoiding high peaks. The locally fair algo-

rithms are directly affected by homophily, since this determines the

composition of the neighborhoods of the nodes. As we deviate from

neutrality, the loss increases (Figure 6). This holds especially for the

LFPR𝑁 algorithm. This can be seen very clearly in books (Figure

8(a)), where FSPR almost achieves the lower bound, while LFPR𝑁

incurs high utility loss because of books being very homophilic.

The utility loss of LFPR𝑈 and LFPR𝑃 follows in general the same

trend as LFPR𝑁 . Finally, LFPR𝑂 redistributes any residual Pagerank

so that the utility loss is optimized and in many cases its utility loss

is close to the lower bound (𝐿𝐵).

Summary: FSPR works well when there are enough unfair nodes

(i.e., nodes with unfair personalized pageranks), as it can distribute

the jump probability to them to achieve fairness. On the contrary,

locally fair algorithms have high utility loss when there are many

unfair nodes. LFPR𝑁 is the most sensitive to homophily. The utility

loss of LFPR𝑁 can be seen as a measure of local unfairness. Overall,

the locally fair algorithms are more stable than FSPR. LFPR𝑂 works

very well in terms of utility loss and in many cases it achieves utility

close to the lower bound.

6.3 Qualitative Evaluation

In this section, we provide some qualitative experiments, to better

understand the properties of the fair algorithms.

Visualization. In Figures 9 and 10, we visualize the results of the

algorithms for the books and the dblp dataset respectively, for 𝜙

= 0.5. Red nodes are colored red, and blue nodes are colored blue.

Their size depends on the value of the quantity we visualize. We

visualize the pagerank values for the original Pagerank, FSPR and

LFPR𝑁 algorithms, and the jump vector probabilities for FSPR.

For books, where the original red pagerank is close to 𝜙 , FSPR

is very similar to the original Pagerank algorithm. books is ho-

mophilic and the jump vector assigns rather uniform weights to

almost all nodes. On the other hand, LFPR𝑁 promotes heavily nodes

connecting the two opposite groups, i.e., nodes that are minorities

in their neighborhoods. We observe a different result in dblp, where

𝜙 is much larger than the original red pagerank. LFPR𝑁 distributes

weights broadly in the red community, while FSPR is much more

aggressive. This is especially evident in the jump vector which

promotes a few nodes in the periphery.

Table 2: Top-10 authors with 𝜙 = 0.3; the number in paren-

thesis is the position of the author in the original Pagerank

(OPR) (female authors in bold).

OPR FSPR LFPR𝑁

C. Faloutsos C. Faloutsos (1) C. Faloutsos (1)

G. Weikum G. Weikum (2) G. Weikum (2)

P. S. Yu P. S. Yu (3) J. Widom (38)

M. Stonebraker M. Stonebraker (4) M. Stonebraker (4)

M. J. Franklin M. J. Franklin (5) P. S. Yu (3)

H. Garcia-Molina H. Garcia-Molina (6) S. T. Dumais (28)

D. Kossmann D. Kossmann (7) M. Lalmas (27)

W. Lehner E. A. Rundensteiner (22) P. Serdyukov (17)

M. J. Carey R. Agrawal (11) E. Bertino (25)

M. de Rijke W. Lehner (8) E. A. Rundensteiner (22)

Anecdotal Examples.We will use the dblp dataset for a qualita-

tive evaluation of the results of the algorithms. Recall that for this

dataset, women are the minority with 𝑟 = 0.17, and the original red

pagerank is equal to 0.16.

To achieve a fairer representation of women, we apply the LFPR𝑁

and FSPR algorithms with 𝜙 = 0.3. In Table 2, we present the first

10 authors for each algorithm. In the original Pagerank algorithm
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Figure 8: Utility loss for the real networks, (original red pagerank, books: 0.48, blogs: 0.33, dblp: 0.16, and twitter: 0.57).
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Figure 9: Visualization of the book dataset.

OPR, there is no female author in the top-10 (the first one appears

in position 22). FSPR achieves fairness but also minimizes utility

loss, so the result is fair but also close to that of OPR. LFPR𝑁 asks

that all authors have 𝜙-fair inter-gender collaborations resulting in

a large number of female authors appearing in the top-10 positions.

Table 3: Top-3 female authors by conference, 𝜙 = 0.3.

SIGIR SIGMOD

FSPR

Mounia Lalmas Elke A. Rundensteiner

Susan T. Dumais Elisa Bertino

Juliana Freire Tova Milo

LFPR𝑁

Susan T. Dumais Jennifer Widom

Mounia Lalmas Elke A. Rundensteiner

Emine Yilmaz Fatma Ozcan

We also use dblp to study the targeted fair Pagerank algorithms.

In this case, we want to enforce fair behavior towards authors in

specific conferences. We consider two such conferences, SIGIR and

SIGMOD, and select 𝑆 to include authors of each one of them. In

Table 3, we show the top-3 women authors for each conference ac-

cording to our algorithms. We observe that the algorithms produce

(a) Original Pagerank (b) LFPR𝑁

(c) FSPR (d) Jump vector for FSPR

Figure 10: Visualization of the dblp dataset.

different results depending on the conference, each time promoting

women that are authorities in their respective fields, such as, Suzan

Dumais when 𝑆 is SIGIR, and Jennifer Widom when 𝑆 is SIGMOD.

7 RELATEDWORK

Algorithmic fairness. Recently, there has been increasing inter-

est in algorithmic fairness, especially in the context of machine

learning. Fairness is regarded as the lack of discrimination on the

basis of some protective attribute. Various definition of fairness

having proposed especially for classification [9, 13, 19, 21]. We

use a group-fairness definition, based on parity. Approaches to

handing fairness can be classified as pre-processing, that modify

the input data, in-processing, that modify the algorithm and post-

processing ones, that modify the output. We are mostly interested

in in-processing techniques.

There is also prior work on fairness in ranking [4, 5, 27, 28]. All

of these works consider ranking as an ordered list of items, and

use different rules for defining and enforcing fairness that consider

different prefixes of the ranking [27, 28], pair-wise orderings [4],

or exposure and presentation bias [5, 25].

Our goal in this paper is not to propose a new definition of

ranking fairness, but rather to initiate a study of fairness in link
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analysis. A distinguishing aspect of our approach is that we take

into account the actual Pagerank weights of the nodes, not just

their ranking. Furthermore, our focus in this paper, is to design

in-processing algorithms that incorporate fairness in the inner

working of the Pagerank algorithm. We present a post-processing

approach as a means to estimate a lower bound on the utility loss.

None of the previous approaches considers ranking in networks,

so the proposed approaches are novel.

Fairness in networks. There has been some recent work on net-

work fairness in the context of graph embeddings [6, 18, 23]. The

work in [6] follows an in-processing approach that extends the

learning function with regulatory fairness enforcing terms, while

the work in [18] follows a post-processing approach so as to pro-

mote link recommendations to nodes belonging to specific groups.

Both works are not related to our approach. The work in [23] ex-

tends the node2vec graph embedding method by modifying the

random walks used in node2vec with fair walks, where nodes are

partitioned into groups and each group is given the same probabil-

ity of being selected when a node makes a transition. The random

walk introduced in [23] has some similarity with the random walk

interpretation of LFPR𝑁 . It would be interesting to see, whether

our extended residual-based algorithms could be utilized also in

the context of graph embeddings, besides its use in link analysis.

There are also previous studies on the effect of homophily, pref-

erential attachment and imbalances in group sizes. It was shown

that the combination of these three factors leads to uneven de-

gree distributions between groups [2]. Recent work shows that

this phenomenon is exaggerated by many link recommendation

algorithms [26]. Evidence of inequality between degree distribution

of minorities and majorities was also found in many real networks

[17]. Our work extends this line of research by looking at Pagerank

values instead of degrees. Along this lines, recent work studies in

depth how homophily and size imbalance can affect the visibility

that different groups get in link recommendations, i.e, how often

nodes in each group get recommended [11]. Very recent work also

looks at graph mining algorithms in general from the perspective

of individual fairness, where the goal is to produce a similar output

for similar nodes [16].

Finally, there is previous work on diversity in network ranking.

The goal is to find important nodes that also maximally cover

the nodes in the network [20, 29]. Our problem is fundamentally

different, since we look for scoring functions that follow a parity

constraint.

8 CONCLUSIONS

In this paper, we initiate a study of fairness for Pagerank. We pro-

vide definitions of fairness, and we propose two approaches for

achieving fairness: one that modifies the jump vector, and one

that imposes a fair behavior per node. We prove that the latter is

equivalent to a stronger notion of fairness that also guarantees

personalized Pagerank fairness. We also consider the problem of

attaining fairness while minimizing the utility loss of Pagerank. Our

experiments demonstrate the behavior of our different algorithms.

There are many direction for future work. First, we would like

to study the role of 𝛾 , i.e., the jump probability. Then, it would be

interesting to explore other notions of Pagerank fairness, besides

𝜙-fairness, for instance ones based on rank-aware fairness [22].

Furthermore, we plan to explore further applications of the theory

behind our fair Pagerank algorithms to derive novel notions of fair

random walks.
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