
Assessing Data Mining Results via Swap Randomization

Aristides Gionis Heikki Mannila Taneli Mielikäinen Panayiotis Tsaparas

HIIT Basic Research Unit
University of Helsinki and Helsinki University of Technology

ABSTRACT
The problem of assessing the significance of data mining re-
sults on high-dimensional 0–1 data sets has been studied
extensively in the literature. For problems such as mining
frequent sets and finding correlations, significance testing
can be done by, e.g., chi-square tests, or many other meth-
ods. However, the results of such tests depend only on the
specific attributes and not on the dataset as a whole. More-
over, the tests are more difficult to apply to sets of patterns
or other complex results of data mining. In this paper, we
consider a simple randomization technique that deals with
this shortcoming. The approach consists of producing ran-
dom datasets that have the same row and column margins
with the given dataset, computing the results of interest on
the randomized instances, and comparing them against the
results on the actual data. This randomization technique
can be used to assess the results of many different types
of data mining algorithms, such as frequent sets, clustering,
and rankings. To generate random datasets with given mar-
gins, we use variations of a Markov chain approach, which
is based on a simple swap operation. We give theoretical
results on the efficiency of different randomization methods,
and apply the swap randomization method to several well-
known datasets. Our results indicate that for some datasets
the structure discovered by the data mining algorithms is
a random artifact, while for other datasets the discovered
structure conveys meaningful information.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms, Management, Experimentation

Keywords
Significance testing, randomization tests, 0–1 data, swaps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

1

1...

...

..
.

..
.

..
.

..
.

..
.

..
.

0

0

1 0

10...

...

..
.

..
.

..
.

..
.

..
.

..
.

u

v

u

v

A B A B

Figure 1: A swap in a 0-1 matrix.

1. INTRODUCTION
One of the most important considerations in data min-

ing is deciding whether the discovered patterns or models
are significant. While traditional statistics has long been
considering the issue of significance testing, in data mining
people have been less interested in the theme.

The framework of hypothesis testing in statistical data
analysis is very well developed for assessing the significance
of individual patterns or models. The methods are typi-
cally based either on analytical expressions or randomization
tests. However, often they are not well-suited for assessing
complex results of data mining, such as clusterings or pat-
tern sets.

In this paper we consider the use of swap randomiza-

tion [5] for assessing data mining results on 0–1 datasets.
The basic idea of swap randomization is as follows. Given
the dataset D, create random datasets with the same row
and column margins D, run the data mining algorithm on
those, and see if the results are significantly different on the
real data than on the randomized datasets. If not, then
we presume that the results are really due to the row and
column margins, and not due to interesting relations in the
data. The datasets with the same margins as the original
one are generated by swaps, as shown in Figure 1: take two
rows u and v and two columns A and B of the data table
with u(A) = v(B) = 1 and u(B) = v(A) = 0, and change
the rows so that u(B) = v(A) = 1 and u(A) = v(B) = 0.
This operation maintains the row and column sums of the
dataset, and all datasets with the same row and column
sums can be reached through a series of swaps [5].

Thus swap randomization is an extension of traditional
randomization methods. For instance, a chi-square test for
assessing the significance of frequent itemsets is an analyti-
cal technique based on studying the distribution of datasets
with given column margins, but the row margins are allowed
to vary. Similarly, methods that randomize the target value
in prediction tasks keep the column margins fixed, but they
do not impose any constraint on the row margins. A moti-

vating example of why it is important to maintain also the
row margins is given in the next section.

Swap randomization has been considered in various appli-
cations; see, e.g., the survey paper by Cobb and Chen [5].
The problem of creating 0–1 datasets with given row and col-
umn margins has theoretical interest of its own; see, e.g., [1,
7]. Generating contingency tables with fixed margins is a
problem that has been studied in statistics (see, e.g., [4]).
Randomization methods in general form a large research
area [8].

Our contributions in this paper are twofold: (i) we de-
scribe the algorithmic aspects of swap randomization when
applied to large data sets, and (ii) we show how this method
can be applied in the data mining setting. In more detail,
we give a description of several different ways of generating
random matrices with given margins and discuss their per-
formance. Swap randomizations can be performed efficiently
and can be applied to reasonably large datasets, as our ex-
periments show. We give extensive empirical results showing
that some well-known datasets appear to have very little in-
teresting patterns or cluster centers, while other datasets
have lots of structure.

The rest of this paper is organized as follows. In Section 2
we present an overview of the swap randomization method,
and in Section 3 we discuss the applications of the approach
to specific data mining tasks. Section 4 describes how the
random matrices with given margins are generated and gives
results on the performance of the algorithms. In Section 5
we describe the experimental results. Section 6 discusses
related work, and Section 7 gives some concluding remarks.

2. OVERVIEW OF THE APPROACH
In this section we give an overview of the method, explain

the intuition behind it, describe the algorithmic challenges
it poses, and show how it can be applied to testing signifi-
cance of results obtained by different kinds of data mining
algorithms.

2.1 The randomization approach
Let D denote a 0–1 matrix with m rows and n columns

that represents our dataset. Assume that we are interested
in assessing the result obtained by a particular data mining
algorithm A on input D. Let A(D) denote the result of the
algorithm. For simplicity, assume that it can be described
by a single number. For instance, for frequent set mining
algorithms, it can be the number of sets whose frequency ex-
ceeds a certain support threshold. Similarly, for a clustering
algorithm, it can be the error of the clustering solution.

In our randomization approach we generate k datasets
D1, . . . , Dk, such that each Dt, t = 1, . . . , k, is an m × n
0–1 matrix that has the same row and column sums as the
original matrix D; each dataset Dt is assumed to be a uni-
form and independent sample from the space of all m × n
0–1 matrices with the given margins. Then the algorithm
A is executed on each sampled dataset Dt, yielding results
Xt = A(Dt) for t = 1, . . . , k.

Now, the significance of the result A(D) of the algorithm
A on the data D is tested by comparing it against the
set X = {X1, . . . , Xk} of the results of A on the sampled
datasets. If the result of the algorithm on the original data
does not deviate significantly from the values in X, then the
result A(D) is not surprising and its significance is small.

Assuming that the sampled datasets are independent and

that k is large enough so that X gives an approximation
of the real distribution, then the empirical p-value of X0 =
A(D) is

1

k + 1
(min{|{t | Xt < X0}|, |{t | Xt > X0}|} + 1) ,

i.e., the fraction of the random datasets in which we see a
value more extreme than the value in the real data.

Another measure for quantifying the significance of the
value X0 is captured by the Z score

Z =
|X0 − bX|

bσ ,

where bX = E[X1, . . . , Xk] is the empirical mean of the set X
and bσ2 = Var[X1, . . . , Xk] is the empirical variance. Large
values of Z indicate that X0 deviates a lot from the mean
of the results obtained on the random datasets.

2.2 Why maintain row and column margins?
As mentioned in the introduction, randomization is widely

used as a significance testing method. For example, in con-
trol studies in medical genetics it is customary to estimate
the interestingness of discovered patterns by a permutation

test. In such a test the variable describing whether a patient
belongs to the case or the control group is permuted ran-
domly, and the original data analysis is repeated. The find-
ings on the real data are accepted only if they are stronger
than on, say, 99% of the randomized datasets.

However, in many data mining tasks the goal is not to
predict a single variable. For example, pattern discovery
and clustering look at the structure of the whole data set.
One could of course think of randomizing each column of
the dataset independently, but this method ignores some of
the structure of the dataset.

As an example, consider the datasets D1 and D2 in Fig-
ure 2. In both datasets variables X and Y are positively
correlated, and the itemset {X, Y } occurs more often than
the independence assumption would imply. As the columns
of X and Y are the same for both datasets, any measure
of the importance of the association between X and Y that
takes only the columns of X and Y into account will give the
same results for D1 and D2. However, in dataset D1 X and
Y co-occur in all types of rows, whereas in dataset D2 the
co-occurrence of X and Y happens exclusively in very dense
rows. Thus, in D2 the high frequency of the pair {X, Y } is
not due to some specific property that binds X with Y , but
rather to the fact that X and Y tend to occur on rows that
have lots of 1’s.

Indeed, consider the dataset E1 containing 10 copies of
D1, and E2 containing 10 copies of D2. The columns for X
and Y are still same in both datasets, and in both cases the
frequency of the pair is 60. When we generate 1000 random
datasets with the margins of E1 the maximum and average
frequencies of {X, Y } were 59 and 52.4, and the standard
deviation 2.5; thus, all values were smaller than 60, yield-
ing an empirical p-value of 0.001. For E2 the corresponding
numbers are 69, 63.2, and 2.0; and in only 70 cases the fre-
quency was 60 or less, giving an empirical p-value of 0.07.
Thus, we can conclude that in E1 the pair {X, Y } is strongly
overrepresented, while in E2 it occurs slightly less often than
one would expect. This indicates that the context of the pair
of variables can have a strong effect on the significance of
the frequency of a pair.

X Y
1 1 0 0 1 0 0 1 1
1 1 1 1 0 0 1 0 0
1 1 0 0 0 1 0 1 1
1 1 0 1 1 0 1 0 1
1 1 0 1 0 0 0 0 1
1 1 1 0 1 0 0 1 0
1 0 0 0 0 1 1 0 0
1 0 0 1 1 0 0 0 1
0 1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1
0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 0

Dataset D1

X Y
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 0 0
1 0 0 1 1 0 0 0 1
0 1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0 1
0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 0

Dataset D2

Figure 2: Examples of two 0–1 datasets, D1 and D2.
In both cases we are interested in the correlation
between columns (attributes) X and Y . The signifi-
cance of the correlation result might depend on the
overall context of the dataset

The above example demonstrates the basic concept under-
lying swap randomization: it takes the bias of row and col-
umn counts into account by randomizing over datasets with
the same row and column margins as the original dataset.
As a result the notion of interestingness we consider is con-

ditional to the knowledge of the marginal sums. We are
interested in assessing information in the dataset that is not
conveyed by the marginal sums of the data table.

As an example, consider a dataset whose row sums satisfy
a power law. This finding can be interesting, but it does not
offer any additional information about the structure of the
dataset. Using swap randomization one can assess whether a
quantity of interest is not immediately implied by the power-
law marginals, and thus common to all datasets with the
same margin distributions.

2.3 Generating matrices with given margins
The technical challenge in the above approach is to gener-

ate random 0–1 datasets with given row and column sums.
This problem has been studied extensively in statistics [4,
5], theoretical computer science [1, 7] and in application ar-
eas [11, 14].

In this paper we use a Markov chain approach to the prob-
lem of sampling. Starting from the original dataset, we make
a small random local move, which interchanges a pair of 1’s
with a pair of 0’s and does not change the row and column
sums. Such a local move is called a swap, and a sequence of
swaps is performed until the data mixes sufficiently enough
and a random sample is obtained.

This Markov chain thus consists of datasets with the given
margins; two datasets are adjacent, if there is a swap that
changes one to the other. The Markov chain is reversible,
i.e., a swap can be undone by a single (reverse) swap. How-
ever, the chain is not regular, i.e., some datasets (states)
have more neighbors than others. This implies that the sta-
tionary distribution of the chain is not the uniform distribu-
tion. Therefore, a straightforward application of swapping
does not guarantee uniform sampling.

The problem of non-uniformity can be fixed in at least
two ways: (i) by using the Metropolis-Hastings algorithm [9,

13], which is a well-studied method for converting a Markov
chain with stationary distribution π to another one with
stationary distribution π′, and (ii) by adding self-loops in
order to guarantee that all states have the same degree.

For applying the Metropolis-Hastings algorithm, one needs
to compute the degree of any given state of the chain, that is,
the number of all valid swaps for a given 0–1 matrix. We give
a simple formula for computing the degree at each state, and
we show how to maintain this quantity incrementally. The
complexity of incremental maintenance of the state degree
is O(min{m, n}) for an m×n matrix, making the algorithm
somehow inefficient. On the other hand, adding self-loops
does not require computing any additional expensive infor-
mation; so while more steps are needed for convergence, the
time complexity of each step is, in expectation, constant,
making it a very efficient algorithm in practice.

3. USING THE FRAMEWORK
In this section we describe how the swap randomization

framework can be applied to different data mining tasks,
such as finding frequent sets and correlations, clustering,
and spectral analysis of datasets. Our methodology allows
us to investigate the significance of the patterns that exist
in a given dataset, at different levels of granularity.

First, we are able to characterize the significance of global
aspects of the dataset. If the number of frequent sets, or the
number of highly correlated pairs contained in the dataset
is not significant with respect to that found in a randomly
rearranged dataset, then we can conclude that the dataset
does not contain any interesting global structure of frequent
sets, or of highly significant correlations.

Additionally, we can also look at individual itemsets. In
this case we are interested in identifying itemsets whose fre-
quency is smaller or larger in the sampled datasets when
compared with the original dataset. If the frequency of
an itemset drops in the sampled dataset, it is implied that
the frequency can not be explained by the margins of the
dataset. If the frequency increases, a possible explanation
is that the items in the itemset are anti-correlated in the
original dataset.

The above observations apply also when mining simple
association rules. Recall that the accuracy (confidence) of

a rule (X ⇒ B) is defined to be f(XB)
f(X)

, where f(XB) and

f(X) are the frequencies of X ∪ {B} and {X}, respectively.
Assume now that X is a singleton set. Since f(X) re-
mains fixed, the confidence of the rule is proportional to
the frequency f(XB). Therefore, the significance of the
rule (X ⇒ B) is determined by the significance of the pair
{X, B}. Due to this observation and space constraints we
omit further discussion on association rules.

Swap randomization can be applied to testing the signifi-
cance of clustering results. Given a clustering algorithm like
k-means, and a target number of clusters k, simply compare
the clustering error in the original dataset with the cluster-
ing error in the sampled datasets. If the difference is large,
then one can deduce that the dataset has meaningful cluster
structure. This simple approach turns out to yield very clear
results on synthetic datasets with known cluster structure.

A different notion of global structure is captured in the
singular values and vectors of the data matrix. The singular
vectors capture the linear trends in the dataset. The corre-
sponding singular values capture the strength of the linear

l

ji

k

j

l

i

k

Figure 3: A swap in the graph representation GD.

trend, that is, the tendency of the rows or columns to align
with the corresponding singular vectors.

In randomly generated data, the strongest linear trends
should be determined by the degree structure of the dataset.
This is usually the first singular value. The remaining dataset
has no structure; thus we expect the remaining singular val-
ues to be small. If the original data contains some linear
structure, then the top singular values (especially the non-
principal ones) should be higher than those of random sets
with the same margins.

4. SAMPLING DATASETS WITH GIVEN
ROW AND COLUMN MARGINS

4.1 Basics
We now describe the process of sampling a matrix from

the space of all m× n 0–1 matrices with given margins.
Let D be a 0–1 dataset with m rows and n columns. We

denote by ri the sum of the i-th row of D, i = 1, . . . , m, and
by cj the sum of the j-th column, j = 1, . . . , n. An equiv-
alent way to represent the input matrix D is as a bipartite
graph GD = (R, C, E) with |R| = m and |C| = n. Vertex
i ∈ R corresponds to the i-th row of D, vertex j ∈ C corre-
sponds to the j-th column of D, and (i, j) ∈ E if and only
if D(i, j) = 1 for all i and j. The degrees of the vertices of
the graph are ri for i ∈ R, and cj for j ∈ C.

The main idea is to start from the graph GD correspond-
ing to the original data set and perform a local swap that
leaves the margins unchanged. When many such swaps have
been performed the resulting graph can be considered as a
random dataset drawn randomly from the stationary distri-
bution.

In more detail, a local swap can be defined by four vertices,
i, j, k, and l of GD, such that i, k ∈ R and j, l ∈ C, and
(i, j) ∈ E, (k, l) ∈ E, (i, l) 6∈ E, (k, j) 6∈ E. A new dataset
is then formed by updating the edges as follows.

E′ ← E \ {(i, j), (k, l)} ∪ {(i, l), (k, j)},

that is, we remove the current edges {(i, j), (k, l)} and we
add new edges {(i, l), (k, j)}. Visually, a local swap is de-
picted in Figure 3 for the graph representation and in Fig-
ure 1 for the matrix representation.

Formally, a local swap is a step on the a Markov chain
M = {S,T }, where the state space S is the set of all graphs
with the given degree sequences, and T is the set of transi-
tions defined by swaps. In other words, the set T contains
all pairs of graphs (G, G′) such that it is possible to obtain
G′ from G (or vice versa) by performing a local swap.

4.2 Naı̈ve nonuniform approach
Algorithm 1 shows a straightforward implementation of

this Markov approach.
Finding the next transition (G, G′) ∈ T from graph G,

that is, performing line 3 of Algorithm Naı̈ve, is not a com-
pletely straightforward task. The simplest way is to pick a
pair of edges in G, reject if the edges are not swappable,

Algorithm 1 Naı̈ve

Input: Graph GD, number of random walk steps kn

Ouput: Graph G with the same degree sequences as GD

1: G← GD

2: while kn > 0 do
3: G′ ← Find adjacent(G)
4: G← G′

5: kn ← kn − 1
6: end while
7: Return G

and repeat until finding a pair of swappable edges. This
is shown in Algorithm 2. Alternatively, one could store all
swappable pairs in a structure, and select one uniformly at
random. The selection process becomes faster, but there is
additional cost of updating the data structure at each step.

Algorithm 2 Find adjacent

Input: Graph G
Ouput: Graph G′ that differs from G in exactly one swap

(i.e., (G, G′) ∈ T)
repeat

Select edges (i, j), (k, l) ∈ E(G) uniformly at random
until (i, l) 6∈ E(G) and (k, j) 6∈ E(G)
E(G′)← E(G) \ {(i, j), (k, l)} ∪ {(i, l), (k, j)}

Given graph G, the Algorithm Find adjacent generates a
graph G′ uniformly at random among all graphs G′ such that
(G, G′) ∈ T . The reason is that each such graph G′ can be
set at an one-to-one correspondence with a pair of swappable
edges—the non-swappable edges can be ignored. Algorithm
Find adjacent clearly samples uniformly at random from
the set of swappable pairs: each swappable pair is sampled
with probability proportional to 2/|E|2.

Now, in order for the Markov chain to sample graphs uni-
formly at random from the set S, the following conditions
have to hold:

1. The state space S is connected under the transitions
of M.

2. M has uniform stationary distribution.

3. Starting from GD a sufficiently large number of local
swaps have to be performed until the chain mixes. We
would like to know how many such swaps should be
performed, i.e., the mixing time of the chain.

Connectedness: The Markov chain is connected. One
can go by any state of the chain to any other state via local
swaps [5].

Uniformity: First notice that the Markov chainM is re-
versible. Now, for each graph (state) G ∈ S we define d(G),
the degree of the Markov chain M at G, to be the num-
ber of different graphs (states) G′ such that (G, G′) ∈ T .
From the theory of the Markov chains, it is well known that
the stationary distribution of a reversible chain is propor-
tional to the degree at each state in the underlying transition
graph. Therefore, in order to obtain a uniform distribution,
all states of the Markov chain must have the same degree.
A simple construction shows that this is not true in general
for the Markov chainM. Therefore, the Naı̈ve Algorithm 1
does not converge to the uniform distribution.

Mixing time: The mixing time of the Markov chain we
defined above has been the object of theoretical study [5],
but without any conclusive results. It is estimated, that
running the chain for a number of steps in the order of the
number of 1’s in the matrix is sufficient for convergence. We
do not deal with the theoretical aspects of converge, but we
study it empirically in the experimental section.

4.3 The self-loop method
The straightforward application of the Markov Chain ap-

proach does not produce uniform sampling. There are two
ways to fix this bias and obtain uniform distribution. The
first way is by adding self-loops, as it is shown in Algo-
rithm 3. Algorithm Self loop works as Naı̈ve does. It sam-
ples pairs of edges until it finds a swappable pair. The differ-
ence with Naı̈ve, however, is that in Self loop all steps are
counted and they decrease the counter, thus, non-swappable
pairs of edges are counted as self-loops. The reason that
Self loop leads to uniform distribution is that when self-
loops are counted the degree of each G ∈ S becomes fixed
and equal to |E|2. Each pair of edges, swappable or non-
swappable, contributes one to the degree of all states.

Algorithm 3 Self loop

Input: Graph GD, number of random walk steps ks

Ouput: Graph G with the same degree sequences as GD

1: G← GD

2: while ks > 0 do
3: Select edges (i, j), (k, l) ∈ E(G)
4: if ((i, l) 6∈ E(G) and (k, j) 6∈ E(G)) then
5: E(G′)← E(G) \ {(i, j), (k, l)} ∪ {(i, l), (k, j)}
6: end if
7: ks ← ks − 1
8: end while
9: Return G

4.4 The Metropolis-Hastings approach
The second way of sampling from the uniform distribu-

tion is by using the Metropolis-Hastings algorithm [9, 13],
which is a standard method of converting a Markov chain
with stationary distribution π to another Markov chain with
stationary distribution π′. In our case π(G) ∼ d(G) and we
want π′(G) ∼ 1, so the Metropolis algorithm becomes as
shown in Algorithm 4. For some swap that takes the algo-
rithm from state (graph) G to state G′ if the state G′ has
higher degree then the algorithm performs the swap with

probability d(G)
d(G′)

. The algorithm assumes knowledge of the

degree d(G) for each graph G ∈ S. We will discuss soon how
d(G) can be computed.

Algorithm 4 Metropolis-Hastings

Input: Graph GD, number of random walk steps km

Ouput: Graph G with the same degree sequences as GD

1: G← GD

2: while km > 0 do
3: G′ ← Find adjacent(G)

4: G← G′, with probability min{1, d(G)
d(G′)

}

5: km ← km − 1
6: end while
7: Return G

4.5 Running time
We now analyze the running time of the algorithms. We

will prove some results on the complexity of the approaches,
including a result characterizing the degree of a state in the
Markov chain of the datasets. The conclusion in this section
is that the Self loop algorithm is always more efficient than
the Metropolis-Hastings algorithm.

First, we assume that we can sample edges in constant
time and we can test if a pair of edges is swappable or not
in constant time. The former task can be performed by
keeping all edges in an array, while the latter task can be
performed by keeping in memory the data D in the matrix
form, or by storing all edges in a hash table.

The running time of Find adjacent is a random variable
and it depends on the number of swappable edges for each
graph (state) G. Recall that the number of swappable pairs
of graph G is d(G). Therefore, the probability of finding a

swappable pair of edges is precisely d(G)

|E|2
, thus the expected

time staying in G is |E|2

d(G)
. Without counting the self loops,

the probability of visiting graph G is d(G)
2|T |

, which is precisely

the stationary distribution of Algorithm Naı̈ve at G. Thus,
the expected running time of Algorithm Find adjacent is

TF =
X

G∈S

|E|2

d(G)
·
d(G)

2|T |
=
|E|2

2
·
|S|

|T |
. (1)

Notice that |T |/|S| = O(|E|2), since the degree of each
graph G in S is at most |E|2. One the other hand, the
following Lemma is immediate.

Lemma 1. For bipartite graphs G = (U, V, E) in which

the maximum degree is o(|E|), we have |T |/|S| = Ω(|E|2).

Proof. Notice that the random walk leaves the degrees
at each vertex unaffected in all states. Given any state
(graph G) in S, consider an edge (i, j) ∈ E(G). Any other
edge (k, l) ∈ E(G) can be swapped with (i, j) unless either
l ∈ Γ(i) or k ∈ Γ(j) (or both), where Γ(i) are the neighbors
of i in the bipartite graph. Thus, the number of edges that
should be excluded from swapping with (i, j) is o(|E|), yield-
ing a total number of at least (|E|2 − o(|E|) · |E| swappable
pairs. Since each state in S has degree Ω(|E|2), the lemma
follows. 2

Corollary 1. For bipartite graphs G = (U, V, E) whose

degree distribution follows power law with α > 2 we have

|T |/|S| = Ω(|E|2).

Proof. For simplicity assume that |U | = |V | = n. For
power laws with exponent α > 2 we have |E| = O(n) in

expectation and the maximum degree is n
1

α−1 = o(n) (e.g.,
see [15]). Thus, the conditions of Lemma 1 are satisfied. 2

The above results imply that for some important classes of
datasets – such as graphs with bounded degrees or degrees
that follow a power law distribution —the expected time TF

of the Find adjacent algorithm is constant. Thus, for those
classes of data, the running time of Algorithm Naı̈ve is TN =
TF · kn = O(kn). Similarly, for the Self loop algorithm
the overall running time is TS = O(ks). Furthermore, the
expected time spent in each state for performing self-loops
(before moving out to a new state) is constant.

We now turn to the running time of Metropolis-Hastings.
This running time can be written as TM = T 0

D + km(TF +

TD), where TF is the running time of Find adjacent, TD is
the time need to compute d(G′) given that d(G) is already
computed, and T 0

D is the time needed to compute d(G) for
the first time. Next we explain how to compute d(G) and
how to update the computation for d(G′). The time needed
for the update is linear time with respect to min{m, n}.

Theorem 1. Let G = (U, V, E) be a bipartite graph repre-

sented as a binary matrix D with m = |U | rows and n = |V |
columns. Let ri be the “left” degree of node i ∈ U , cj be the

“right” degree of node j ∈ V , and define M = DDT . Then,

the number of graphs G′ that are yielded with one local swap

from G is equal to

d(G) = J(G)− Z(G) + 2K22(G), (2)

where

J(G) =
1

2

|E|(|E| + 1)−

X

i∈U

r2
i −

X

j∈V

c2
j

!

is the number of disjoint pairs of edges,

Z(G) =
X

(i,j)∈E

(ri − 1)(cj − 1)

is the number of “Z” structures

{(a, b), (c, d), (c, b) ∈ E, with a, b, c, d all distinct},

and

K22(G) =
X

i,k∈U
i6=k

M(i, k)

2

!
=

1

2

X

i,k∈U
i6=k

M(i, k)2 −M(i, k)

is the number of K2,2 cliques of G.

Proof. Each disjoint pair of edges is swappable unless it
is part of a “Z” structure. In each K2,2 there are 2 disjoint
pairs of edges and 4 “Z”s, but there are no swappable pairs,
so we should add 2 to bring the count to 0. 2

Corollary 2. Given graphs G and G′ such that (G, G′) ∈
T , d(G′) can be calculated from d(G) in time O(min{m, n}).

Proof. Without loss of generality assume that min{m, n} =
m, and we are using the m ×m matrix M = DDT . Oth-
erwise we can use the n × n matrix M ′ = DT D. Using
Equation (2) we have

d(G′) = d(G)−∆Z + 2 ∆K22

Graphs G and G′ differ only by one swap. so, matrices
D(G) and D(G′) differ only in four positions, and matrices
M(G) and M(G′) differ only in two rows and two columns.
Therefore ∆Z can be computed in constant time and ∆K22

can be computed in O(m) time. 2

We note that the Metropolis-Hastings still needs to run
the Find adjacent algorithm for finding a candidate swap
pair. Although the way that the algorithm moves between
states is different (neighboring states are not chosen uni-
formly at random), and thus it may guarantee faster con-
vergence, we believe that this probably does not offset the
additional cost incurred by the computation of the degrees,
and thus we prefer to experiment with the Self loop al-
gorithm. We note that it may be possible to maintain the
number of swappable pairs in linear time, thus eliminating

Dataset # of rows # of cols # of 1’s dens. (%)
Abstracts 128820 25335 10449902 0.32
Abstracts′ 128803 5918 7150992 0.94

Courses 2405 5021 65152 0.54
Kosarak 990002 41270 8019015 0.02

Paleo 124 139 1978 11.48
Retail 88162 16470 908576 0.06

Table 1: The datasets

the cost of the Find adjacent algorithm. However, this is
non-trivial task, and it still does not guarantee that the
Metropolis-Hastings algorithm would be faster. Recall
also that in many cases, the cost of Find adjacent is con-
stant in expectation.

5. EMPIRICAL RESULTS
We perform experiments with many of the well known

datasets used in the data mining community. A description
of the datasets we are using is as follows: Abstracts con-
tains document–word information on a collection of project
abstracts submitted for funding by NSF. Abstracts′ is a
pruned version of Abstracts, where we keep only words
of medium frequency (only words with frequency counts be-
tween 200 and 8854 are kept). Courses is a student–course
dataset of courses completed by the Computer Science stu-
dents of the University of Helsinki. Retail is a market-
basket dataset collected in a Belgian supermarket [2]. Kosa-

rak is a click-stream dataset from a Hungarian news web-
site. Finally, Paleo, the smallest dataset, contains informa-
tion of species fossils found in specific paleontological sites
in Europe. Exact information of the datasets, including the
sizes and the density of 1’s are shown in Table 1.

5.1 Convergence and performance
We have tested extensively the convergence properties of

the swap-based Markov chain for various datasets. Design-
ing diagnostics for the convergence of a Markov chain is far
from easy and it is an open research question, so our tests
can provide only evidence that the chain has mixed and by
no means do they constitute a proof.

An example among the many tests we have performed is
showed in Figure 4. For each of our datasets, we measure
the number of frequent itemsets for a given threshold. The
y-axis in Figure 4 shows the number of frequent itemsets
in the sampled datasets, divided by the number of frequent
itemsets in the original dataset. The x-axis shows the num-
ber of steps in the Markov chain scaled by the number of
1’s in the corresponding dataset, i.e., position x = i shows
a sample after iL steps, where L is the number of 1’s in the
corresponding dataset. We see that in almost all cases the
chain mixes quite rapidly: already after L steps (4L in the
case of Kosarak) the number of frequent sets has stabilized.

Similar kind of convergence evidence was obtained for all
our measures: frequencies of specific itemsets, number of
correlations above a certain threshold, clustering errors, etc.
In all of our experiments shown below we have run the chain
with very large steps in order to ensure convergence.

Additionally, the swaps can be performed quite efficiently.
Table 2 shows the running time for the different datasets,
using a modest Perl implementation on a 3GHz Pentium
machine with 2GB of memory. The reported times is for

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

3.5

4

Step size (× number of ones)

N
um

be
r

of
 fr

eq
ue

nt
 it

em
se

ts Kosarak
Retail
Abstracts
Abstracts’
Paleo
Courses

Figure 4: Convergence: x-axis: the number of steps
(× the number of 1’s in the data); y-axis: the num-
ber of frequent itemsets in the sampled datasets,
divided by the number of frequent itemsets in the
original dataset.

Dataset time (sec)
Abstracts 12m53s
Abstracts′ 9m11s

Courses 3.35s

Dataset time (sec)
Kosarak 8m38s

Paleo 0.100s
Retail 1m1.5s

Table 2: Running times needed to perform swap
randomization on the different datasets. We report
the clock time (in secs) needed to perform a number
of swaps equal to 5 times the number of the 1’s in
the dataset.

obtaining one sample after performing 5L swaps. In most
cases much smaller steps can be used.

5.2 Frequent itemsets
In this section we describe the results of frequent itemset

mining using swap randomization. Table 3 shows the num-
ber of frequent sets for the datasets described in Section 5.
We compute the collections of frequent sets in the original
data, in random data under swap randomization and in ran-
dom data under independent permutations of columns (i.e.,
only column margins are maintained). The collections are
denoted by F , Fs and Fp, respectively. The minimum sup-
port thresholds were chosen so that the number of frequent
sets is not exceedingly large. Frequent items, i.e., frequent
sets of size one, are omitted from the table since they do
not change by swapping or permuting the columns. In the
case of swapped and permuted datasets, we show the mean
values (and standard deviations) of 500 randomized versions
of the datasets.

Table 3 clearly demonstrates the differences between the
randomization methods. All datasets seem to contain many
interesting frequent sets when compared to the frequent sets
in the corresponding datasets with permuted columns. The
sizes of the frequent set collections were always consider-
ably smaller in the permuted data than in the original data.
On the other hand, different datasets show very different
behavior with respect to swapping. In Abstracts and Re-

tail the number of frequent sets remain about the same un-
der swap randomization, whereas in Abstracts′, Courses,

Abstracts, minsupp = 5000
|X| |F| |Fs| |Fp|
≥ 2 1128 1004.8(4.8) 698.6(3.7)
≥ 3 226 188.7(2.5) 75.6(2.0)

Abstracts′, minsupp = 600
|X| |F| |Fs| |Fp|
≥ 2 4854 839.5(19.2) 22.5(4.0)
≥ 3 223 0.0(0.0) 0.0(0.0)

Courses, minsupp = 400
|X| |F| |Fs| |Fp|
≥ 2 9687 442.2(12.5) 149.1(2.9)
≥ 3 9412 259.7(11.4) 46.8(2.3)
≥ 4 8479 62.8(5.9) 1.2(0.5)
≥ 5 6669 3.1(1.3) 0.0(0.0)

Kosarak, minsupp = 5000
|X| |F| |Fs| |Fp|
≥ 2 1436 5644.5(60.8) 266.0(1.3)
≥ 3 977 5013.8(59.5) 88.8(0.9)
≥ 4 417 3629.6(52.5) 7.1(0.3)
≥ 5 95 1864.6(35.2) 0.0(0.0)
≥ 6 8 589.2(16.0) 0.0(0.0)

Paleo, minsupp = 7
|X| |F| |Fs| |Fp|
≥ 2 2828 266.7(14.8) 227.7(11.7)
≥ 3 2058 9.8(5.4) 4.9(3.3)
≥ 4 898 0.0(0.2) 0.0(0.0)

Retail, minsupp = 200
|X| |F| |Fs| |Fp|
≥ 2 1384 1616.1(12.3) 860.3(6.8)
≥ 3 489 569.0(9.1) 168.2(3.2)
≥ 4 78 79.2(3.7) 7.6(1.0)

Table 3: The number of frequent itemsets. |X|: the
minimum cardinality of the itemset we include to
the count. |F|: the number of frequent sets of car-
dinality at least |X| in the original data; |Fs|: the
expected number of frequent sets in swapped data;
|Fp|: the expected number of frequent sets in ran-
dom data with the same column margins as the orig-
inal data. The values in parentheses are the stan-
dard deviations. The expectations and standard de-
viations were computed on 500 experiments.

and Paleo the numbers decrease significantly. Finally, there
is a considerable increase in the number of frequent sets in
Kosarak.

Interpreting the results, we can conclude that the struc-
ture captured by frequent itemsets in Abstracts and Re-

tail can be attributed mainly to the row and column mar-
gins, and thus it is preserved in random datasets where the
margins are preserved. On the other hand, in the datasets
Abstracts′, Courses and Paleo the structure captured
by frequent sets is more interesting, since it disappears un-
der swap randomization.

The increase in the number of frequent sets in the case of
Kosarak implies that many sets of items are anti-correlated
with each other. A possible explanation for this phenomenon
lies in the structure and origin of the data. The row and
column margins are highly skewed in Kosarak. The anti-
correlations can be interpreted by the nature of the dataset.
Kosarak consists of anonymized click-stream data from a

Dataset |F| |Fs|
|F∩Fs|

|F|
|F\Fs|

|F|

Abstracts 1128 1004.8(4.8) 0.767 0.233
Abstracts′ 4854 839.5(19.2) 0.083 0.917
Courses 9687 442.2(12.5) 0.042 0.958
Kosarak 1436 5644.5(60.8) 0.724 0.276
Paleo 2828 266.7(14.8) 0.045 0.955
Retail 1384 1616.1(12.3) 0.882 0.118

Table 4: Changes in the collections of frequent sets.
D: the dataset; F: the frequent itemset collection
in the dataset; Fs: the frequent itemset collection in

the swapped dataset; |F∩Fs|
|F|

: the fraction of itemsets

that are preserved in the collection; |F\Fs|
|F|

: the frac-

tion of frequent itemsets that disappear from the
collection. The values involving swapped data are
expectations on 500 experiments. The values in the
parentheses are the standard deviations.

news portal: the link structure of the websites can cause
negative correlations between groups of pages.

Although the number of frequent itemsets is indicative of
the structure that is contained in the data, it is not informa-
tive with respect to what are the actual itemsets contained
in the collections, and how the collections relate to each
other. It may well be the case that collections have about
the same size yet they are completely disjoint.

We now describe how the collections change under swap
randomization. Table 4 shows the average fraction of item-
sets that are preserved or disappear, compared to the origi-
nal collection. For the datasets Abstracts, Kosarak, Re-

tail where the size of the collection remains relatively stable
(or in the case of Kosarak increases), the mean fraction of
preserved itemsets is around 70%, confirming our intuition
that the original collection did not contain much interesting
structure. This is especially pronounced in the case of the
Retail data, where on average 88% of the frequent item-
sets are preserved. For the remaining datasets, the mean
fraction of preserved itemsets drops below 9%.

The swap randomization can be used also to suggest un-
expected sets in the data, i.e., sets that are very frequent in
the original data but very rare in the swapped data. For ex-
ample, the {dissertation, doctoral, promising} is com-
mon in the Abstracts′ data (support 682) but rare in the
corresponding swapped data (mean support 2.4). Similarly,
the set {differential, equations, partial, solutions}
has support 679 whereas its mean support in swapped data
is less than 0.4. The most “dull” itemset is the set {address,
result} with supports 691 and 691.6, respectively.

5.3 Correlations
We now study how correlations between items change un-

der swap randomization. Computing all pairwise correla-
tions between the columns in the data tables is computation-
ally expensive for most of our datasets. Instead we focus on
the k columns with the highest column degree, for k = 100.
The rationale is that items that appear frequently are usu-
ally more interesting and we want to study their correlations.
Furthermore, this allows for an interesting comparison with
the randomization technique that permutes columns inde-
pendently. Since the column counts are large, our experi-
ments give an indication as to how the row counts affect the
significance of the pair.

Swapped Permuted
Measure Original mean Z mean Z

Abstracts Dataset
max 0.47 0.06 11.19 0.01 514.2
min -0.10 -0.01 11.90 -0.01 137.5
≥ 0.03 1941 667.67 7.28 0.00 —
≥ 0.02 2649 3573.88 5.22 0.00 —
≥ 0.01 3363 4904.27 7.91 0.86 3342
≤ −0.01 776 6.41 21.19 0.66 775
≤ −0.03 310 0.77 23.58 0.00 —

Abstracts′ Dataset
max 0.51 0.03 14.89 0.01 592.5
min -0.05 -0.00 15.15 -0.01 54.58
≥ 0.03 760 5.76 18.35 0.00 —
≥ 0.02 1391 37.32 11.10 0.00 —
≥ 0.01 2379 3455.31 6.50 1.20 2342.6
≤ −0.005 1033 5.20 22.97 174.49 63.3
≤ −0.01 691 1.92 37.24 0.59 844.4

Courses Dataset
max 0.91 0.24 57.19 0.08 114.38
min -0.53 -0.03 75.25 -0.07 77.05
≥ 0.30 565 0.00 — 0.00 —
≥ 0.10 2025 1611.06 10.86 0.01 20209.9
≥ 0.03 2923 3214.10 6.55 365.9 149.9
≤ −0.01 1373 20.23 244.29 1574.1 5.8
≤ −0.03 1058 1.18 886.30 332.4 40.7

Retail Dataset
max 0.40 0.11 87.16 0.01 303.1
min -0.02 -0.01 18.32 -0.01 11.46
≥ 0.03 219 113.83 15.04 0.00 —
≥ 0.02 537 480.17 4.02 0.00 —
≥ 0.01 1513 2100.27 14.32 15.92 352.73
≤ −0.005 458 2.65 257.85 307.3 9.24
≤ −0.01 92 0.00 — 1.88 65.3

Paleo Dataset
max 0.87 0.41 10.77 0.15 14.6
min -0.42 -0.24 7.98 -0.05 29.55
≥ 0.20 1011 145.00 70.16 0.13 632.8
≥ 0.10 1430 839.81 24.44 2.79 475.1
≥ 0.03 1756 1968.30 6.37 275.26 95.5
≥ 0.01 1841 2319.17 13.51 1084.38 33.6
≤ −0.01 2984 2159.15 22.20 1195.8 4.56
≤ −0.10 2204 593.15 80.70 0.00 —

Table 5: Statistics for correlation values. A row of
type max contains the value of the largest correla-
tion, while a row of type, say ≥ 0.01, contains the
number of correlation pairs with value greater than
0.01. The empirical p statistic in all the above re-
sults is 1%.

Table 5 shows our results for different datasets. We com-
pute the maximum and minimum correlation values, as well
as the number of pairs whose correlation exceeds a certain
threshold, for different thresholds. We present the values for
the original data, as well as the mean value, and the z-value
for both the swapped and the independently permuted data.
The statistics are taken over 100 different samples.

From the results we make the following observations. As
expected, when randomizing the dataset, strong correla-
tions, either positive or negative, tend to disappear for both
methods of randomization. However, the way that this
is done differs between the two methods. For the inde-
pendent permutation model correlations concentrate very
sharply and almost symmetrically around zero. For swap
randomization negative correlations disappear in a much
faster rate, e.g., for Retail and Abstracts they disap-
pear almost completely. On the other hand, the number of

Dataset k E mean std Z p
S1 10 1777.3 3669.9 11.1 170.43 0.01

20 1660.7 3303.2 11.3 145.33 0.01
S2 10 4075.4 4084.4 11.6 0.77 0.22

20 3686.2 3691.3 12.1 0.42 0.36
Courses 10 17541.6 24405.1 30.2 227.09 0.01

20 16062.0 23588.4 31.9 235.92 0.01
Paleo 10 1040.7 1401.7 4.8 74.74 0.01

20 800.1 1193.9 5.9 67.09 0.01
Retail 10 23920.9 24086.0 135.2 1.22 0.10

20 22276.3 22481.1 235.3 0.87 0.18

Table 6: Results on Clustering. k: number of clus-
ters used in k-means, E: clustering error in the origi-
nal dataset, mean: mean clustering error in the sam-
pled datasets, std: standard deviation of the cluster-
ing error in the sampled datasets, Z: distance of E
from mean measured in standard deviations, p: em-
pirical p-value.

positive correlations remains relatively high, indicating that
to some extend the correlations in the dataset (especially
low correlations) can be explained by the row and column
degrees. This become especially clear when one compares
the mean values for the swap and the independent model in
the retail and the abstracts datasets. On the other hand,
for the Courses and Abstracts′ datasets we observe that
positive correlations drop significantly faster.

5.4 Clustering
Our results on assessing the clustering structure of datasets

are showed in Table 6. We perform our clustering experi-
ments using Matlab’s k-means default function. We obtain
results only for the small- and medium-size datasets—our
largest datasets cannot be clustered by Matlab’s k-mean
function. For each dataset, we measure the clustering er-
ror for the original dataset for clustering with k = 10 and
k = 20, which is showed in the third column of Table 6.
Then we sample 100 sampled datasets, which we cluster with
the same parameters. We compute the mean and standard
deviation of the clustering error in the sampled datasets,
which are shown in the fourth and fifth columns of Table 6.
The sixth column (Z) reports the distance in standard de-
viations between the error in the original dataset and the
mean error in sampled datasets. Finally, the last column
records the empirical p-value as described in Section 2.1.

The datasets S1 and S2 are synthetically generated datasets
with 1000 points, 20 dimensions, and 10 embedded clusters
having 100 points each. The difference is that S1 has 10%
noise (probability of fliping a bit in the matrix), while S2 has
45% noise, that is, its clustered structure has been hugely
corrupted by noise. We see that our results indicate that S1
has indeed clustered structure, while this is not the case for
S2. For the real datasets, we see again that all the datasets
have clustered structure except from the Retail dataset.

5.5 Singular values
We compute the top-20 singular values for the random-

ized sets, and we compare the average value of each singular
value with the corresponding one of the original dataset.
We observed that in most cases, the first singular value of

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

i

i−
th

 s
in

gu
la

r
va

lu
e

Dataset with 10 clusters, 10% noise

original dataset
mean on sampled datasets

2 4 6 8 10 12 14 16 18 20

40

60

80

100

120

140

160

180

i

i−
th

 s
in

gu
la

r
va

lu
e

Dataset with 10 clusters, 30% noise

original dataset
mean on sampled datasets

Figure 5: Singular values of the original dataset and
of sampled datasets (mean out 100 samples) for syn-
thetic datasets. The crossing point of the two lines
at position 10 corresponds to the number of clusters
planted in the data.

the random datasets is relatively large, comparable to the
first singular value of the original data. The explanation is
that the first singular value captures the linear trend that
is defined by the degree sequences. In contrast, the non-
principal singular values are significantly smaller in the ran-
dom datasets. Thus, we conclude that swap randomization
destroys the linear trend in the data.

Since the sum of the singular values is equal in the origi-
nal and the swapped data, and since the first singular value
in the original data is larger than the first singular value in
the swapped data, there should be a “crossing point” (see
Figure 5). This actually suggests an interesting heuristic for
estimating the correct number of dimensions when project-
ing to low-dimensional spaces. The index of the first singu-
lar value that is significantly lower than the corresponding
random one is probably a good indicator that the structure
contained in the remaining singular vectors is no more in-
teresting than that contained in a random matrix.

We observed that in many cases this crossing point has
a meaningful interpretation in the data. For example, the
Paleo data is conjectured to contain three clusters and the
crossing point for this data is indeed at position 3. We
experiment further with the above idea on synthetic data,
in which we can plant a known number of clusters. Figure 5
shows that for a dataset with 10 clusters the crossing point
is at position 10, for noise levels of 10% and 30%, that is,
with in a large range of noise.

6. RELATED WORK
Defining the significance of discovered patterns has at-

tracted a lot of attention in data mining. In one of the first
papers, Brin et al. [3] considered measuring the significance
of associations via chi-square test. A lot of other measures
have been proposed to capture the interestingness of pat-
terns, e.g., see [10, 12, 20]; a comprehensive presentation
and comparison of such methods can be found in [18].

The problem is also very well studied in statistics, and
there is a significant amount of work for sampling from the
space of contingency tables [4, 5, 6, 17] as well as several
studies that give asymptotics on the exact number of such
tables, e.g., [19]. A good survey on the topic is provided by
Chen et al. [4].

In theoretical computer science the subject has drawn at-
tention in the context of providing bounds for the mixing of
the Markov chain. Very recently Bezáková et al. [1] gave a

polynomial time algorithm for sampling binary 0–1 matrices
with given margins. The algorithm is based on a different
Markov chain than the one based on swaps.

The problem of generating random matrices with fixed
margins has also been studied in many application areas,
such as ecology [16] and biology [11], and analysis of complex
networks [14].

Finally we remark that it is possible to generate directly
random datasets that do not preserve exact row and col-
umn sums but on expectation. This involves setting each
entry (i, j) equal to 1 with probability ricj/L, and equal
to 0 otherwise. This expectation model has the drawback
that the fraction ricj/L has probability interpretation only
if max{ri, cj} ≤ L. Experimenting with this model we found
that it gives similar results as the swap method, but some-
times it is slightly inaccurate. For instance, such inaccura-
cies were observed in the Kosarak dataset in which both
the row and column sums follow power-law distribution. Ad-
ditionally, the savings in running time are not significant.

7. CONCLUSIONS AND OPEN PROBLEMS
We have studied the algorithmic properties of swap ran-

domization, and described how it can be used in assessing
results of data mining algorithms. We gave an algorithmic
treatment of the swap randomization method, showing some
results on the computation of the number of immediately
reachable states in the Markov chain, and we showed that
the Self loop algorithm is always more efficient than the
Metropolis-Hastings method for this problem. Our work
shows that swap randomization is efficient in practice, and
that it can be used for large datasets.

We have conducted extensive experiments on the use of
swap randomization. The results are very interesting in that
they show big differences in the amount of structure that are
present in the datasets. For example, the Retail dataset ap-
parently has very little structure apart from its very skewed
degree distribution for columns and (slightly less) for rows.
The number of frequent sets in the real dataset is about the
same as in the randomized versions, and clustering the orig-
inal or randomized version yields about the same error. On
the other hand, several of the other datasets clearly have
lots of second-order structure, as evidenced by the dramatic
drop in the number of frequent sets and strong correlations
when moving to the randomized version of the data.

Swap randomization is a technique that maintains the
first-order statistics of the data. Thus it should not be used
to study the significance of discoveries that depend only on
the first-order statistics of the data, i.e., the row and col-
umn margins; power laws are an example of these types of
statistics. An interesting question is whether it is possible
to generate, from a dataset D, random datasets having the
same margins as D while keeping also some second-order
statistics (e.g., the frequency of certain variable pairs) fixed.

Availability
Software for swap randomization can be found at
http://www.cs.helsinki.fi/hiit bru/software/swaps/

Acknowledgments
We thank Jean-François Boulicaut, Céline Robardet, and
Jérémy Besson for interesting discussions that got us started
on swaps.

8. REFERENCES
[1] Bezáková, I., Bhatnagar, N., and Vigoda, E. Sampling

binary contingency tables with a greedy start. In SODA
(2006), SIAM.

[2] Brijs, T., Swinnen, G., Vanhoof, K., and Wets, G.
Using association rules for product assortment decisions: A
case study. In KDD (1999), pp. 254–260.

[3] Brin, S., Motwani, R., and Silverstein, C. Beyond
market baskets: Generalizing association rules to
correlations. In SIGMOD Conference (1997), pp. 265–276.

[4] Chen, Y., Diaconis, P., Holmes, S. P., and Liu, J. S.
Sequential Monte Carlo methods for statistical analysis of
tables. Journal of the American Statistical Association
100, 469 (2005), 109–120.

[5] Cobb, G. W., and Chen, Y.-P. An application of Markov
chain Monte Carlo to community ecology. American
Mathematical Monthly 110 (2003), 264–288.

[6] Diaconis, P., and Gangolli, A. Rectangular arrays with
fixed margins. In Discrete Probability and Algorithms
(1995), pp. 15–41.

[7] Dyer, M. Approximate counting by dynamic
programming. In STOC (2003), ACM, pp. 693–699.

[8] Good, P. Permutation Tests: A Practical Guide to
Resampling Methods for Testing Hypotheses. Springer,
2000.

[9] Hastings, W. K. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57
(1970).

[10] Jaroszewicz, S., and Simovici, D. A. A general measure
of rule interestingness. In 5th European Conference on
Principles of Data Mining and Knowledge Discovery
(PKDD 2001) (2001).

[11] Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U.
Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs.
Bioinformatics 20, 11 (2004), 1746–1758.

[12] Liu, B., Hsu, W., and Ma, Y. Pruning and summarizing
the discovered associations. In KDD (1999), pp. 125–134.

[13] Metropolis, N., Rosenbluth, A., Rosenbluth, M.,
Teller, A., and Teller, E. Equations of state
calculations by fast computing machines. Journal of
Chemical Physics 21 (1953).

[14] Milo, R., Shen-Orr, S., Itzkovirz, S., Kashtan, N.,
Chklovskii, D., and Alon, U. Network motifs: Simple
building blocks of complex networks. Science 298, (2002).

[15] Newman, M. The structure and function of complex
networks. SIAM Review 45, 2 (2003), 167–256.

[16] Sanderson, J. Testing ecological patterns. American
Scientist 88, 332–339 (2000).

[17] Snijders, F. Enumeration and simulation methods for 0–1
matrices with given marginals. Psychometrika 56 (1991),
397–417.

[18] Tan, P.-N., Kumar, V., and Srivastava, J. Selecting the
right interestingness measure for association patterns. In
KDD (2002), pp. 32–41.

[19] Wang, B. Y., and Zhang, F. Precise number of
(0, 1)-matrices in u(r, s). Discrete Mathematics 187 (1998),
211–220.

[20] Xiong, H., Shekhar, S., Tan, P.-N., and Kumar, V.
Exploiting a support-based upper bound of Pearson’s
correlation coefficient for efficiently identifying strongly
correlated pairs. In KDD (2004), pp. 334–343.

