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Abstract

Recently, there has been significant research activity in
the algorithmic analysis of complex networks, such as so-
cial networks, or information networks. A problem of
great practical importance is that of network immunization
against virus spread. Given a network, a virus-propagation
model, and an immunization cost function, we are interested
in containing the spread of the virus while minimizing the
immunization cost. In this paper, we consider two virus-
propagation models and we propose immunization algo-
rithms for each model. The experimental evaluation shows
that our algorithms perform well on both synthetic and real
graphs. Furthermore, it reveals the following interesting
facts (a) the simple heuristic of immunizing the nodes with
the highest degree is not optimal, and (b) our algorithms
perform significantly better in small-world networks.

1 Introduction

It is often the case that natural or man-made systems are
organized in networks. Examples include the Internet, the
Web, social networks, or networks of proteins. The normal
operation of such networks is threatened by the diffusion
of harmful information that is propagated through the links.
Examples include cascading failures in an electrical grid,
sexually transmitted diseases in a sexual network, computer
viruses on the Internet, harmful gossip or panic in a social
network. We will collectively refer to the harmful informa-
tion that is propagated as avirus, and we will refer to the
process of impeding the spread of the virus as the immu-
nization of the network. This is a problem of obvious practi-
cal importance. We want to prevent disease spreads, protect
computer networks from viruses, and control the leakage of
sensitive information and unpleasant gossip. At the same
time our resources (vaccination, anti-virus software, influ-
ence) are costly and limited, so we are interested in achiev-
ing the best possible effect, while allocating the minimum
possible resources.

The problem of immunization is defined informally as
follows. Given a network, and a virus-propagation model,

assume that an adversary places a number of viruses in the
network. We are interested in immunizing the minimum set
of nodes, such that in the resulting network the spread of the
virus is contained. Alternatively, given a fixed budget, we
are interested in containing the spread of the virus as much
as possible without exceeding our budget.

The immunization process depends obviously on the
virus propagation model. Models for diffusion of informa-
tion in a network have been studied extensively in various
disciplines, including computer science, sociology, physics,
and epidemiology. In this paper, we consider two different
types of models: theindependent-cascade model, consid-
ered by Kempe et al. [10] for the propagation of gossip,
and dynamic-propagation modelssimilar well known SIS
model [14] for epidemic spread. Each of these models, de-
fines a different objective for the immunization algorithm,
and thus requires different immunization strategies.

Our contributions can be summarized as follows.

• We define a general framework that allows us to for-
mally define the immunization problem.

• We consider two different virus propagation models,
and we propose immunization algorithms for these
models.

• We study the algorithms experimentally on both real
and synthetic networks. We observe that contrary to
popular belief immunizing the node with the highest
degree does not yield the best results. The benefits
of our algorithms are especially pronounced in graphs
with high clustering coefficient, a case that is encoun-
tered in many real-life networks.

The rest of the paper is structured as follows. In Sec-
tion 2 we review some related work. In Section 3 we define
the general framework for the problem of network immu-
nization. In Section 4 we we discuss in detail the virus-
propagation models we consider, and we define immuniza-
tion problems for these models. Our immunization algo-
rithms are presented in Section 5, and our experiments in
Section 6. Section 7 is a short conclusion.
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2 Related Work

The study of mathematical models for epidemic spread
has a long history in biological epidemiology, as well as in
the study of computer viruses [11]. The pioneering work of
Kermack and McKendrick [12] establishes the first stochas-
tic theory for epidemic spread and proves the existence of an
epidemic threshold, which determines whether the epidemic
will spread, or die out. A large amount of recent work in
mathematical epidemiology focuses on providing analytic
expressions for epidemic thresholds for different propaga-
tion models and different families of networks [3–6,14].

In homogeneous networks, immunizing random nodes in
the network is an effective mechanism for preventing the
epidemic spread [1, 14]. However, the method of uniform
immunization breaks down for scale-free networks due to
the existence of highly connected nodes. For such networks
it can be shown that there is epidemic threshold [14]. How-
ever, in these cases immunizing highly connected nodes ap-
pears to be highly effective [8,14]. In the case that the topol-
ogy of underlying network is unknown Cohen et al. [7] show
that immunizing random acquaintances of random nodes
is more effective than immunizing random nodes. Finally,
Aspnes et al. [2], assume that nodes in the graph act self-
ishly and they study inoculation strategies from a game-
theoretic point of view. They also consider centralized ver-
sions of the problem, and they introduce the sum-of-squares
partition problem, for which they obtain a polynomial-time
O(log2 n)-approximation algorithm.

For a more complete review on virus propagation mod-
els and immunization algorithms we refer the reader to [13,
14].

3 The general framework

The immunization problem has the following compo-
nents.

• The network, over which the virus propagates. This is
modeled as a graphG = (V, E). We will consider only
undirectedgraphs, although most of our results apply for
directed graphs as well. It is possible to assume that the
graphs are drawn from a specific family. In the defini-
tions and algorithms we consider all possible graphs. In
our experiments we investigate various popular families
of graphs.

• The virus propagation model, that determines how the
virus spreads in the network.

• The immunization algorithm, which has the power to im-
munize a set of nodes in the network in order to minimize
the spread of the virus. An immunized node cannot re-
ceive or transfer the virus. Conceptually, for the purpose

of the virus propagation we can think of the immunized
nodes as being removed from the network. The cost of
the immunization algorithm is the number of nodes that
are immunized.

• The adversary, who has knowledge of the virus propaga-
tion model, and she plantsr copies of the virus in the net-
work so as to maximize the spread of the virus. We will
useAr to denote such an adversary. The adversary may
also have knowledge of the choices made by the immu-
nization algorithm. We call such an adversary anadaptive
adversary. We also consider arandomizedadversary who
places virus copies uniformly at random.

4 Virus Propagation and Epidemic Spread

Modeling virus propagation is a problem with long his-
tory. The most popular models are the SIR (Susceptible-
Infected-Removed) model, and SIS (Susceptible-Infected-
Removed) model. In the SIR model, a node may be in any
of the following three states: Susceptible, in the case it does
not have the virus, but it can become infected if exposed to
it; Infected, in the case that it has the virus and can pass it
on; Removed (or Recovered), in the case that it used to have
the virus, but it recovered (or died), and now it is perma-
nently immunized and it no longer participates in the virus
propagation process. In the SIS model, we assume that a
node may be cured from the virus, but it is not immunized,
and thus it can become infected again. Therefore, a node
alternates between the susceptible and immunized states.

The two virus propagation models we consider are spe-
cial cases of these two models. We now describe them in
detail.

4.1 The Independent Cascade Model

The first model is a discrete-time special case of the SIR
model. At timet = 0 the adversary plantsr viruses to some
nodes of the graph. Then, if a nodei becomes infected for
first time at timet it is given a single chance to infect each of
its neighborsj that is currently uninfected. The probability
that nodei succeeds in infecting nodej is pij . If node i
succeeds in infectingj, thenj becomes infected at timet +
1; otherwise nodei never attempts to infect nodej again in
the future (eventhoughj might eventually get infected by
some of its other neighbors). The virus-propagation process
continues until no more infections are possible — clearly
the process stops after at mostn steps.

This model is a special case of the SIR model, where
we assume that time proceeds in discrete time steps and we
require that nodes stay infected for exactly one time step.
We refer to it as independent cascade model, following the
terminology of Kempe et al. [10].
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Now, letG be a graph of sizen, and letNr be a subset of
r nodes of the graph wherer copies of the virus are placed.
Assume now that the propagation process is completed. Let
S(Nr, G) denote the expected number of infected nodes in
G. The expectation is taken over all random choices made
by the propagation model. Also, let

Sr(G) = max
Nr

S(Nr, G),

denote the maximum expected number of infected nodes,
where the maximum is taken over all possible initial virus
placements. The subsetAr = arg maxNr

S(Nr, G) corre-
sponds to choices of the adaptive adversary. We callSr(G)
the epidemic spreadin G. We can give similar definitions
for the epidemic spread in the case of a randomized adver-
sary. In this case we define

Ŝr(G) = ENr [S(Nr, G)],

to be theexpected epidemic spread, where now the expecta-
tion is taken over all possible positions of ther viruses.

We now define the following immunization problems.

Problem 1 (EPIDEMIC SPREAD M INIMIZATION ) Given a
graphG, a numberr of initial viruses, and a numberk, im-
munizek nodes inG, such that the epidemic spreadSr(G′)
in the immunized graphG′ is minimized.

Problem 2 (EXPECTEDEPIDEMIC SPREAD M INIMIZATION )
Given a graphG, a numberr of initial viruses, and a num-
ber k, immunizek nodes inG, such that the expected
epidemic spreadŜr(G′) in the immunized graph is
minimized.

We note that for problemEPIDEMIC SPREAD M INI -
MIZATION (Problem 1), the role of the adaptive adversary
in our framework is played by the influence-maximization
algorithm in [10]. Problem 1 is NP-hard (the proof is omit-
ted due to space constraints).

The case ofEXPECTEDEPIDEMIC SPREAD M INIMIZA -
TION (Problem 2) is different, since an algorithm for that
problem attempts to immunize the graph against a random
strategy for influence spread. This problem is more closely
related with the sum-of-squares partition problem, which
was studied recently by Aspnes et al. [2], even though our
formulation is more general since it involves a stochastic
virus-propagation model. Aspnes et al. [2], prove that the
sum-of-squares partition problem is NP-hard, which implies
immediately that Problem 2 is also NP-hard.

4.2 Dynamic Propagation Models

The models we consider in this section are special cases
of the SIS model. We view virus propagation as a dynam-
ical birth-death process that evolves over time. Viruses are

continuously propagated in the network, but they may also
die. More precisely, an infected nodei propagates the virus
to a nodej in a single step withpropagation probabilityβ,
while at the same time an infected node may recover with
recovery probabilityδ. The ratioβ/δ defines theinfection
rateof the virus.

Let M denote the adjacency matrix of graphG, and
λ1(M) be the largest eigenvalue ofM . Then, condi-
tion β/δ < 1/λ1(M) is sufficient for quick recovery of
the system. More precisely the following theorem can be
proven [9,15].

Theorem 1 Given a graphG with adjacency matrixM ,
and infection rateβ/δ, if β/δ < 1/λ1(M) then the expected
time until the virus dies out is logarithmic in the number of
nodes in the system, against an adaptive adversary.

Moreover, for many interesting families of graphs, the above
condition is also necessary for quick recovery, i.e., ifβ/δ >
1/λ1(M), the expected time until the virus dies out is expo-
nential in the system size [9]. Thus, it makes sense to talk
about anepidemic thresholdof the network, which deter-
mines whether an epidemic will spread, or die out quickly.

A rigorous analysis of the dynamical model encounters
the problem of dealing with a non-linear system, which is
hard to solve analytically. So, we also consider amulti-
ple copiesmodel, which is easier to analyze. In this model
we assume that each node may hold multiplecopiesof the
virus. More precisely, letvt be ann-dimensional vector that
describes the state of the network at time stept, wherevt

i is
the number of copies of the virus at nodei at stept. At
t = 0, v0

i is the number of copies of the virus planted by the
adversary at nodei. At stept, the system evolves as follows.
For every nodei in the network, and for each of thevt

i copies
of the virus at nodei, a copy of the virus is propagated to
nodej with probability β. Then, the virus copy dies with
probability1 − δ. If ∆ = βM + diag(1 − δ, . . . , 1 − δ),
and v̂t is the expected state of the system at stept, then
v̂t = ∆v̂t−1. Therefore, the system is completely linear
and we can prove the following theorem.

Theorem 2 Given a graphG with adjacency matrixM ,
and infection rateβ/δ, the expected time until the virus dies
out is logarithmic in the number of nodes in the system if
β/δ < 1/λ1(M), and it is unbounded ifβ/δ > 1/λ1(M),
against an adaptive adversary.

We are now ready to define the following immunization
problem for the dynamic model.

Problem 3 (THRESHOLDMAXIMIZATION ) Given a graph
G, and an infection rateβ/δ, immunize the minimum num-
ber of nodes inG, such thatβ/δ < 1/λ1(M ′), whereM ′ is
the adjacency matrix of the immunized graph.
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5 Immunization Strategies

5.1 The Independent Cascade Model

Minimizing the epidemic spread: In this section we dis-
cuss the proposed algorithms for network immunization and
epidemic-spread containment. We first describe our algo-
rithm for Problem 1,EPIDEMIC SPREAD M INIMIZATION .

For the rest of this section we consider the case thatk
nodes are immunized against an adversary who places only
one virus (r = 1). The basic ingredient of the algorithm,
based on the observation of Kempe et al. [10], is to view the
probabilistic process of virus propagation as sampling over
all 2|E| possible graphs according to the distribution de-
fined by the probabilitiespij and then run the deterministic-
cascade model on the sampled graph. For completeness, we
repeat the argument here: when a nodei becomes infected,
each currently uninfected neighborj of i becomes also in-
fected with probabilitypij . This process is equivalent with
a process where each edge(i, j) is live in the graph with
probability pij , and the virus is propagating only over the
live edges. In turn, this is equivalent to sampling a graphX
from the set of all subgraphs ofG, where each edge(i, j) of
G is present inX with probabilitypij , and then propagating
the virusdeterministicallyon the graphX.

Consider a graphX sampled fromG as described in the
previous paragraph. If the adversary places a virus at node
u, then the number of infected nodes,s({u}, X), is the size
of the connected component ofX that containsu. Then,
the expected epidemic spreadS({u}, G) in G with initial
placement of the virus at nodeu can be expressed as

S({u}, G) =
∑

X

Pr[X]s({u}, X), (1)

where Pr[X] is the probability of obtaining graphX
from G when sampling according to edge probabilitiespij .
Therefore, givenG, we can estimateS({u}, G) using Equa-
tion (1): sample graphsX fromG and compute the expected
size of the connected component thatu belongs to.

Let G|w1,w2,... be the graph resulting after immunizing
the nodesw1, w2, . . . of G. Assume first that we want
to immunize only one node (k = 1). For all candidate
nodesw1 to be immunized, we can compute the value of
S(G|w1) = maxu S({u}, G|w1), which is the worst-case
(over all possible initial virus placements) expected epi-
demic spread if the nodew1 is chosen to be immunized.
Then we choose to immunize the nodew that minimizes the
epidemic spreadS(G|w). In the case that we want to immu-
nizek > 1 nodes we proceed in agreedyfashion: we first
immunize the nodew1 that minimizesS(G|w1). Then we
find the best nodew2 to be immunized in the graphG|w1 ,
that is, we find the nodew2 that minimizesS(G|w1,w2)

given the choice ofw1 in the previous step, and we continue
until we selectk nodes. We call this algorithmGREEDY.

It is instructive to discuss the aboveGREEDY algorithm
in the light of other possible immunization strategies. One
such strategy, which we callMAX DEGREE and which we
evaluate in our experimental section, is to immunize the
nodes with the highest degree in the graph. Intuitively, the
best nodes to immunize are the nodes that disconnect the
graph in small-size connected components, since such dis-
persed configurations contain the virus as much as possi-
ble. The drawback of theMAX DEGREEstrategy is that the
nodes with the highest degree do not necessarily disconnect
the graph in small connected components. As a simple ex-
ample consider a chain graph: except for the two side nodes
all other nodes have degree 2, so the strategy of selecting the
maximum-degree node cannot distinguish among any node.
On the other hand, it is clear that the best node to immunize
is the node in middle of the chain. TheGREEDY will cor-
rectly identify the middle of the chain as the best node to
immunize, since this is the node that minimizesS(G|w).

Running time: The overall running time ofGREEDY, for a
graph ofn nodes andm edges isO(Q(n2 + nm)k), where
k is the number of nodes to immunize andQ is the number
of samples per iteration. We omit the detailed analysis due
to lack of space.

Minimizing the expected epidemic spread:We now dis-
cuss the modifications needed in the aboveGREEDY algo-
rithm in order to address the problem of minimizing the ex-
pected epidemic spread in the network. Consider a sample
graphX with c connected components of sizesn1, . . . , nc,
such thatn1 + . . . + nc = n, and letfi = ni/n for
i = 1, . . . , c. Let ŝ(X) denote the expected epidemic spread
onX, where expectation is taken over the adversary’s place-
ments. Assuming again that the adversary places one virus
in the graph, the virus will infect the wholei-th connected
component with probabilityfi and the size of spread will be
preciselyni. Therefore,

ŝ(X) =
c∑

i=1

fini =
1
n

c∑

i=1

n2
i .

From the above equation, it is immediately obvious why
this case is related with the sum-of-squares partition prob-
lem [2], as we mentioned in Section 4.1.

The GREEDY algorithm for EXPECTED EPIDEMIC

SPREAD M INIMIZATION is similar to the one we described
before. Nodes are immunized one at a time until a total of
k nodes are selected. To select a node to immunize, we use
the equation̂S(G′|w) =

∑
Pr[X]ŝ(X|w), which is analo-

gous to Equation (1). We estimatêS(G′|w) for all nodesw
and select the one that yields the smallest value. The overall
running time of the algorithm isO(Q(n + m)k).
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5.2 Dynamic Propagation Models

Following the discussion in Section 4 the epidemic
threshold for the dynamic propagation model is equal to the
inverse of the largest eigenvalue of the adjacency matrixM .
Therefore, the objective of the immunization algorithm is
to decrease this eigenvalue, while incurring the minimum
possible damage to the network.

Now, letλ1, andw1 denote the largest eigenvalue of ma-
trix M and the corresponding eigenvector. Also letai de-
note thei-th row vector ofM . The valueλ1w1(i) is the pro-
jection length of the vectorai on the eigenvectorw1. The
valueλ1 captures the collective strength of the alignment
of the row vectors with vectorw1. The eigenvectorw1 is
the vector with which the points are most strongly aligned.
Node i with the maximumw1(i) value corresponds to the
row vector that is most strongly aligned with the vectorw1.
Therefore, removingi, we expect a large disturbance in the
alignment withw1 and thus a large decrease in the eigen-
value λ1. In the multiple copies model the valuew1(i)
determines the rate at which the nodei accumulates virus
copies. After enough time steps, the node with the maxi-
mum valuew1(i) will be the node with the largest number
of virus copies.

The algorithm we propose, namedEIG, is the following.
Proceed in iterations, where each iteration takes as input a
matrixB. For the first iteration,B = M the system matrix.
Compute the largest eigenvalueλ1 and the corresponding
eigenvectorw1 of B. Let β/δ be the epidemic threshold. If
β/δ < λ1 the algorithm stops. Otherwise, find the nodei
with the maximum value in the eigenvectorw1, and remove
it from the graph, that is, remove the corresponding row and
column fromB. The resulting matrix will be given as input
to the next iteration. The running time of the algorithm is
O(kT ), wherek is the number of nodes removed, andT is
the time to compute the first eigenvalue and eigenvector. If
the graph is sparse this can usually be done in time propor-
tional to the edges of the graph.

We make one more observation about the qualitative
properties of our algorithm. The principal eigenvalue of a
graph gives us also an indication about the connectivity of
the graph. Large eigenvalue corresponds to a graph that is
densely connected. The nodes with the maximum value in
the first eigenvector are the ones that are most tightly in-
terconnected. Removing these nodes causes the connectiv-
ity of the graph to drop. Note that the eigenvector values
provide information about the global structure of the graph.
This is one of the reasons why our algorithm, as it will be-
come obvious in the experiments, performs in general bet-
ter than the simpleMAX DEGREEheuristic that removes the
node with the maximum degree, which takes into account
only local information.

6 Experiments
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Figure 4. Drop of the first eigenvalue for different
values of the parameters q and α.

In this section we compare the performance of the pro-
posed immunization strategies against other natural heuris-
tic strategies. We also explore how the underlying graph
structure affects the relative performance of the various al-
gorithms. For the experimental evaluation we use both syn-
thetic and real datasets. We will demonstrate that our al-
gorithms out-perform the other heuristics. We will also
demonstrate that our algorithms perform better for graphs
with high clustering coefficient, thus being more appropri-
ate for small-world networks.

6.1 Datasets

For the synthetic datasets, we generate two different
graph types:scale-freeandsmall-worldgraphs.

Scale-free graphs: In scale free-graphs. the probability that
a node of the network has degreek is proportional tok−γ ,
with γ > 1. We generate scale free graphs using the gen-
erating model proposed in by Barabasi and Albers [3]. The
graph generation process proceeds by inserting nodes se-
quentially. Each new node to be inserted in the graph is
linked to one existing node, which is chosen with probabil-
ity proportional to its current degree. This process simulates
the “rich get richer” effect, and generates scale-free graphs
with exponentγ = 3. We useGB to denote the family of
graphs generated by this model.

Small-world graphs: We use the termsmall-world
graphs [16,17] to describe graphs with smallcharacteristic
path lengthand largeclustering coefficient. The character-
istic path lengthL is defined as the average shortest path
between any pair of vertices. The clustering coefficientC
is defined as the average fraction of pairs of neighbors of
a node that are also connected to each other. We generate
small-world graphs using the generating models proposed
in [16] and [17]. We useGW to denote the family of graphs
generated by the former model andGWS for the family of

5



0 50 100 150 200 250 300 350 400
2400

2600

2800

3000

3200

3400

3600

3800

4000
Scale−Free Graphs (p=0.8)

# of immunized nodes

E
xp

ec
te

d 
ep

id
em

ic
 s

pr
ea

d

Greedy
Sort
MaxDegree
MaxDegreeIt
Random

0 50 100 150 200 250 300 350 400
2800

3000

3200

3400

3600

3800

4000
Watts−Strogatz Model (q=0.01, p=0.8)

# of immunized nodes

E
xp

ec
te

d 
ep

id
em

ic
 s

pr
ea

d

Greedy
Sort
MaxDegree
MaxDegreeIt
Random

0 50 100 150 200 250 300 350 400
500

1000

1500

2000

2500

3000

3500

4000
Watts Model (alpha=6,p=0.8)

# of immunized nodes

E
xp

ec
te

d 
ep

id
em

ic
 s

pr
ea

d

Greedy
Sort
MaxDegree
MaxDegreeIt
Random

Figure 1. Expected epidemic spread for GB and GWS (q = 0.01) and GW (α = 3).
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Figure 2. Expected epidemic spread for real graphs.

graphs generated by the latter. For graphs inGW , the gen-
eration process is governed by a parameterα. Intuitively,
α determines the probability that two nodes will be con-
nected, given the number of their common neighbors, thus,
it controls to which extent the graph will contain communi-
ties. For small values ofα the graph has small and densely
connected components. Asα approaches infinity, the gen-
erated graphs become random graphs. For theGWS graphs
on the other hand, the generation process is governed by the
parameterq. Initially, all nodes are on a ring lattice with
each node having degreek. The parameterq determines the
probability that an edge from the initial lattice is rewired to
connect to another random node in the network. Small val-
ues ofq entail in graphs that have high clustering coefficient
and large average path length, while large values ofq create
random graphs. For values ofq close to0.01 the generated
graphs are small-world graphs.

We note that the familiesGW , GWS andGB are quite
distinct. We do not observe power law degree distributions
for the graphs inGW and inGWS , while we observe very
low clustering coefficient for the graphs inGB . However,
this is not the case in real life, where we observe networks
with scale free and small world properties. Such an example
is the co-authors graph we describe next.

In addition to the synthetic datasets we also experiment
on real graphs: theco-authorsgraph, thepower-gridgraph
and the autonomous systemsAS-graphs.

Co-author graph: The co-authors dataset consists of 8000
authors of papers in VLDB, PODS and SIGMOD available

at the Collection of Computer Science Bibliographies1. The
co-author graph is constructed by creating undirected edges
between authors that have been co-authors in the same pa-
per. We think of the co-authors dataset, as representative of
a social network.

Autonomous Systems (AS) graphs: These graphs repre-
sent the Autonomous Systems topology of the Internet. Ev-
ery vertex represents an autonomous system, and two ver-
tices are connected if there is at least one physical link be-
tween the two corresponding Autonomous Systems. We
considered8 such different datasets.2

Power-grid graph: In this graph the vertices represent gen-
erators, transformers and substations, and edges represent
high-voltage transmission lines between them.

6.2 The Independent Cascade Model

For the independent-cascade model, we compare the
GREEDY algorithms with strategiesMAX DEGREE and
MAX DEGREEIT, which select the nodes to immunize based
on their degrees. TheMAX DEGREEalgorithm immunizes
the nodes in decreasing order of their degree in the original
graph. TheMAX DEGREEIT algorithm, is similar, but after
each step it updates the degrees of the nodes and selects the
best in the current graph. We also compare with theSORT

algorithm which is defined as follows. Initially, the algo-
rithm computes for each node the gain achieved by remov-
ing only this node from the network. It then sorts the nodes

1http://liinwww.ira.uka.de/bibliography
2Available athttp://www.cs.ucr.edu/ vkrish/ .
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Figure 3. Drop of the first eigenvalue after removing fixed number of nodes for generated graphs
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Figure 5. Drop of the first eigenvalue after removing fixed number of nodes for real graphs

in decreasing order of that gain, and proceeds by removing
the nodes in that order. Finally, we compare with the algo-
rithm RANDOM, which at every step selects a random node
to immunize. Throughout the experimental section if the
results forRANDOM are omitted is because the algorithm
performs incomparably bad.

For realizing the independent cascade model we assign
a uniform probabilityp to each edge. We experiment with
different values for the parameterp. In all cases we consider
as measure for the performance the epidemic spreadS, or
the expected epidemic spreadŜ.

Figure 1 shows the expected epidemic spread for the dif-
ferent algorithms as a function of the number of nodes re-
moved from a scale free network. We experiment with a
4000-node graph from theGB , GWS andGW families. In
all cases we have usedp = 0.8, although our results show
similar trends for other values ofp of the independent cas-
cade model. Additionally, there graphs fromGWS family
were generated withq = 0.01. For the graphs fromGW we
usedα = 6. Both the values of the two parameters result
in models where the underlying graphs have high cluster-
ing coefficient and low average path length. (We elaborate
more on the relationship between the performance of our
algorithms and the clustering coefficient in the next subsec-
tion.) Although the theGREEDY algorithm performs consis-
tently better than all other strategies, its superiority becomes
particularly apparent in small-world graphs. Those are the
graphs of theGWS andGW families.

For real graphs we report experiments only for the ex-
pected epidemic spread. The results for epidemic spread are
similar. In Figure 2 we show results on the co-authors graph

and an arbitrarily selected AS graph with 8000 nodes. In
all experiments we conducted that theGREEDY algorithm
consistently outperformes the other strategies. We also no-
ticed that theSORT algorithm tends to make good choices,
although it does not take into account the changes in the
underlying graph structure. The same important observa-
tion, that the performance of the algorithms is related to the
clustering coefficient of the graph, carries over to the real
graphs as well. In particular, in the co-authors graph the
GREEDY algorithm performs clearly better than the other
methods. The difference between the different algorithms
is not that striking in the AS graph. In trying to explain
this variation, we consider the clustering coefficient of the
two graphs and we find out that for the AS graph we have
CAS = 0.42, which is much smaller than the clustering
coefficient of the co-authors graph,CCO = 0.64. This in-
dicates that the structural properties of real graphs affect the
performance of the algorithms.

6.3 The Dynamic Propagation Model

In this section we evaluate the performance of our immu-
nization strategies for the dynamic propagation model. We
again compare our proposed algorithmEIG with MAX DE-
GREE, MAX DEGREEIT, andRANDOM, which are defined
as in the previous section. We also consider theBATCH al-
gorithm, a faster variant of theEIG algorithm that processes
nodes in batches. At every step, theBATCH algorithm re-
moves thè nodes with the highest value in the first eigen-
vector of matrixP . Experimental evidence shows that using
` = 2 does not degrade the performance of the algorithm.
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For values̀ > 2, we observed a significant drop in the per-
formance.

For comparing the performance of the different algo-
rithms we experiment as follows. For a given graph we
evaluate the ratio of the graph’s largest eigenvalue after im-
munizing a fixed number of nodes, to its initial value. The
nodes are immunized according to different immunization
algorithms. We repeat the test for different number of re-
moved nodes and for all families of generated graphs and
real graphs. Again for the generated graphs we experi-
mented with graphs with fixed number of nodes. However,
we also did extensive scalability experiments that show that
the relative performance of the algorithms is along the same
lines for larger graphs as well.

Figure 3 shows the performance of the algorithms for the
different families of generated graphs. For graphs inGWS

andGW , we fix the parametersq andα to values that al-
low for the generation of small-world graphs. The results
shown are averages over 10 runs. From the plots it is obvi-
ous that the algorithmEIG outperforms all the other algo-
rithms. Its superiority becomes particularly apparent for the
small-world graphs.

For studying the relationship between the algorithms’
performance and the structural properties of the graph we
proceed as follows. It is known ( [17]) that for theGWS

graphs the parameterq has an impact on the clustering co-
efficient of the generated graphs. For small values ofq the
clustering coefficient is high, while it gets small asq ap-
proaches 1. Figure 4 (left) shows that our algorithm also
performs relatively better than the rest of the heuristics for
small values ofq, while the difference in the performance
drops asq increases. More evidence accumulates when we
study the performance of the different heuristics on graphs
from GW , that are generated with different values of the pa-
rameterα. The relationship between the value ofα and the
clustering coefficient has been studied in [16]. Starting with
α = 1 the clustering coefficient of the generated graph is
high and increases even more until reaching some maximum
value whenα takes a value around7. After that the cluster-
ing coefficient drops asα increases. Figure 4 (right) shows
that similar is the variation in the relative performance of
our algorithm with respect to the rest of the heuristics.

The results for the real datasets demonstrate again the su-
perior performance ofEIG algorithm. In all cases the algo-
rithm performs better than the other 3 alternative solutions
we compare with. The difference in the performance of the
algorithms becomes substantial mainly in the case of the
power-grid and the co-authors graph.

7 Conclusions

In this paper, we consider the problem of network immu-
nization against a virus spread. We study the immunization

problem under two different models for virus propagation.
For the independent-cascade model we propose a greedy al-
gorithm and for the dynamic-propagation models we pro-
pose a simple heuristic, which is based on intuition drawn
from linear algebra. We experimentally show that our algo-
rithms performs extremely well in practice and much better
than degree-related heuristics. Our experimental evaluation
shows that our algorithms perform strakingly better than
other heuristics when considering graphs with high cluster-
ing coefficient. Additionally, their performance is not af-
fected by the average path length of the graph, which makes
our algorithms useful for small-world networks.
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