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Abstract
CounterFair is a group counterfactual search algorithm that detects and minimizes biases
among sensitive groups and identifies relevant subgroups inside these sensitive groups based
on shared counterfactual instances. We investigate the latter capability, analyzing the found
subgroups from the perspective of fairness based on counterfactual reasoning, in order to
evaluate whether they present different biases with respect to each other and to the sensitive
feature groups they belong to. We perform these measurements on the subgroups extracted
by CounterFair over six binary classification datasets, providing figures and their respective
analysis on the presence of bias.
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1 Introduction

Explainable machine learning has attracted significant attention over the recent years with
the main objective of increasing the trust in the predictions of opaque but well-performing
models. Among several explainability techniques, counterfactual explanations help domain
experts and users understand opaque machine learning (ML) models by exploring ‘what-if’
scenarios for individual instances [1]. Given a trained classifier that maps input instances
to class labels, a counterfactual (CF) explanation can highlight the relevant feature value
changes for an instance of interest that would result in an alternative class label prediction
[1–3]. A CF is, therefore, also known as a recourse [4], as it suggests actions to improve
the situation of a given instance [1, 2, 4–6]. For example, considering a loan application,
CF explanations may highlight the feature changes that an individual should comply to
(e.g., marital status, habits, education, occupation) for obtaining a positive answer on the
application, or for changing their wealth status from low-wealth to a high wealth [4, 5].
Usually, the closest point with the desired label is selected as a CF for the given instance [1],
since it results in a reduction in the feature changes that need to be applied for reaching the
desired label.

In the presence of sensitive features, such as gender, race, or age, the suggested changes
may, however, hide biases across sensitive groups. These biases, if left undetected or unat-
tended, could lead to unfair and harmful outcomes. Hence, it becomes critical to identify
and assess model biases or rithmic fairness through the recommendations suggested by CFs.
Counterfactual fairness refers to the criterion according to which a model’s predictions
remain unchanged if counterfactuals for a given example are generated by applying changes
to protected attributes, while keeping all other attributes the same [6–9]. For example, con-
sider two commonly used public datasets: Adult1 and Compas.2 For Adult, the class label
indicates whether a person earns over $50K/year or not, whereas for Compas it indicates
whether a person is a recidivist (a person recommitting crimes). Figure 1 illustrates the aver-
age difficulty in achieving the desired state (i.e., high wealth or no recidivism) in the form of
a measure called burden [4, 5]. Burden is the distance between an instance and its closest CF,
and the figure shows its aggregated value per sensitive group.We observe a higher aggregated
burden for females than for males in wealth prediction (Fig. 1a), implying that it is harder for
females to achieve higher wealth. Moreover, we observe that it is harder for males than for
females to not be recidivists (Fig. 1b). Similarly, it is harder for non-white people to achieve
higher wealth, and harder for African-Americans to not be recidivists.

Although the generation of individual CFs provides personalized and actionable recom-
mendations, biases canbe introducedbetween sensitive feature groups, such as those observed
in Fig. 1. There is no straightforward mitigation of these biases when generating individual
CFs, since each individual CF ignores other feature groups. This is a problem when trying
to explain biased models that are already trained. For example, if a group of 10 males and
a group of 100 females receive a loan rejection, and the average recommendation for males
is to increase their salary by $10K, whereas for females the recommended increase is by
$25K, the model is biased not only in its predictions but also in the CF recommendations.
Hence, model retraining is required to address these biases, so that these groups receive
similar recommendations in relation to their gender or any other sensitive feature. To solve
this, we consider not an individual but a group-based CF generation approach that permits
the assessment of fairness across sensitive groups.

1 https://archive.ics.uci.edu/dataset/2/adult.
2 https://www.kaggle.com/datasets/danofer/compass.
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Fig. 1 Burden for sensitive groups (x-axis) belonging to different features (colors), showing biases on Adult
and Compas

Existing group CF algorithms obtain CFs through rule mining and effectiveness maxi-
mization [7, 10], which refers to the ratio of instances in the group that can apply changes to
their own features to reach the feature values of the group CF. The main approach followed
by these algorithms is to first mine the frequent subgroups of the undesired class label and,
then, mine the frequent subgroups of the desired class. Nonetheless, these methods suffer
from two main drawbacks: (1) the problem of fair CF generation is not addressed and (2)
the relevant subgroups are not selected through the CF generation process. As a result, the
solution space is limited and the generated CFs have a high burden and low effectiveness.
Existing attempts to address these drawbacks are constrained to linear or decision-tree based
models [8] and by the inability to output fair CFs among sensitive groups. We propose a
method that can address these two drawbacks while also providing fairness assessment.

Recently, CounterFair [11] has been proposed to address these deficiencies. The main
characteristic of CounterFair is that it produced model-agnostic CFs for assessing group
CF fairness. Moreover, it can prioritize either burden minimization, subgroup identification,
or fair recourse generation, leading to either more granular, group-oriented, or fairness-
oriented CFs. Specifically, CounterFair detects and mitigates this burden measure as the bias
measure across different subgroups, where certain demographic subgroups may experience
a disproportionate negative disadvantage in terms of desired outcomes. This measure of bias
estimates the aggregated effort each subgroup of people should do in order to be classified
in the right, desired class label.

The extensions of CounterFair [11] proposed in this paper are as follows:

• Bias detection in subgroups identified by CounterFair: We extend CounterFair [11]
by defining the concept of subgroups lying at the intersection of the different sensitive
feature groups in order to assess the presence of biases in these particular sets of instances.
We show that the presence of biases in these intersections is dataset-dependent. Further-
more, we provide a large set of figures indicating the presence of biases and perform
an extensive analysis of the subgroup and intersectional fairness identified inside said
relevant subgroups.

• Evaluation: We extend the experimental evaluation carried out in [11] to characterize
the identified subgroups in terms of their relevance, and whether they present higher,
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comparable, or lower biaseswith respect to each other, andwith respect to their respective
sensitive feature groups. Additionally, we provide insights on to how these subgroups
may be subject to potentially biasing scenarios with respect to other features analyzed in
their respective subgroups.

2 Related work

CF explanations are usually obtained for single instances [1, 2, 4, 12]. Different application
scenarios are considered, including recommender system explanations for individual user-
item combinations [13]. A few recent studies focused on group CFs [7, 8, 10]. There are
several ways to generate group CFs. One way is to jointly generate a CF for each instance, to,
for example, make their distribution similar to that of the dataset (one-to-one way) [8, 14].
Another way is to get several CFs for a single instance to maximize recourse diversity (many-
for-oneway) [15]. Finally, getting aCF for a group to characterize its instances (one-for-many
way) [8].

Finding optimal group CFs is analogous to optimally locating facilities, such as hospitals
or production plants [16]. This is known as the location analysis problem solved using math-
ematical programming (MP) [8]. CF algorithms, like the Actionable Recourse [12], use MP
but are constrained to linear classifiers due to the difficulty in formulating the nonlinearities
of highly accurate ML models. To preserve the formulation linearity and convexity, as well
as the solutions optimality, one may apply a graph-oriented approach [17].

Other group CF approaches exist: Kavouras et al. [7] and Rawal and Lakkaraju [10]
developed Fairness Aware Counterfactuals for Subgroups (FACTS) andActionable Recourse
Summaries (AReS), respectively, to generate group CFs through rule mining. The rules are
in the form of a predicate and an action, e.g., if gender==female then salary≥$80K. FACTS
first finds subgroups from the undesired class label instances and sets of actions for these
subgroups from the desired class using FP-growth. Then, for these subgroups, the algorithm
finds their intersection, i.e., the subgroups or feature-value combinations that are common
across them. These common subgroups are then used to find, from the space of actions, a
set of valid, effective actions that have the same cost for the individuals on each subgroup.
FACTS then uses a set of measures to establish whether there is a bias given the found
CFs among the different sensitive groups. AReS is similar to FACTS but it extracts both
predicates and actions from the training dataset. The recourse rules are then selected using
an optimization procedure that aims to maximize the correctness (the fraction of instances
for which the recourse rules effectively create a CF), the coverage (the amount of instances
for which the “if” conditions apply) and the interpretability (the amount of recourse rules,
their length and the number of subgroups). Particularly, these two methods also allow the
user to identify subgroups of interest inside the sensitive groups (e.g., in the females sensitive
group, those from the EU who are divorced) via the identified and stored predicates for the
CF rules. Kavouras et al. [7], and Rawal and Lakkaraju [10] also discuss quality measures to
assess the group CFs and the algorithmic fairness based on the CFs.

There are many quality measures to assess CF explanations [1, 4, 18]. These measures
include proximity and likelihood (how likely is the givenCF regarding the dataset [14]) among
others. Likewise, there are many algorithmic fairness measures. These may benefit from CF
reasoning. For example, predictive equality (the false-negative ratio of a sensitive group),
which assesses biases jointly using the prediction and ground truth labels across groups, may
miss the potential bias detection capability through the CF recommendations provided by the
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CFs [19]. Sharma et al. [5] propose CF burden as a fairness proxy, while Kuratomi et al. [6]
weighted the sensitive group burden with its predictive equality, combining accuracy-based
and CF fairness. Group CFs quality may also be measured through effectiveness [7].

3 Preliminaries

Let X be a heterogeneous feature space with binary, categorical, ordinal, and continuous
features. A dataset D is a collection of n pairs of (X , y) where X is a data sample (i.e.,
instantiation) of X and y is its corresponding binary class label y ∈ {“ − ”, “ + ”}. D is
divided into a training and a test set, denoted as DTrain and DTest, respectively.

Moreover, let S ⊆ X be a set of sensitive features in X , such as sex or race. Each
sensitive feature s ∈ S may be used to define different sensitive groups of data samples.
A sensitive group of feature s is denoted as sk , where k defines a condition on that feature,
which is denoted by function cond(·). If s satisfies condition k then cond(s, k) == ‘true’. For
example, sensitive feature sexmaybeused to define two sensitive groups, i.e., sfemale and smale,
corresponding to data samples for which sex==‘female’ and sex==‘male’, respectively.
Given a classifier f (·), we define the set of false-negative test instances in sensitive group sk
as:

Dsk
Test FN = {(X , “ + ”)| f (X) = “ − ”, cond(s, k), X ∈ DTest}

Additionally, we introduce the property of feasibility. A CF is feasible with respect to an
instance of interest if it complies with the properties ofmutability, directionality, and plausi-
bility. A CF complies with the mutability property if only mutable features are changed from
its corresponding instance in DTest FN. In the same manner, it complies with directionality if
the features are changed only in possible directions, e.g., age or education cannot decrease.
Finally, plausibility indicates that the CF feature values have all physically possible values.

The feasibility property, composed of the properties of mutability, directionality and plau-
sibility, is essential not only to the counterfactual generation process, but also to the evaluation
of fairness based on the proposed changes by the counterfactual instance. It is essential for the
counterfactual point itself because these explanations should be reachable by the instances
of interest, i.e., the people receiving the explanations (recommendations indicating a change
of gender, or a lowering of age should not be given to people). With respect to fairness, the
measurement of burden, that is, how difficult it is for people to reach their corresponding
counterfactuals, is not relevant if the proposed recommendations inside these counterfactuals
are not feasible or achievable from the perspective of the people of interest. The properties of
mutability, directionality and plausibility of each feature are entered manually into the data
processing pipeline, as per the recommendations in [2, 5]. As an example, education may
change, but only in the upward direction, as does age, but gender or race cannot change.

For each instance Xi ∈ Dsk
Test FN we use a CF generator to get its CF, X ′

i . Let us now define
the set of possible CFs for the instances in DTest FN as Q and the function F(DTest FN,Q) as
an indicator of the instances in Q that comply with the feasibility condition with respect to
the instances in DTest FN. We now introduce the general problem formulation.

Problem 1 (Bias detection, mitigation and Identification of relevant subgroups) Given a
classifier f (·) and the set of false-negative test instances DTest FN = ⋃

sk D
sk
Test FN, we want
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to obtain the set of CFs D′ as follows:

D′ = argmin
Q

{w1Cburden(Q) + w2Cfair(Q)

+ w3Cgroups(Q) | F(DTest FN,Q)},
(1)

where w1, w2 and w3 are the weights for the costs associated with: (1) the aggregated
CFs burden (Cburden), (2) bias mitigation or fairness (Cfair) and (3) the number of relevant
subgroups identified (Cgroups), respectively.

The formulation in problem (1) enables a flexible cost function definition to allow for
the extraction of CFs that optimize different objectives. When prioritizing Cburden, burden is
minimized, and when aggregated by sensitive groups, this measure elicits the biases among
sensitive groups, indicating which groups require a higher effort to achieve the desired label.
When prioritizing Cfair , the differences in burden across sensitive groups is reduced. This
provides fair CF recommendations across different groups, since these would have similar
application difficulty, as measured by burden. When prioritizing Cgroups, a set of CFs that
is minimal in size is obtained, which forces the CFs to be shared among the instances
of interest, i.e., each of the false-negative instances will be subgrouped together with other
instances, based on the shared CF, generating groupCFs and identifying subgroups of interest
simultaneously. We now explain CounterFair, the instantiation of the cost functions, Cburden,
Cfair and Cgroups used, and how CounterFair solves problem (1).

4 CounterFair

CounterFair is an MP-based algorithm that attains feasible and optimal group CFs in terms
of a given cost function. This cost function is adaptable and can be defined in different
ways. In our case, we define so that burden (leading to bias detection), burden differences
(leading to bias mitigation) or the number of different CFs (identifying relevant subgroups)
are minimized. We first provide an outline of the main steps of CounterFair, the instantiation
of the cost function for CounterFair, and finally its MP formulation.

4.1 Outline

CounterFair creates a set of points from which it selects an optimal set of CFs given a cost
function, following four steps: (1) obtain the sets of false-negative test instancesDsk

Test FN and
true-positive training instances Dsk

Train TP per sensitive group; (2) obtain the nearest neighbor
training CF for each instance inDsk

Test FN from the instances inDsk
Train TP, which are then stored

in set CFskTrain; (3) find all the combinations of the feature values between each X ∈ Dsk
Test FN

and every CF in CFskTrain to generate a cloud of points, P , which are the potential CFs; (4)
solve the MP to select the best CFs simultaneously for every X ∈ Dsk

Test FN using P .
The steps of CounterFair are detailed in Algorithm 1 and depicted in Fig. 2. In step

1 (Fig. 2a), a ML model separates the undesired class (orange-shaded region) from the
desired class (blue-shaded region). The orange points in the undesired region represent the
false negatives. Each sensitive group s1, s2, and s3 is outlined in yellow, orange and red,
respectively.

In step 2, for each X ∈ Dsk
Test FN, the Nearest Neighbor (NN) is used to find the closest

training CF observation fromDsk
Train TP (blue-colored points in Fig. 2b) and store it in CF

sk
Train.

The set CFskTrain is filtered using: (1) the closest percentage � of CFs from the centroid of the
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Algorithm 1: CounterFair

input : D, f , s, �mut (mutability vector), �dir (directionality vector), �pla (plausibility vector), �
(closest training percentage).

output: CFCounter Fair
1 Dsk

T est FN ,Dsk
T rainT P ← TestFNTrainTP(D, f , s)

2 CF
sk
Train ← NN(Dsk

T est FN ,Dsk
T rainT P ,�)

3 P,CXi n , FXi n ← points(Dsk
T est FN ,CF

sk
Train , f , �mut, �dir , �pla)

4 CF
Xi n
Counter Fair ← solveMP(P,CXi n , FXi n)

5 return CFCounter Fair

Fig. 2 2-Dimensional example of CounterFair. Steps 2d, 2e and 2f are obtained by prioritizing Cburden (min-
imizing burden), Cfair (minimizing burden differences) and Cgroups (minimizing the set of CFs), respectively

set of false-negatives instances of each sk , and (2) a critical distance d to the false-negative
instances. The � value depends on the dataset but is usually 100%, i.e., all the training CFs
in CFskTrain are considered. The distance d is the maximum of the distance averages of each
sensitive group.

In step 3 (Fig. 2c), the cloud of blue points P is generated using all the possible combina-
tions of the feature values between each Xi ∈ Dsk

Test FN and the CF observations in CFskTrain.
All the continuous features are discretized using an equal frequency binning. The generated
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points are stored in P , if they: (1) are feasible CFs with respect to the instance from which
they are generated, (2) lie inside the critical distance d with respect to this instance. Finally,
for each Xi ∈ Dsk

Test FN and n ∈ P , two parameters are calculated: (1) a cost parameter CXin ,
representing the cost of using point n as the CF for Xi and (2) a feasibility parameter FXi n

indicating whether point n is a feasible CF for Xi .
In step 4, the MP is solved in three separate ways, shown in Fig. 2d–f, by: (1) minimizing

the aggregated burden, (2) minimizing the burden differences and (3) minimizing the number
of distinct CFs. Figure 2d illustrates 15 unique CFs, outlined in green, presenting the lowest
sensitive group-aggregated burden (the length of the arrows is minimized). Figure 2e shows
CFshaving similar distances from their respective instances of interest,minimizing the burden
differences among sensitive groups (the difference in length of the arrows is minimized). In
Fig. 2f there are six distinct, shared CFs. There are two unique subgroups per sensitive group
(enclosed in the dashed lines), which are the relevant subgroups.

4.2 Cost function instantiation

To solve problem (1), we instantiate the cost functions Cburden, Cfair and Cgroups and describe
the MP formulation.

4.2.1 Cburden

In order to define Cburden, we hereby introduce the measure of accuracy weighted burden
(AWB).

Accuracy Weighted Burden: the AWBmeasure, introduced in [6], is the product of predictive
equality (the false-negative ratio) and the average burden per sensitive group. The AWB
measure uses a distance function d(Xi , X ′

i ). This distance is the burden incurred by instance
Xi in trying to attain the feature values of X ′

i , and it is a combination of the L1-norm and
the L0-norm. Equation (2) indicates how to calculate the AWB measure.

AWBsk =
∑

Xi∈Dsk
Test FN

d(Xi , X ′
i )

|{(X , y) ∈ DTest|cond(s, k), y = “ + ”}| , (2)

where the denominator is the amount of true positives in the sensitive group sk . Equation (2)
indicates that a higher number of false negatives, or a higher distance between each instance
and its CF in the sk sensitive group, make the AWBsk burden higher. Then, we define Cburden

as the total AWB:

Cburden =
∑

sk

AWBsk (3)

4.2.2 Cfair

We may define the cost associated with the presence of biases by estimating the differences
of the burden among the sensitive groups. To do this, we define AWBmin = minAWBsk and
AWBmax = maxAWBsk as the minimum and maximum burden, respectively. Cfair is then
defined as the absolute difference between these two terms:

Cfair = AWBmax − AWBmin (4)
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4.2.3 Cgroups

To define the cost associated with the number of distinct CFs, we define a variable and a set:
ln,∀n ∈ P as a variable that indicates whether a point n ∈ P is selected as a CF for any of
the instances Xi ∈ DTest FN and I = DTest FN = ⋃

sk D
sk
Test FN as the set of all false-negative

instances. Therefore, the cost Cgroups is defined as:

Cgroups =
∑

n∈P ln
|I| (5)

In the worst-case scenario, every instance Xi ∈ I will have its own unique CF, making the
cost Cgroups = 1. We now continue with the MP formulation of the CounterFair algorithm
and show how it solves problem (1).

4.3 CounterFair MP formulation

To solve problem (1), we split the implementation of CounterFair into two: one main imple-
mentation focusing on minimizing Cburden and Cgroups, and another focusing on minimizing
Cfair , the latter requiring additional variables and constraints over the main implementation.
In the main implementation, the MP uses only integer decision variables, making the MP
an integer program. In the second implementation, a set of continuous decision variables
must be added to the main implementation, which makes the MP a mixed integer linear
program. We proceed to present the main formulation and then describe the added variables
and constraints for the second.

We define the set of binary decision variables pX in ,∀Xi ∈ I, n ∈ P . These variables
indicate whether the point n is selected as a CF for the instance Xi . In order to relate the
Cburden cost with the decision variable, we introduce the parameter AWBsk

X in
, which is the

added burden when selecting point n for the instance Xi as a CF, i.e., when pX in = 1:

AWBsk
X in

= d(Xi , n)

|{(X , y) ∈ DTest|cond(s, k), y = “ + ”}| , (6)

for all Xi ∈ I and for all n ∈ P . Then, multiplying AWBsk
X in

with the decision variable
pX in :

AWBsk =
∑

Xi∈I

∑

n∈P
AWBsk

X in
· pX in , (7)

and then Cburden can be rewritten as:

Cburden =
∑

sk

AWBsk =
∑

sk

∑

Xi∈I

∑

n∈P
AWBsk

X in
· pX in (8)

For the Cgroups term, we use the binary decision variables ln,∀n ∈ P , and the Cgroups cost
remains as defined in (5). We define the objective function for the main implementation as:

Z1 = αCburden + (1 − α)Cgroups, (9)

where the weight α ∈ [0, 1]. When weight α ≈ 0, Cgroups is prioritized and the number of
distinct CFs will be minimized. This will force the sharing of CFs among similarly distanced
instances, automatically identifying relevant subgroups via these shared CFs. Equivalently,
whenα ≈ 1, the total aggregated burdenwill beminimized, optimizing the recommendations
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found for each instance. In this scenario, themodels biaseswill be observed as a higher relative
aggregated burden for some of the sensitive groups.

A subgroup identified by CounterFair is the set of instances that are assigned to the same
counterfactual and is mathematically defined as follows:

G j = {Xi ∈ I : pX in = 1},∀n ∈ P (10)

where G j is the j th subgroup found in the dataset, where j ∈ Z
+.

We now define the block R of constraints as follows:
R:

pX in ≤ FX in , ∀i ∈ I, n ∈ P, (11)
∑

n∈P
pX in = 1,∀Xi ∈ I, (12)

pX in ≤ ln ∀Xi ∈ I,∀n ∈ P, (13)

pX in , ln ∈ {0, 1} ∀Xi ∈ I,∀n ∈ P, (14)

Constraint (11) guarantees that the selected points n are feasible for their instances Xi ,
while constraint (12) forces the selection of a single point n per instance Xi . Finally, constraint
(13) requires all pX in variables to be less than or equal to the limiter ln , with constraints (14)
forcing pX in and ln to be binary. Finally, the main MP formulation is:

min Z1, subject to R (15)

We now describe the second implementation, which aims at mitigating the biases among
sensitive groups. To do this, we take the previously defined variables: AWBmax and AWBmin,
and add them as continuous decision variables. Then we add the following set of constraints
to the block R:

AWBmin ≤
∑

Xi∈I

∑

n∈P
AWBsk

X in
· pX in ≤ AWBmax,∀sk, (16)

which bounds the aggregated burden per sensitive feature. Then, we define the cost func-
tion as:

Z2 = AWBmax − AWBmin, (17)

which matches Eq. (4). When minimizing Z2 the difference between the maximum and
minimum burden is reduced down to zero. Given that AWBmax and AWBmin work as bounds
on the burden, it then forces the selection of CFs that have equal burden across sensitive
groups and thereby effectively decreasing the biases obtained from the recommendations.

By now, it is possible to conceive other cost functions and potential adaptations to the
algorithm to achieve other objectives through the CounterFair MP formulation. Besides the
objectives of bias detection, mitigation and subgroup identification, we consider CF effec-
tiveness as a measure to optimize for in group CF generation. We now continue with the
formulation to maximize group CF effectiveness.

As previouslymentioned, CF effectiveness is the ratio of total instances that have a feasible
CF.We define parameter en,∀n ∈ P , as the effectiveness associated with point n with respect
to the instances of interest:

en =
∑

Xi∈I F(Xi , n)

|I| ,∀n ∈ P, (18)
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where F(Xi , n) is the feasibility indicator function between the instance Xi and the point
n. This parameter, which can be estimated for every point n ∈ P , indicates the ratio of the
instances in the set of false negatives that can reach the n CF point. Then, the cost function
associated with effectiveness in the MP is defined as:

Z3 = Ceff = −
∑

Xi∈I

∑

n∈P
en · pX in . (19)

We now proceed to discuss the complexity of CounterFair.

Complexity: The most complex step of the CounterFair algorithm is step 4: the solution of
the MP. In general, an integer program formulation, which is harder to solve than a mixed
integer linear program formulation, is classified as a NP-complete problem [20–22] with a
complexity determined by the number of rows (constraints) and columns (variables). Based
on the blockR of constraints, the number of constraints is 3(|I| · |P|) + |I| + |P|, while the
number of variables, v, is |I| · |P| + |P|. The solution is usually obtained through a branch-
and-bound approach, which requires the solution of a relaxed linear program at every node of
the branch-and-bound tree. Each linear program solution is estimated to have a complexity
of O(v2.5) [23]. The minimum number of nodes in a branch-and-bound tree is determined
by 2� v

2c �, where c is the maximum number of variables in any given constraint [24]. In this

case, since c = |P| (see constraint 12) then 2� v
2c � = 2� |I|·|P |+|P |

2|P | � = 2� |I|+1
2 �. Therefore, the

total complexity of CounterFair is O(2� |I|+1
2 �(|I| · |P| + |P|)2.5).

5 Empirical evaluation

In this section, we illustrate the experimental setup by describing the CF evaluationmeasures,
the datasets and the classification performance achieved. We then evaluate CounterFair and
compare it with AReS [10] and FACTS [7].

5.1 Experimental setup

We compare the aggregated AWB values of the sensitive groups using Eq. (7) and the number
of subgroups obtained by summing the limiter variable ln for each of the sensitive groups.
We define the set of points in the cloud of points P that belong to sensitive group sk as
Psk . Then, we define Lsk = ∑

n∈Psk ln as the number of distinct points selected as CFs
for sk . We calculate the effectiveness of the CFs per sensitive group, which is defined as

Esk = |{Xi∈Dsk
Test FN|F(Xi ,X ′

i )}|
|{Xi∈Dsk

Test FN}| .

Moreover, we used six binary classification datasets. These datasets cover different appli-
cation domains and sensitive groups, focusing mainly on gender, age, and race [25]. All
datasets have been preprocessed and stored in our GitHub repository.3 The preprocessing
is based on Karimi et al. [2] and Le Quy et al. [25]. Further details about the CounterFair
parameters and the features for each dataset may be found in the repository.

Additionally, we trained a random forest (RF) and a multi-layer perceptron (MLP) classi-
fier and tuned their parameters using a 70%/30% train/test split and a grid search tuning on
the training set. We used the F1 score as our classification metric. Details on performance,
computing unit used and structure of the classifiers are provided in the repository.

3 https://github.com/alku7660/CounterFair.
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Finally, we benchmark CounterFair on three scenarios, one for each of the described
cost functions in Sect. 4.3: (1) with cost function Z1 and three different values of α: α =
[0.1, 0.5, 1.0] for all datasets. and obtain the AWBsk and Lsk scores for each sensitive group
sk ; (2) with cost function Z2, to reduce the biases based on the aggregated burden; (3) with
cost function Z3 to showcase the adaptability of CounterFair and its performance when
optimizing for effectiveness, as a group CF measure that has been previously prioritized by
other methods.We compare the performance in terms of burden and effectiveness with AReS
and FACTS.

5.2 Results

We present here the results of the experiments carried out with respect to 5 elements: (1) bur-
den minimization for bias detection, (2) minimization of burden differences among sensitive
groups for bias mitigation and fair recommendations, (3) impact of minimizing differences
of burden and differences of distance on the group CF recommendations, (4) minimization
of distinct CFs for relevant subgroup identification and (5) comparison of CounterFair with
AReS and FACTS in burden, effectiveness and run times.

5.2.1 Burdenminimization

In the first experiment, we ran CounterFair to minimize cost function Z1 with α =
[0.1, 0.5, 1.0], i.e., starting with a low weight of 0.1 for the Cburden cost and a high weight of
0.9 for the Cgroups cost, and ending with a high weight of 1.0 for Cburden and 0.0 for Cgroups.
Figure 3 shows the aggregated burden per sensitive group as the bars when α increases
for each dataset. The burden decreases as α increases for all the datasets, and shows the
differences in burden among different sensitive groups.

The differences in burden across sensitive groups are best evidenced when using the
highest α = 1.0 because the nearest and easiest CF is selected for each instance. Since the
aggregated burden for each sensitive group is calculated through Eq. (7), a higher number of
false-negative instances (the number in parenthesis in the legend of each plot) would normally
portray a higher burden for a given group. However, this is not always the case. For example,
prioritizing AWB (α = 1.0) in the German dataset does not show the same relative AWB
behavior among genders as in the other two values for α and, even though there are less than
half as many females as males, females present a higher AWB.

5.2.2 Minimization of burden differences among sensitive groups

in this experiment we ran CounterFair to minimize cost function Z2, i.e., the differences in
burden among the CFs. Figure 3 shows the result of this experiment in the last set of bars
on each plot, over the Fair x-axis label. Note that the obtained CFs show an equal burden as
measured by AWBsk among the sensitive groups for each dataset, effectively eliminating the
biases in burden and producing group CF recommendations that are fair across these groups.

5.2.3 Impact of minimizing the differences of burden among groups (AWBsk )

we illustrate the impact of the minimization of burden differences in the CounterFair CF
recommendations for the false-negative instances in the German dataset and compare it to
the minimization of distance differences, i.e., not considering the false negative ratio of the
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Table 1 Instances and their CFs obtained through CounterFair when mitigating biases across sensitive groups
in the German dataset

Sex Single Unemployed Purpose Rate Housing Age Credit Duration

X1 M No No Elec 3 Rent 22 1331 1.2

X1
′AWB
Fair M No No Elec 3 Rent 22 1845 4.5

X1
′dist.
Fair M No No Elec 3 Rent 22 1871 4.5

X2 F No No Car 4 Owns 34 1842 3.6

X2
′AWB
Fair F No No Car 4 Owns 34 866 15

X2
′dist.
Fair F No No Car 1 Owns 34 1490 15

The recommended changes are larger for the female since the model is biased in accuracy favoring females

model. We randomly pick a male and a female from theDTest FN set. We then run CounterFair
on this dataset minimizing instead the differences in distance cost

∑
DTest FN

d(Xi , X ′
i ) and

extract the CFs for the selected male and female. The CFs (minimizing AWB differences
and distance differences) are shown in Table 1. In the CFs minimizing AWB differences, the
credit change is larger for the female than for themale, compensating for the higher amount of
false-negative males (there are 8 false-negative females and 28 false-negative males). When
minimizing for distance differences, there is no consideration of the false-negative ratio, so
there is no compensation for the bias in accuracy, and the credit change is smaller for the
females, although the rate also decreased.

We highlight the importance of having both the bias detection-oriented CF generation first,
as this would allow the users to detect potential sensitive feature biases present in the trained
model, and then, if required, generate fair CFs byminimizing the burden in deployed models.
This is important, since only running CounterFair for bias mitigation (although beneficial
for the fairness in the recommendations to users) might hide the models algorithmic biases.
We recommend using CounterFair in the following manner: first identify the biases and then
obtain the bias-mitigating CFs if needed, so that the recommendations are fair across groups.

5.2.4 Minimization of distinct CFs

Wenowshow the structure of the relevant subgroups identifiedwhenminimizing cost function
Z1 with α = 0.1. Figure 3 illustrates the number of relevant CFs and subgroups found for
each sensitive group with the diamonds plotted using the secondary y-axis. Note that, as
burden is increasingly prioritized, the number of subgroups increases. Figures 4 and 5 show
the details of the relevant subgroups identified in the six studied datasets. As an example, we
discuss now the Compas dataset. In the Compas dataset (Fig. 4c) the red subgroup shows
Caucasian males with at least a felony and 15 priors, older than 45. The other subgroups are
characterized by priors around 6, ages between 25 and 45. These are obtained by aggregating
the instances that share the same group CF, as output by CounterFair. In the case of the
Compas dataset, the identified subgroups may provide further data to analyze the people that
are being misclassified as recidivists and why. For example, in the case of the red group
(Caucasian males with a felony, almost 15 priors, older than 45), only 22 false-negative
instances were found, while for the dark green (Caucasian males with a felony, around 6
priors, between 25–45 years of age) there were 210, indicating an almost 10 times larger
false-negative ratio for the latter. This is interesting, since there are more false negatives in
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Fig. 3 Aggregated burden, identified subgroups and fair CFs burden output. Each plot has four points in the
x-axis: three for theα values of 0.1, 0.5 and 1.0 using cost function Z1, and one using cost function Z2. The bars
show the burden (on the left y-axis), while the diamonds the number of distinct subgroups for each sensitive
group (on the right y-axis). The legends indicate the sensitive groups and their number of false negatives in
parenthesis

the younger age group, even as there are less prior counts of crimes committed, indicating
that the model might have an age bias. We now focus on all these identified subgroups.

We investigate these subgroups by performing two analysis: (1) inter-subgroup analysis:
whether the identified subgroups present lower, comparable or higher biases with respect to
other subgroups, and (2) subgroup-group analysis: whether the identified subgroups present
lower, comparable or higher biases with regards to the sensitive feature groups that compose
them. Explicitly, in the subgroup-group analysis, we compare the average distances of a
given subgroup (themain component of the AWBmeasure) to their shared counterfactual, for
example, of a subgroup ofAfrican-American Females,with respect to the average distances to
the counterfactuals of only Females, and only African-Americans, separately. The hypothesis
behind the subgroup-group analysis is: whenever a model presents biases against a given
sensitive feature group (such as Female or African-American) it may present a similar or
higher bias level against a subgroup lying in the intersection of both (African-American
Females). The following section (Sect. 5.3), focuses on the study of subgroups identified
for the Adult, Compas and Student datasets, which present at least 2 different sensitive
features, allowing for subgroups formed by the intersection of their different sensitive groups.
Section 5.3 will first focus on the evaluation of the sizes of each subgroup, then, based on the
most relevant subgroups based on their size, we will proceed to perform the inter-subgroup
analysis followed by the subgroup-group analysis.
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Table 2 The top ten largest
subgroups in the Adult dataset

G Sex Race Age Size

2 Male White 25–60 60

8 Male White 25–60 126

9 Male White 25–60 81

13 Male White 25–60 82

18 Male White >60 52

20 Male White 25–60 45

23 Male White 25–60 49

28 Male Non-White 25–60 50

51 Female White 25–60 60

59 Female White 25–60 108

5.3 Subgroups

Some of the datasets, as observed in Figs. 4 and 5, present a relatively high number of
identified subgroups, while others a smaller set. The Adult dataset has the highest number of
identified subgroups. This is due to the fact that it has the highest number of sensitive features,
3 in total: Sex, Race andAge. The Sex feature has two categories (Male and Female), the Race
feature has two categories (White and Non-white) and the Age feature has three categories
(Less than 25, 25–60 and Greater than 60). This leads to a set of 12 different combinations
of sensitive subgroups.

However, the CounterFair algorithm, whenminimizing the cost function Z1 with α = 0.1,
may obtain more than one counterfactual point for each of these potential combinations
of sensitive groups, since these points may be located arbitrarily in space, leading to the
formation of different subgroups inside these groups (for example, White Males under 25
that work less than 40h per week, and White Males under 25 that work more than 80h per
week). Therefore, it is reasonable to observe the behavior in Fig. 4a where several smaller
groupings are identified for a single sensitive subgroup. For the Adult dataset, a total of 84
subgroups are identified. Out of these subgroups, the top ten subgroups based on size are
selected for the inter-subgroup and the subgroup-group analyses. These top ten groups are
shown in Table 2.

In the Compas dataset, there are two sensitive features, namely Race and Sex, each having
two categories: African-American and Caucasian, and Male and Female, respectively. Given
that the subgroups are smaller, their sizes can be more easily observed in Fig. 6, while Table 3
shows the details of these identified subgroups.

Since there are only 7 different subgroups available, we perform the subgroup-group and
the inter-subgroup analyses on all the subgroups.

Finally, in the student dataset, there are two sensitive features, namely Age and Sex, each
having two categories: Less than 18 and Greater than or equal to 18, and Male and Female,
respectively. The subgroups are observed in Fig. 7, while Table 4 shows the details of these
identified subgroups.

We now proceed to present and discuss the results of the inter-subgroup and the subgroup-
group analyzes.
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Fig. 4 Subgroup details for the Adult, Athlete and Compas datasets, running CounterFair with α = 0.1. The
shaded regions have a width equal to one standard deviation of the features values of each subgroup
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Fig. 5 Subgroup details for the Dutch, German and Student datasets, running CounterFair with α = 0.1. The
shaded regions have a width equal to one standard deviation of the features values of each subgroup
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Fig. 6 Pie chart indicating the
relative importance of each
subgroup identified in the
Compas dataset

Table 3 Different subgroups
identified for the Compas dataset

G Race Sex Size

0 African-American Male 54

1 African-American Male 76

2 African-American Male 210

3 African-American Male 22

4 African-American Female 60

5 Caucasian Male 122

6 Caucasian Female 24

Fig. 7 Pie chart indicating the
relative importance of each
subgroup identified in the Student
dataset
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Table 4 Different subgroups
identified for the Student dataset

G Sex Age Size

0 Male <18 4

1 Male ≥18 6

2 Female <18 6

3 Female ≥18 18

Fig. 8 Bar plot showing the L1 and L0-norm for the top ten subgroups of the Adult dataset

5.3.1 Inter-subgroup analysis

In the Adult dataset the average distance between each of the top ten subgroups and their
corresponding counterfactual is observed in Fig. 8. It is important to recall that the higher
the distance, the higher the burden, and therefore the higher the biases against that specific
subgroup.

The first observation from Fig. 8 is that six of the top ten subgroups by size (namely G2,
G8, G9, G13, G20 and G23) correspond to White Males between the ages of 25 and 60.
Additionally, the amount of instances compiled in these subgroups is 443, which is 62% of
the 713 instances collected in the top ten subgroups. Note as well that there does not seem to
be a bias in favor of these six subgroups based on the distances from their instances to their
corresponding counterfactuals and the largest average distance corresponds to the subgroup
G23. The second largest distance corresponds to the subgroupG18 ofWhite Males older than
60, while the third largest to G8, the largest subgroup with 126 instances of White Males
between the ages of 25 and 60. Based on this information, there might be biases related to
the increased number of White Males in the ages of 25 to 60, evidenced in the larger amount
of instances in these subgroups. Based solely on the average distances to the counterfactuals,
it is not evident that there might be larger, comparable or smaller biases across the different
subgroups for the Adult dataset.
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Fig. 9 Bar plot showing the L1 and L0-norm for the Compas dataset

In the Compas dataset, the average distance between each of the subgroups and their
corresponding counterfactual is observed in Fig. 9.

The largest distance is observed for the G6 subgroup, corresponding to a set of Caucasian
Female individuals. However, this group is small in size when compared to the largest sub-
groups of Males. Out of the 7 subgroups, 4 correspond to African-American Males (namely
G0, G1, G2 and G3), adding up to 362 out of 568 false negatives in the dataset (64%) and
5 subgroups correspond to Males. The subgroup with the second highest average distance is
G5 corresponding to a set of 122 Caucasian Males. The third largest corresponds to G1, a
subgroup of 76African-AmericanMales. Similarly to theAdult dataset, the average distances
between the subgroups and their corresponding counterfactuals does not seem necessarily
related to the levels of bias, more than the amount of false negatives does.

In the Student dataset, the average distance between each of the subgroups and their
corresponding counterfactual is observed in Fig. 9.

In the student dataset (see Fig. 10) there is a clear distinction between the 4 subgroups
shown: the ones having Females have amuch higher distance or bias against them. Subgroups
G3 and G2 have almost double the average distance than subgroups G0 and G1, indicating
a much higher bias for the Females than for the Males. However, note there is not such a
clear distinction between the subgroups across the Age groups, with only a slight difference
between the G1 and G0 subgroups of Males, where the younger ones in G0 seem to have a
higher average distance to their counterfactuals than the older Male students subgroup G1.
We now proceed to perform the subgroup-group analysis in the Adult, Compas and Student
datasets.

5.3.2 Subgroup-group analysis

For this analysis, the average distances of the subgroups are compared to the average distances
of the sensitive feature groups that compose the subgroups. As previously analyzed, the top
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Fig. 10 Bar plot showing the L1 and L0-norm for the Student dataset

Fig. 11 Bar plot showing the L1 and L0-norm for the subgroup G2 of the Adult dataset with respect to the
forming sensitive feature groups

ten subgroups of the Adult dataset are studied. For each of the subgroups, a plot and analysis
is done and shown. For six of the subgroups, the sensitive groups to compare to are the same
(White Males between the ages of 25 and 60).

Figure 11 indicates a slightly higher bias in terms of the average distance of the subgroup
G2, which isWhite Males between the ages of 25 and 60, with respect to the sensitive feature
groupsMale,Whites and 25–60Age group, respectively. Figure 12 indicates a slightly higher
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Fig. 12 Bar plot showing the L1 and L0-norm for the subgroup G8 of the Adult dataset with respect to the
forming sensitive feature groups

bias in terms of the average distance of the subgroup G8, with respect to the sensitive feature
groupsMale,Whites and 25–60Age group, respectively. In this case, Fig. 13 indicates a lower
bias in terms of the average distance of the subgroup G9 with respect to the sensitive feature
groups Male, Whites and 25–60 Age group, respectively. This was expected, according to
the observations in Fig. 8, where the subgroup G9 is shown to have the lowest average
distance. Figure 14 indicates a comparable level of bias in terms of the average distance of
the subgroup G13, with respect to the sensitive feature groups Male, Whites and 25–60 Age
group, respectively. Figure 15 indicates a higher level of bias in terms of the average distance
of the subgroup G18, with respect to the sensitive feature groups Males, Whites and above
60 Age group, respectively. So far, this indicates that the subgroups at the intersection of
the sensitive groups may be, in general, showing higher biases than the forming sensitive
features in most of the cases. In Fig. 16, the level of bias of the subgroup G20 is relatively
similar between the subgroup and the forming sensitive groups, as is the case of subgroup
G13. In Fig. 17, the level of bias of the subgroup G23 is considerably higher than that of the
forming sensitive groups, being almost 30%. In Fig. 18, the level of bias of the subgroup G28

is relatively similar to that of the forming sensitive groups. In Fig. 19, the level of bias of the
subgroup G51 is considerably higher than that of the forming sensitive groups, specifically
that of the Females, being 25% higher. In Fig. 20, the level of bias of the subgroup G59 is
relatively similar, and somewhat lower than that of the forming sensitive groups, specifically
that of the White, and between 25 and 60.

The Subgroup-group analysis for the Compas dataset is done using the following figures.
In Fig. 21, the level of bias of the subgroup G0 is considerably lower than that of the forming
sensitive groups (African-Americans andMales). In Fig. 22, the level of bias of the subgroup
G1 is considerably higher than that of the forming sensitive groups (African-Americans and
Males). In Fig. 23, the level of bias of the subgroup G2 is considerably lower than that of
the forming sensitive groups (African-Americans and Males). In Fig. 24, the level of bias of
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Fig. 13 Bar plot showing the L1 and L0-norm for the subgroup G9 of the Adult dataset with respect to the
forming sensitive feature groups

Fig. 14 Bar plot showing the L1 and L0-norm for the subgroup G13 of the Adult dataset with respect to the
forming sensitive feature groups
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Fig. 15 Bar plot showing the L1 and L0-norm for the subgroup G18 of the Adult dataset with respect to the
forming sensitive feature groups

Fig. 16 Bar plot showing the L1 and L0-norm for the subgroup G20 of the Adult dataset with respect to the
forming sensitive feature groups
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Fig. 17 Bar plot showing the L1 and L0-norm for the subgroup G23 of the Adult dataset with respect to the
forming sensitive feature groups

Fig. 18 Bar plot showing the L1 and L0-norm for the subgroup G28 of the Adult dataset with respect to the
forming sensitive feature groups
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Fig. 19 Bar plot showing the L1 and L0-norm for the subgroup G51 of the Adult dataset with respect to the
forming sensitive feature groups

Fig. 20 Bar plot showing the L1 and L0-norm for the subgroup G59 of the Adult dataset with respect to the
forming sensitive feature groups
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Fig. 21 Bar plot showing the L1 and L0-norm for the subgroup G0 of the Compas dataset with respect to the
forming sensitive feature groups

the subgroup G3 is considerably higher than that of the forming sensitive groups (African-
Americans and Males). Out of 4 subgroups analyzed so far with the African-American Male
groupings, 2 show lower biases and 2 show higher biases with respect to the forming sensitive
subgroups. In Fig. 25, the level of bias of the subgroup G4 is considerably higher than that of
the African-Americans, but not of the Females. This indicates that being African-American
and Female may be less favored off than being African-American and Male. In Fig. 26, the
level of bias of the subgroup G5 is high and indicates that more than being Male, the Race is
affecting considerably, since the level of bias relates highly to the Caucasian Race. In Fig. 27,
the level of bias of the subgroup G6 is relatively high with respect to the forming sensitive
groups.

In general, in the Compas dataset, there is no clear indication of higher or lower biases in
the subgroups found, as was found in the Adult dataset.

In the student dataset, the following figures show the comparison between the subgroups
and the forming sensitive groups. In Fig. 28, the level of bias of the subgroup G0, which is
Male and younger than 18, is relatively high with respect to the Male group, but considerably
lower than that of the younger than 18 group. In Fig. 29, the level of bias of the subgroup
G1, which is Male and older than 18, is lower with respect to both the Male group and the
older-than-18 group. In Fig. 30, the level of bias of the subgroup G2, which is Female and
younger-than-18, is similar the Female group, but higher than that of the younger-than-18
group. In Fig. 30, the level of bias of the subgroupG2, which is Female and younger-than-18,
is similar to the one of the Female group, but higher than that of the younger-than-18 group.
In Fig. 31, the level of bias of the subgroup G3, which is Female and older-than-18, is similar
to the one of the Female group, but higher than that of the older-than-18 group. The last two
groups probably indicate that the important variable here is more the age than the gender.
As mentioned before, it seems the comparison among subgroupings and forming sensitive
groups in the student dataset is not as clear as it was for this dataset in the comparison across
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Fig. 22 Bar plot showing the L1 and L0-norm for the subgroup G1 of the Compas dataset with respect to the
forming sensitive feature groups

Fig. 23 Bar plot showing the L1 and L0-norm for the subgroup G2 of the Compas dataset with respect to the
forming sensitive feature groups
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Fig. 24 Bar plot showing the L1 and L0-norm for the subgroup G3 of the Compas dataset with respect to the
forming sensitive feature groups

Fig. 25 Bar plot showing the L1 and L0-norm for the subgroup G4 of the Compas dataset with respect to the
forming sensitive feature groups
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Fig. 26 Bar plot showing the L1 and L0-norm for the subgroup G5 of the Compas dataset with respect to the
forming sensitive feature groups

Fig. 27 Bar plot showing the L1 and L0-norm for the subgroup G6 of the Compas dataset with respect to the
forming sensitive feature groups
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different subgroups, however, specifically for the Females, it is perhaps possible to see that
the gender is leading the most bias when compared to the Age group.

The analysis from the perspective of fairness into the subgroups found may shed light into
the aspects of counterfactual intersectional fairness, where the intersections of these groups
can be found. Specifically for the cases in which the subgroup has a larger distance or burden
from their corresponding group counterfactuals, a further analysis can be done. In the Adult
dataset, for the G2 and G8 subgroups, which are White Males between 25 and 60 years
of age, these subgroups have a higher distance or burden when compared to the individual
groups of Whites, Males and people between 25 and 60 alone. The general reason, which
can cover all kinds of intersectional bias issues (not only this model and dataset), is that there
is a smaller representation of the subgroup of White Males between 25 and 60 years of age,
than there is of only Whites, only Males, or only people between 25 and 60. Looking more
into detail, some interesting information is revealed that could shed light into what is driving
these higher intersectional group biases.

Firstly, the Adult G8 subgroup happened to also have all of its members married and
with significant capital disadvantages (having 0 average capital gains and an average of 15
in capital losses). This indicates a very particular behavior for this group, because out of
all the 60 white males inside it, none is single or divorced, and none of them has reported
positive capital gains. This may be causing the model to learn a further or more clear decision
boundary for this specific group of people.

A similar behavior can be observed for the Adult G2 subgroup. This group curiously has
all of its member divorced, and all have a significant capital gain (average of 160). Another
thing to note is that they have one of the highest education levels, averaging 9.8 (10 is the top
at College Professor level). Our intuition tells us that, with high levels of education and higher
capital gains, these people should be closer to the desired (correct) class labels (remember
these are false negatives). However, the model may be highly biased to consider divorce as
a highly important feature to decrease the estimated level of wealth of these individuals,
and therefore creates a potentially further decision boundary that contributes to these higher
biases.

Furthermore, the CompasG1 subgroup also shows a high subgroup bias. In this subgroup,
the 76 people showed an average of 7.3 prior felony counts. For Compas subgroup G2,
which had an actual lower burden compared to that of G1 with respect to their individual
demographic groups, the number of prior felony counts was lower, with an average of 5.8.
Again, these features may be causing a slightly different decision boundary trained around
them that could be based on these features and leading to a higher difficulty for these false
negatives to reach their corresponding group counterfactuals on the desired label space.

5.3.3 Comparison of CounterFair with AReS and FACTS with respect to burden,
effectiveness and run time

We ran the experiments of AReS and FACTS with two considerations: (1) following the
authors recommended support threshold of 1% [7, 10] and (2) limiting the execution time to
maximum 1 week per dataset. However, the threshold had to be modified to run within the
time limit, but at most to 10% (beyond this point, the performance significantly degrades).
Figure 32 shows the AWB, effectiveness and run times of CounterFair, AReS and FACTS.
CounterFair mostly outperforms AReS and FACTS in burden and effectiveness. AReS and
FACTS beat CounterFair in AWB in the Dutch dataset Females (FACTS beats it on Males
and Females). AReS also beats CounterFair in Males and Females in AWB in the Athlete
dataset. CounterFair significantly beats them in effectiveness in all cases. For AReS this

123



A. Kuratomi et al.

Fig. 28 Bar plot showing the L1 and L0-norm for the subgroup G0 of the Student dataset with respect to the
forming sensitive feature groups

Fig. 29 Bar plot showing the L1 and L0-norm for the subgroup G1 of the Student dataset with respect to the
forming sensitive feature groups
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Fig. 30 Bar plot showing the L1 and L0-norm for the subgroup G2 of the Student dataset with respect to the
forming sensitive feature groups

Fig. 31 Bar plot showing the L1 and L0-norm for the subgroup G3 of the Student dataset with respect to the
forming sensitive feature groups
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Fig. 32 CounterFair, AReS and FACTS performance. Lower AWB, higher effectiveness and lower times are
better. CounterFair is run with Z1 and alpha = 1.0 for AWB, and with Z3 for effectiveness

can be explained by the lack of feasibility constraints on the CFs, leading sometimes to
infeasible CFs. Timewise, AReS is the fastest, and CounterFair is at least 10 times faster than
FACTS except in the Dutch dataset (ran with 10%). We excluded Adult and Student since
the recommended threshold of 1% overshot the run time beyond the week, or it had to be
raised beyond 10%, hindering the performance.

6 Conclusions and future work

We propose CounterFair, an MP-based, model-agnostic CF generation algorithm that can
detect biases, mitigate them, and identify relevant subgroups in the data, all via group CF
generation. The generation of group CFs requires only the input of the feature properties of
mutability, directionality and possible values. CounterFair is, as demonstrated, adaptable to
generate CFs based on different cost functions thanks to its flexibility in cost and constraints
definitions. An example is analyzed with group effectiveness, and it is the only group CF
generation method, to the best of our knowledge, that is also able to reduce the burden biases
among sensitive groups by selecting CFs that decrease the difference in aggregated burden
among them. From a holistic perspective, having a tool that is not only able to detect biases,
but also extract fair recommendations based on the trained MLmodels is useful for scientists
and developers but also useful for users who are looking to find ways to improve their
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condition without them turning to be unfair with their peers. We have additionally extended
the discussion by analyzing the subgroups identified on the datasets that presentedmore than 2
sensitive features, i.e., Adult, Compas andStudent datasets, with the goal of detectingwhether
the biases, based on the measure of distance to the counterfactuals (the main component of
the AWB measure) was different across the different subgroups, or between the different
subgroups and their corresponding sensitive feature groups. In this regard, the study opened
the discussion regarding the intersection of sensitive feature groups, leading to the notion
of subgroup counterfactual fairness. As part of future work, other cost functions could be
formulated based on the literature on CF explanations quality measures, such as likelihood
or sparsity, as well as the usage of other commonly used fairness measures. Additionally,
the introduction of intersectional fairness: the study of fairness across the specific found
subgroups of interest, is a natural step forward. Moreover, the inclusion of the classifiers as
nonlinear constraints in the mathematical programming formulations could be researched.
Furthermore, the consideration of non-binary datasets, which should be easy to tackle using,
for example, a one-versus-the-rest approach, is also a logical progression,while the scalability
and complexity is a good topic to focus on. Finally, the balance between the objectives of
identifying biases and subgroup identification could be explored, i.e., either performing an
ablation study on the weights given to each term in the cost function depicted in Eq. (9). It
could also be interesting to find away to reformulate the biasmitigation so that the formulation
of the problem can remain an integer program, in order to integrate the term Z2 found in Eq.
(17) into (9). In this way, the objectives of identification, mitigation of bias and subgroup
search could all be balanced and weighted in a further ablative study.
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