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Abstract—Detecting meaningful communities in networks is
essential for understanding complex social, biological, and in-
formation systems. Modularity effectively captures the quality
of communities by comparing the observed and expected edge
densities, but it often overlooks fairness with regards to the con-
nectivity of different groups of nodes within the communities. In
this work, we address this limitation by proposing fairness-aware
community detection algorithms that incorporate group-sensitive
connectivity into the modularity framework. Our approach is
based on optimizing distinct sub-matrices of the modularity
matrix that isolate intra-group and inter-group connections. We
introduce two algorithmic families: (a) Input-based methods,
including fair spectral and deep learning algorithms that directly
operate on these sub-matrices; and (b) Loss-based methods,
which integrate fairness-aware sub-matrix information into the
learning objective of deep community detection models. Our
experiments on synthetic and real-world networks demonstrate
that our algorithms significantly improve group connectivity
fairness without compromising community quality.

Index Terms—Community Detection, Spectral Clustering,
Deep Clustering, Social Networks, Fairness-aware community
detection, Graph Neural Networks, Group Modularity

I. INTRODUCTION

Networks capture relationships between entities across di-
verse domains, including social platforms, scientific collabo-
ration, and citation systems. In many such networks, nodes
tend to form communities, i.e., subsets of nodes that exhibit
higher internal connectivity relative to the rest of the network
[1], [2]. These communities play a critical role in determining
how information spreads and how opinions are shaped [3], [4].

Traditional community detection algorithms aim to max-
imize quality, typically optimizing metrics that capture
the intra-community connectivity compared to the inter-
community connectivity. Modularity is a commonly used
such metric. However, such algorithms often neglect fairness
considerations. In many real-world networks, nodes carry
sensitive attributes such as gender, age, or ethnicity, which
naturally partition the network into groups. Recent research in
network algorithmic fairness has emphasized the importance
of equitable treatment, particularly at the group level [5]–[8].
In this work, we focus on the fairness of community detection
algorithms on networks.

Prior work on group fairness in community detection has
mainly focused on balanced representation, requiring that the
proportion of each group within each community reflects the
global distribution [9]–[11]. More recently, a structural notion

of fairness based on connectivity was introduced, requiring
that different groups are equally well connected within the
communities [12]. For example, in a collaboration network, do
women form as many intra-community connections as men?
Connection strength within communities is crucial for minority
groups to remain visible, influential, and well integrated into
the network.

This notion was formalized through group modularity [12].
Modularity is a standard measure of community quality in
networks, comparing the observed edge density within com-
munities to the expected density under a random graph null
model [13], [14]. The group modularity framework extends
this idea by considering subsets of edges associated with spe-
cific groups. In addition, a diversity-based modularity measure
was defined to capture inter-group connectivity. The work
in [12] addressed connectivity fairness through fairness-aware
variants of the Louvain algorithm [15], [16].

In this work, we extend these ideas in two directions:
(a) we introduce new formulations of the problem based on
decomposing the modularity matrices into sub-matrices that
capture intra-group and inter-group connectivity, and (b) we
propose fairness-aware algorithms that make use of these
group modularity sub-matrices. Specifically, we build on Deep
Modularity Networks (DMoN) [17], a GNN-based model that
learns node embeddings and forms communities by optimizing
a modularity-based objective, and we extend it to incorporate
group modularity fairness into the learning objective. We call
this approach loss-based. This is the first deep community
detection framework that integrates group modularity directly
into the training objective. In addition, we propose algorithms
that directly operate on the group modularity matrices for both
DMoN and spectral-based clustering. We call this approach
input-based. The resulting communities are both structurally
meaningful and balanced in terms of connectivity.

To evaluate our approach, we perform a comprehensive
experimental study on both synthetic and real-world networks.
Our goal is to assess whether the proposed algorithms effec-
tively improve connectivity fairness while maintaining strong
modularity. We systematically analyze trade-offs controlled by
a tunable loss parameter and compare our methods against
classical and fairness-aware baselines.

The contributions of this paper are threefold:
1) We revisit group modularity, by decomposing the ad-

jacency matrix and the modularity matrix according to



group membership into submatrices that isolate intra-
group and inter-group connectivity. These matrices en-
able fairness-aware spectral clustering and provide the
foundation for fairness-aware loss functions.

2) We propose novel fairness-aware spectral and deep
community detection algorithms that operate on the
group-modularity matrices, and novel deep community
detection algorithms that extend modularity-based GNN
clustering with group-sensitive loss functions. Each al-
gorithm targets a distinct fairness objective and enables
tunable trade-offs between structural quality and group
fairness.

3) We conduct extensive experiments on real and syn-
thetic datasets, demonstrating that our methods improve
fairness-modularity trade-offs compared to both classical
and fairness-aware baselines.

The remainder of this paper is structured as follows. In Sec-
tion II, we present the group-aware modularity framework and
introduce fairness-sensitive variants of the modularity matrix.
Section III presents our proposed fairness-aware community
detection algorithms. Section IV provides the experimental
evaluation. Section V reviews related work, and Section VI
concludes the paper.

II. GROUP-AWARE MODULARITY MATRICES

Let G = (V,E) be an undirected graph, where V is the set
of nodes and E ⊆ V × V is the set of edges. We assume that
nodes in V are partitioned into groups, defined by the value
of a sensitive attribute. For simplicity, we assume a binary
attribute with two values: red and blue. The red group, denoted
by VR ⊆ V , contains the nodes with the red value. The blue
group, denoted by VB ⊆ V , contains the remaining nodes,
such that VR ∪ VB = V and VR ∩ VB = ∅.

Most prior work on group fairness in community detection
emphasizes node-level balance, aiming to ensure that each
community reflects the global group distribution [9], [11].
However, since network dynamics such as information flow
and influence propagation are driven by edge interactions [3],
[4], recently, there is work on defining fairness from a con-
nectivity perspective [12], [18]. In this work, we adopt the
modularity-based framework introduced in [12] that evaluates
fairness in terms of how well each group is connected within
the detected communities, using modularity. This approach
defines group-aware variants of the popular modularity mea-
sure, introducing the concepts of group-modularity, modularity
unfairness and modularity diversity. We will now reformulate
these group modularity metrics, through a decomposition of
the graph adjacency matrix, and the modularity matrix.

Let A ∈ Rn×n denote the adjacency matrix of the graph G.
We partition A into four disjoint sub-matrices:

A =

[
ARR ARB

ABR ABB

]
where

• ARR: edges between Red nodes,
• ARB : edges from Red nodes to Blue nodes,

• ABR: edges from Blue nodes to Red nodes, and
• ABB : edges between Blue nodes.

Since the graph is undirected, ARB = A⊤
BR.

We now define the sub-matrices AR, AB , and Adiv as
follows:

AR =

[
ARR ARB

ABR 0

]
AB =

[
0 ARB

ABR ABB

]
Adiv =

[
0 ARB

ABR 0

]
where AR, AB , and Adiv correspond to edges incident to Red
nodes, edges incident to Blue nodes, and inter-group edges,
respectively.

Given these matrices, we can define the corresponding
subgraphs GR, GB and Gdiv. We will use these matrices to
decompose the modularity matrix, and define the clustering
objectives that we use throughout this work.

Modularity is a commonly used metric for evaluating the
quality of a community. For a community C ⊆ V , modularity
is defined as

Q(C) =
1

2m

∑
u,v∈C

(
Auv −

dudv
2m

)
where du and dv are the degrees of nodes u, v and the sum
is over all pairs of nodes in the community C. Modularity
compares the density of edges in the community C to the
expected number of edges in a random graph where edges
are generated at random, while preserving the degrees. If
C = {C1, C2, . . . , Ck} is a partition of the nodes in V into
k communities, the modularity of the partition is defined as
Q(C) =

∑
Cj∈C Q(Cj).

Classical modularity optimization builds upon the modular-
ity matrix, introduced by Newman [19]:

B = A− dd⊤

2m

where A is the adjacency matrix, d is the degree vector with
di being the degree of node i, and m is the number of edges
in the graph.

The modularity score for the partition C =
{C1, C2, . . . , Ck} can be computed using the modularity
matrix B. Let S ∈ {0, 1}n×k be the binary community
assignment matrix, where Sij = 1 if node i ∈ Cj , and 0
otherwise. Then, the modularity of the partition C defined by
the assignment matrix S is given by:

Q(S) = 1

2m
Tr(S⊤BS) (1)

where Tr(·) denotes the matrix trace [19].
We can now use the decomposition of the adjacency matrix

to define the group-aware variants of modularity defined
in [12], by decomposing the modularity matrix. Specifically,
we define the red modularity matrix BR using the red adja-
cency matrix AR as follows:

BR = AR − dRd
⊤
R

2mR



where dR is the degree vector for the graph GR and mR is
the number of edges in the graph GR. The modularity score
for red group connectivity, denoted QR, is then given by:

QR(S) =
1

2m
Tr(S⊤BRS). (2)

Analogously, we define the blue modularity matrix BB using
the blue adjacency matrix AB and the degree vector dB of
the graph GB . We also define the diversity modularity matrix
Bdiv using the matrix Adiv and the corresponding degree vector
ddiv:

Bdiv = Adiv −
ddivd

⊤
div

2mdiv

Qdiv(S) =
1

2m
Tr(S⊤BdivS). (3)

Building on the group-sensitive modularity formulations, we
explore their spectral properties and demonstrate that these
objectives can be effectively approximated through spectral
embedding of the respective modularity matrix. This extends
the spectral modularity approach of Newman [19] to the
group-aware setting.

Proposition 1. Let BR be the red modularity matrix defined
as above. Then the optimization of the red modularity

max
S

QR(S) =
1

2m
Tr(S⊤BRS)

can be approximated by computing the top-k eigenvectors of
BR and applying k-means clustering in the resulting spectral
space.

Proof (sketch). We begin with the case of two communities.
Let s ∈ {−1,+1}n be a vector indicating a bipartition of

the nodes, with si = +1 if node i belongs to community 1,
and si = −1 otherwise. Then, the red modularity objective
becomes:

QR(s) =
1

4m
s⊤BRs.

Maximizing this expression over discrete vectors s ∈
{−1,+1}n is computationally difficult.

We instead consider the problem over the vectors s ∈ Rn

with s⊤s = 1, yielding the continuous problem:

max
s⊤s=1

s⊤BRs.

Note that since AR is symmetric and real, so is BR, and all
eigenvalues are real.

The objective is maximized when s is the eigenvector
corresponding to the largest eigenvalue of BR. Let u1 be this
leading eigenvector. Then:

max
s⊤s=1

s⊤BRs = u⊤
1 BRu1.

To obtain a discrete partition, we assign nodes based on the
sign of the corresponding entry in u1:

si =

{
+1 if (u1)i ≥ 0

−1 otherwise

This yields a bipartition that approximately maximizes QR.
For multiple communities, let {u1, . . . ,up} be the top p

eigenvectors of BR, and form the spectral embedding matrix:

Z = [u1 | . . . | up] ∈ Rn×p

We apply k-means clustering on the rows of Z, assigning
each node to a community. Let S be the resulting community
matrix. Then, the clustering approximately maximizes the red
modularity objective:

QR(S) =
1

2m
Tr(S⊤BRS).

Thus, spectral clustering on the red modularity matrix
approximates the maximization of red modularity.

These formulations allow us to measure and optimize mod-
ularity with respect to both group-specific and inter-group con-
nectivity patterns. By incorporating group constraints directly
into the adjacency structure, our modularity matrix variants en-
able fairness-aware spectral optimization, and fairness-aware
loss functions.

III. FAIRNESS-AWARE COMMUNITY DETECTION

We now describe our algorithms for optimizing group mod-
ularity. We consider two classes of algorithms. Spectral com-
munity detection algorithms that make use of the eigenvectors
of the modularity matrices, and deep community detection
algorithms that use the modularity matrices to redefine the
loss function.

A. Input-Based Fair Spectral Community Detection

Spectral community detection using the modularity matrix
B was first introduced in [19]. The approach is similar to
that of spectral clustering using the Laplacian matrix. The
algorithm computes the top-k eigenvectors of the matrix
B, which are viewed as a continuous approximation of the
discrete binary assignment matrix S. These vectors are then
used to obtain the communities, typically by applying k-means
clustering on the extracted k-dimensional vectors of the nodes.

To enable fairness-aware spectral clustering, we define a
modified modularity matrix:

B
(λ)
X = (1− λ)B + λBX

where B is the standard modularity matrix, and BX ∈
{BR, BB , Bdiv} is a fairness-aware modularity matrix chosen
according to the fairness criterion (e.g., group or diversity),
with the parameter λ ∈ [0, 1] controlling the emphasis on
structural versus fairness-aware connectivity.

Specifically, we propose two new spectral community detec-
tion algorithms that rely on the different modularity matrices
we have defined:

GROUPSPECTRAL: The algorithm assumes a protected group,
usually the minority one, for which we want to achieve strong
internal connectivity. It uses the modified modularity matrix
B

(λ)
X = (1−λ)B+λBX , where BX ∈ {BR, BB} is the group

modularity matrix corresponding to the selected protected



group (red or blue). Then it applies the spectral clustering
process: It extracts the k largest eigenvectors of B

(λ)
X and

performs k-means clustering to obtain the communities. The
goal is to discover communities that simultaneously preserve
structural quality and enhance group connectivity for the
protected group.

DIVERSITYSPECTRAL: This algorithm uses B
(λ)
div = (1 −

λ)B+ λBdiv matrix to extract the eigenvectors, and as before
applies k-means to obtain the communities. The goal of
the algorithm is to obtain communities with high diversity
modularity.

B. Input-Based Fair Deep Community Detection

For this class of algorithms, we extend the Deep Modularity
Network (DMoN) framework introduced in [17] to incorpo-
rate fairness-aware objectives. DMoN uses a Graph Convo-
lutional Network (GCN) on the normalized adjacency matrix
A to obtain k-dimensional node embeddings. Then it applies
soft-max on the embeddings to obtain a soft assignment matrix
S of the nodes to clusters. This soft assignment matrix is used
to define the loss function LDMON, which is defined as follows:

LDMON = − 1

2m
Tr(S⊤BS) + γRcollapse.

The first term corresponds to the modularity Q, while the
second term is a regularization term that is defined as:

Rcollapse =

(√
k

n
∥S⊤∥F − 1

)
.

The regularization term discourages degenerate clustering so-
lutions, such as assigning all nodes to a single community.

Building on the fairness-aware modularity formulations
used in the spectral setting, we extend this idea to the deep
clustering framework by modifying the input adjacency matrix.
Specifically, we define:

A
(λ)
X = (1− λ)A+ λAX

where AX ∈ {AR, AB , Adiv} is selected based on the desired
connectivity objective, either group or diversity based. This
modification retains the global structure of the graph while
increasing the influence of AX . The parameter λ ∈ [0, 1]
controls the trade-off between preserving global structure and
increasing the influence of group-based connectivity.

As before we propose two variants relying on different
modularity matrices.

GROUPDMON: This algorithm promotes strong connectivity
within a protected group by using the modified adjacency ma-
trix A

(λ)
X = (1−λ)A+λAX , where AX ∈ {AR, AB} retains

only edges involving nodes from the target group. The model
is trained on A

(λ)
X and learns cluster assignments by optimizing

a trade-off between structural and group modularity, with AX

contributing to the modularity objective for the target group.

DIVERSITYDMON: This algorithm promotes diversity by
using the modified adjacency matrix A

(λ)
div = (1−λ)A+λAdiv,

TABLE I: Summary of the proposed algorithms.

Method Type Objective

GROUPSPECTRAL Input-based, Spectral Group modularity
DIVERSITYSPECTRAL Input-based, Spectral Diversity
GROUPDMON Input-based, Deep Group modularity
DIVERSITYDMON Input-based, Deep Diversity
DEEPGROUP Loss-based, Deep Group modularity
DEEPDIVERSITY Loss-based, Deep Diversity
DEEPFAIRNESS Loss-based, Deep Fairness

which retains only red-blue edges. The model is trained on
A

(λ)
div and learns cluster assignments by optimizing a trade-off

between structural and diversity-based modularity, with Adiv
contributing to the diversity objective.

Algorithm 1 Fairness-Aware Community Detection
1: Input: Graph G = (V,E); number of clusters k; method M; fairness

objective F
2: Output: Community assignments {c1, . . . , cn}
3: Construct fairness-aware matrices based on F
4: Compute node representations H via M (spectral for Spectral, GNN for

Deep)
5: Cluster nodes into k communities using H
6: return Community assignments {c1, . . . , cn}

C. Loss-Based Fair Deep Community Detection

The input-based algorithms enforce fairness by modifying
the input adjacency matrix, which influences the learned node
representations. We now present an alternative strategy that
incorporates fairness directly into the loss function, without
changing the input graph structure. We define three such
fairness-aware deep community detection algorithms, each
based on a distinct group modularity objective.

DEEPGROUP: The algorithm enhances the connectivity of a
particular group (red or blue) by increasing its group modu-
larity QX , where QX ∈ {QR, QB}, in addition to the overall
modularity. Therefore, the loss function is:

LDEEPGROUP = −λQX − (1− λ)Q + γRcollapse

The parameter λ controls the tradeoff between modularity and
group modularity.

DEEPDIVERSITY: The algorithm promotes the formation of
communities with high diversity within the communities,
maximizing diversity modularity Qdiv in addition to the overall
modularity. Therefore, the loss function is defined as:

LDEEPDIVERSITY = −λQdiv − (1− λ)Q + γRcollapse

where λ is a parameter that controls the tradeoff between
modularity and diversity.

In addition to enhancing intra-group connectivity or diver-
sity, we propose a third approach that directly incorporates
fairness into the loss function. According to [12], unfairness is
defined as the difference between the group modularity scores,
Unfairness = QR − QB . A network partition is considered
fair when this difference is close to zero, indicating that



TABLE III: Real dataset characteristics. |R|, |B|: red and blue group sizes; d̄X : average degree in the graph GX ; pRh , pBh : red,
blue homophily.

Network Nodes Edges Attribute |R| |B| d̄R d̄B d̄div pRh pBh ρ
Deezer 28,281 92,752 Gender 12,538 15,743 6.34 6.73 2.79 0.972 1.07 0.443
Facebook-g 4,039 88,234 Gender 1,533 2,506 45.75 42.42 15.45 1.236 0.995 0.378
Facebook-c 4,039 88,234 Education 367 3,672 31.38 44.92 2.54 1.481 1.066 0.090
Twitch 168,114 6,797,557 Maturity 79,033 89,081 88.25 74.31 34.69 1.292 0.924 0.470

both groups are equally well connected within the discovered
communities.

DEEPFAIRNESS: The algorithm enforces group-level modu-
larity balance by minimizing the difference between red and
blue group modularities, in addition to maximizing overall
modularity. Therefore, the loss function is defined as:

LDEEPFAIRNESS = −Q + ϕ |QR −QB| + γRcollapse

where ϕ is a parameter that controls the importance of the
fairness term in the loss function.

All spectral algorithms have complexity O(mk) for sparse
graphs [20]. All deep algorithms retain DMoN’s per-epoch
complexity, O(k2n+m) [17].

Algorithm 1 gives the outline of our fairness-aware com-
munity detection framework, while Table I summarizes the
proposed algorithms.

IV. EVALUATION

We evaluate the proposed fairness-aware community detec-
tion methods across a range of real and synthetic networks.
Our goal is to understand how different fairness objectives,
such as improving minority group connectivity, increasing
inter-group diversity, or reducing group modularity disparities,
affect the resulting community structures and their trade-offs
with structural quality.

We analyze (i) the impact of the parameters λ and ϕ on
fairness and modularity, (ii) the relative performance of deep
and spectral methods compared to traditional and fairness-
aware baselines, and (iii) the extent to which the discovered
communities reflect the intended fairness optimization goals.
The code is available on GitHub1.

A. Datasets

1) Synthetic Datasets: To systematically examine how
structural and attribute-driven biases influence fairness in
communities, we construct synthetic networks using a variant
of the stochastic block model (SBM) [11], [12], [21]. Each
node is assigned a color (red or blue), and communities are
formed according to parameters that regulate group balance,
homophily, and structural cohesion as shown below:

• ρ: the proportion of red nodes in the network, controlling
group size imbalance;

• pc: the probability of intra-community edges, controlling
the strength of community structure;

1https://github.com/gartzis/Modularity-Fair-Deep-Community-Detection/
tree/main

TABLE II: Synthetic Dataset Parameters

Parameter Description Value

N Number of nodes 1,000
ρ Fraction of red nodes 0.2
ℓ Edges per node 5
k Initial number of communities 5
pc Intra-community edge probability 0.9

pRh , pBh Red, Blue Homophily 0.5, 0.9

• pRh (pBh ): the probability that red (blue) nodes of the same
color connect, controlling homophily.

The default settings for our synthetic data are shown in
Table II. We introduce group imbalance by setting the red
node proportion to ρ = 0.2, making the red group the minority.
To model structural bias, we assign higher homophily to the
blue group (pBh = 0.9) than to the red group (pRh = 0.5).
This configuration results in one group forming denser intra-
group connections, leading to disparities in connectivity across
communities. For each experiment, we generate 10 random
datasets and report the results averaged over them.

2) Real Datasets: We evaluate our methods on three real-
world networks, also used in prior work [12]. Each dataset
contains node-level sensitive attributes, such as gender, which
we use to define red and blue groups. The datasets are:

• Deezer2: A social network of users from European coun-
tries that mutually follow each other on the Deezer music
platform. We use the gender attribute to define groups.

• Facebook3: A friendship social network derived from
ego-network graphs from Facebook. We use the gender
attribute (Facebook-g) and the academic concentration
attribute (Facebook-c) to define groups.

• Twitch4: A mutual-follow graph of Twitch users. The
sensitive attribute is the maturity level of the user’s stream
content.

We summarize the dataset characteristics in Table III, in-
cluding the number of nodes and edges, group size imbalance
(ρ), and homophily. We quantify homophily separately for red
and blue groups. The red homophily score (pRh ) is defined
as the ratio of observed red-red edges to their expected
count under random mixing, estimated by ρ2. Similarly, blue
homophily (pBh ) measures the ratio of blue-blue edges, nor-
malized by (1 − ρ)2. Values above 1 suggest strong within-
group connectivity (homophily), while values below 1 reflect
a tendency toward inter-group connections (heterophily). We

2https://snap.stanford.edu/data/feather-deezer-social.html
3http://snap.stanford.edu/data/ego-Facebook.html
4https://snap.stanford.edu/data/twitch gamers.html

https://github.com/gartzis/Modularity-Fair-Deep-Community-Detection/tree/main
https://github.com/gartzis/Modularity-Fair-Deep-Community-Detection/tree/main
https://snap.stanford.edu/data/feather-deezer-social.html
http://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/twitch_gamers.html
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Fig. 1: Trade-offs curves: Modularity vs fairness metrics under varying λ (input-based algorithms).

focus specifically on the red group, which represents the
minority group in all datasets.

B. Evaluation Metrics

To evaluate the quality and fairness of the detected commu-
nities, we consider the following metrics:

• Modularity: Defined as in Eq. (1) that measures the
structural quality of the partitions.

• Group Modularity: Measures how well nodes from a
specific group are connected within the communities. We
focus on the red group and use Eq. (2).

• Diversity: Defined as in Eq. (3) that evaluates the inter-
group connectivity.

• Fairness Ratio: Defined as

fL = 1−
∣∣∣∣QR −QB

Q

∣∣∣∣ .
This metric adjusts the unfairness by the overall modular-
ity, producing a normalized score in [0, 1], where higher
values indicate fairer group connectivity relative to the
structural quality of the clustering.

These metrics assess both structural cohesion and group-
level fairness of the detected communities. We also report
all group-aware connectivity metrics as ratios with respect
to modularity. This strategy allows us to evaluate fairness in
relation to the overall structural quality of the communities.
In some cases, modularity may decrease due to fairness
constraints, which can also reduce the absolute values of
group modularity or diversity. However, their ratio to total
modularity may increase, indicating that a larger proportion
of the network structure reflects fairness-aware connectivity.
Likewise, a decrease in absolute unfairness may not always
imply better fairness if modularity declines more sharply,

highlighting the importance of using relative measures such
as the fairness ratio.
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Fig. 2: Trade-offs curves: Modularity vs fairness metrics under
varying λ, or ϕ (loss-based algorithms).

C. Algorithms
We compare our methods with the following baselines:
• LOUVAIN [15]: A modularity-based method that greedily

merges nodes into communities.
• SPECTRAL [19]: A classical method that clusters nodes

based on the eigenvectors of the modularity matrix.
• DMON [17]: A deep clustering method that uses a GNN

and optimizes modularity.
• GROUPLOUVAIN [12]: A fairness-aware variant of Lou-

vain that considers both modularity and group modularity.
Specifically, communities are merged only if the change
improves both the overall group modularity and the
modularity of the minority group.



• BALANCESPECTRAL [11]: A spectral clustering method
that includes linear constraints to ensure that each com-
munity contains a balanced mix of groups.

For the algorithms that require the number of communi-
ties as input, including our algorithms, we estimate it using
eigenvalue gap analysis [22] of the modularity matrix. All
deep models are trained using the same configuration as
DMoN [17].

D. Evaluation Results

1) Fairness metrics - modularity tradeoff: In the first
experiment, we consider the proposed community detection
algorithms, and we study the tradeoff between cluster quality,
as captured by modularity, and the modularity fairness metrics
(i.e., group modularity, diversity, fairness), as we vary the
parameter λ, or ϕ. For this experiment, we generate synthetic
datasets, using the parameters in Table II that correspond to
a setting that is structurally unfair towards the red group.
The results are shown in Figures 1, 2, where each column
corresponds to one of the fair algorithms, and each row to one
of the modularity fairness metrics. In all plots, modularity is
shown on the left y-axis (marked with the solid black line in
the plots), and the fairness metric on the right y-axis (marked
with the dashed red line).

As expected, we observe a consistent trade-off between
modularity and fairness as the trade-off parameter increases.
As each algorithm shifts toward its objective, fairness-to-
modularity ratios increase, while modularity typically declines,
reflecting the structural compromises required to achieve
group-level equity.

We observe that the spectral algorithms (Fig. 1, left)
demonstrate a sharp trade-off. As λ increases both the group
modularity and diversity metrics improve, but this comes
at the cost of a steep decline in modularity, especially in
DIVERSITYSPECTRAL where modularity collapses to zero at
λ = 1. This outcome reflects the strict nature of the fairness-
aware matrices, which prioritize their respective connectiv-
ity objective (group modularity or diversity) over preserving
structural quality. In particular, in the case of networks with
high homophily (Fig. 3, at pRh = 0.9), the diversity-based
matrices become sparse, making it difficult to form meaningful
communities, especially at λ = 1. In contrast, the DMON-
based variants GROUPDMON, DIVERSITYDMON (Fig. 1,
right) preserve modularity across λ including at high values
where spectral methods fail. However, improvements in group
modularity and diversity in these models only become evident
at higher values of λ (typically above 0.8). This suggests
that although the DMON-based models achieve more modest
fairness improvements, they maintain higher structural quality
(0.45 and 0.3 modularity respectively at λ = 1).

The loss-based deep clustering methods shown in Figure 2,
optimize their respective connectivity metric through the loss
function in contrast to the SPECTRAL and DMON-based
models, which rely on fairness-aware modifications to the
modularity matrix. We first focus on DEEPGROUP and DEEP-
DIVERSITY, which share the same connectivity objectives as
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Fig. 3: Comparison of methods across red group homophily levels.

GROUPSPECTRAL, DIVERSITYSPECTRAL, GROUPDMON,
and DIVERSITYDMON. Compared to the spectral methods,
the loss-based variants maintain significantly higher modular-
ity across the full range of λ, while achieving more modest
improvements in their respective connectivity metric, visible
in the smaller scale of the right y-axis. DEEPFAIRNESS
directly targets fairness through a fairness-specific loss term,
weighted by the parameter ϕ. Among all deep models, it
achieves the highest fairness score (Fig. 2, row 3, column 3),
approximately 0.65, but this comes at the cost of a steady
decline in modularity. However, both GROUPSPECTRAL and
DIVERSITYSPECTRAL achieve superior fairness performance
(Fig. 1 row 3, cols. 1 and 2), and in some cases, retain higher
modularity. These results suggest that although DEEPFAIR-
NESS fulfills its design objective, input-based spectral methods
yield superior fairness outcomes by altering the modularity
matrix, which can result in less stable clustering outcomes.

These findings confirm that λ and ϕ serve as tunable
hyperparameters that enable flexible control over the trade-
off between structural quality and different fairness goals.
Furthermore, the input-based algorithms are more effective at
improving their respective fairness objective.

2) Algorithm Comparison: We evaluate our algorithms
and compare against baselines on both synthetic and real
datasets. We use the synthetic datasets to understand the role
of homophily. We use the parameters in Table II, keeping the
blue group strongly homophilous (pBh = 0.9) but varying the
homophily of the red group, with pRh taking values in [0.1, 0.9]
(heterophilous to homophilous). For each algorithm, we set the
trade-off parameter λ = 1 to isolate the effect of optimizing
the respective connectivity objective. For DEEPFAIRNESS, we
use ϕ = 200, a value chosen to produce visible fairness im-
provements without causing modularity to collapse. Figure 3
shows our results for the four different metrics.

Note that as the homophily of the red group increases, we
expect that the group modularity also increases. On the other



TABLE IV: Communities formed by different approaches.

Method Communities Modularity Group Modularity Diversity Fairness Ratio
Facebook-g

LOUVAIN 16 0.834 0.389 0.217 0.790
GROUPLOUVAIN 17 0.830 0.390 0.219 0.797

SPECTRAL 31 0.784 0.392 0.218 0.799
BALANCESPECTRAL 31 0.722 0.373 0.211 0.759

GROUPSPECTRAL 31 0.750 0.411 0.226 0.836
DIVERSITYSPECTRAL 31 0.770 0.400 0.224 0.814

DMON 31 0.755 0.392 0.234 0.788
GROUPDMON 31 0.714 0.398 0.237 0.799

DIVERSITYDMON 31 0.730 0.395 0.236 0.794
DEEPGROUP 26.6 0.125 0.408 0.232 0.816

DEEPDIVERSITY 27.9 0.253 0.399 0.237 0.806
DEEPFAIRNESS 29.1 0.633 0.400 0.237 0.801

Facebook-c
LOUVAIN 16 0.834 0.061 0.050 0.134

GROUPLOUVAIN 21 0.822 0.063 0.052 0.134
SPECTRAL 31 0.784 0.060 0.050 0.131

BALANCESPECTRAL 31 0.722 0.066 0.054 0.148
GROUPSPECTRAL 31 0.538 0.085 0.067 0.200

DIVERSITYSPECTRAL 31 0.491 0.092 0.073 0.219
DMON 31 0.758 0.077 0.069 0.164

GROUPDMON 31 0.477 0.084 0.075 0.179
DIVERSITYDMON 31 0.486 0.084 0.074 0.160

DEEPGROUP 30.3 0.223 0.085 0.072 0.171
DEEPDIVERSITY 30.6 0.514 0.078 0.070 0.164
DEEPFAIRNESS 25.8 0.729 0.079 0.075 0.169

Deezer
LOUVAIN 89 0.683 0.424 0.234 0.779

GROUPLOUVAIN 323 0.649 0.453 0.252 0.909
SPECTRAL 25 0.358 0.382 0.234 0.774

BALANCESPECTRAL 25 0.362 0.383 0.234 0.776
GROUPSPECTRAL 25 0.011 0.472 0.397 0.947

DIVERSITYSPECTRAL 25 0.008 0.483 0.447 0.967
DMON 25 0.593 0.440 0.244 0.880

GROUPDMON 25 0.489 0.442 0.243 0.882
DIVERSITYDMON 25 0.452 0.438 0.243 0.877

DEEPGROUP 25 0.495 0.442 0.244 0.887
DEEPDIVERSITY 25 0.470 0.440 0.245 0.881
DEEPFAIRNESS 25 0.469 0.439 0.243 0.883

Twitch
LOUVAIN 23 0.420 0.480 0.214 0.990

GROUPLOUVAIN 526 0.384 0.458 0.218 0.961
SPECTRAL 55 0.141 0.460 0.198 0.937

BALANCESPECTRAL 55 0 0 0 0
GROUPSPECTRAL 55 0.218 0.496 0.228 0.998

DIVERSITYSPECTRAL 55 0.123 0.495 0.223 0.994
DMON 55 0.301 0.501 0.245 0.993

GROUPDMON 55 0.268 0.511 0.250 0.986
DIVERSITYDMON 55 0.251 0.502 0.247 0.993

DEEPGROUP 51 0.022 0.500 0.272 1.0
DEEPDIVERSITY 40 0.020 0.500 0.250 1.0
DEEPFAIRNESS 55 0.272 0.500 0.246 0.997

hand, diversity is expected to decrease as both groups become
strongly homophilous.

With respect to modularity, we observe that as expected, the
baseline algorithms (LOUVAIN, SPECTRAL, DMON) achieve
the best modularity. However, this comes at the cost of
lower performance in fairness-related metrics. In terms of
group modularity, the baseline methods show only moderate
improvement as the red group becomes more homophilous.
Although the red group modularity does increase slightly
(more pronounced in LOUVAIN and SPECTRAL), the gain
is limited. As the red group homophily increases, diversity
exhibits a clear decreasing trend, especially in LOUVAIN and
SPECTRAL, which form increasingly homogeneous communi-
ties as intra-group connectivity strengthens. This is expected
as these methods optimize modularity without considering
group connectivity, they tend to reinforce structural homophily,

resulting in less inter-group mixing. DMON also shows a
reduction in diversity, though the effect is less pronounced.
In terms of fairness the baselines only show slight improve-
ment as red group homophily increases. This trend is likely
the result of increasing similarity in the connectivity of the
two groups, rather than any fairness-aware behavior of the
algorithms themselves.

Unlike traditional baselines, GROUPLOUVAIN and BAL-
ANCESPECTRAL integrate fairness into the community de-
tection process. In terms of modularity, both methods un-
derperform relative to their non-fairness-aware counterparts.
GROUPLOUVAIN in particular shows a consistent decline
in modularity, as it frequently generates a large number of
small communities. This behavior is also observed in real
datasets (Table. IV), where the method often produces hun-
dreds of communities (Deezer 321, Twitch 526), reducing in-



terpretability and structural coherence. BALANCESPECTRAL,
by contrast, maintains modularity levels similar to SPECTRAL,
indicating that its balancing objective has limited impact on
the underlying clustering structure. Despite lower modularity,
GROUPLOUVAIN achieves the highest group modularity and
fairness among all baselines, particularly as the red group
homophily increases. However, its performance in diversity
is limited, especially in highly homophilous settings, where
it tends to separate groups more strictly, reducing inter-group
mixing. BALANCESPECTRAL, while promoting balanced at-
tribute distributions, does not explicitly optimize group con-
nectivity and therefore shows no substantial improvements
in group modularity, diversity, or fairness. In terms of the
fairness metric, GROUPLOUVAIN remains the strongest among
the baselines, while BALANCESPECTRAL yields only marginal
gains, reflecting its limited sensitivity to group-level structural
disparities.

The trends observed in synthetic experiments largely carry
over to real-world networks (Table IV). Traditional base-
lines retain high modularity but perform poorly in fairness
(LOUVAIN: Facebook-c 0.134, Deezer, 0.779) and diversity
(SPECTRAL: Facebook-g 0.218, Twitch 0.198). GROUPLOU-
VAIN shows strong fairness (Deezer, 0.909) and group mod-
ularity (Deezer, 0.453), but often produces hundreds of small
communities, limiting interpretability. In contrast, our spec-
tral and deep models offer better trade-offs between fair-
ness and structure. GROUPSPECTRAL and DIVERSITYSPEC-
TRAL achieve high fairness (Facebook-g, 0.836) and diversity
(Facebook-c, 0.073) scores while maintaining a reasonable
number of communities, though their modularity drops in
datasets like Deezer and Twitch. This is most likely due to
strong homophily and limited diversity in these networks,
which may lead fairness-aware methods to override natural
community boundaries. Deep models (GROUPDMON, DI-
VERSITYDMON, DEEPFAIRNESS) retain stronger modularity
and competitive fairness. DEEPGROUP and DEEPDIVERSITY
achieve their targeted objectives but are outperformed by
spectral methods in fairness and overall trade-offs.

In summary, the traditional baselines (SPECTRAL. LOU-
VAIN, DMON) achieve good modularity but perform poorly
on all other metrics. Among the fairness-aware baselines,
BALANCESPECTRAL, which enforces balance on the group
representation, does not achieve our modularity-specific ob-
jectives. GROUPLOUVAIN either performs worse compared to
our algorithms or it produces a large number of communities.
All proposed algorithms succeed in optimizing their respective
objective, with the input-based ones generally being more ef-
fective. The results also depend on the network characteristics,
for example, in highly homophilous networks, it is easier to
achieve high group modularity but harder to improve diversity.

3) Consistency Across Objectives: Each model performs
the best on the specific metric it is designed to optimize. At
the same time, we often observe gains in secondary metrics.
For instance, DEEPFAIRNESS, which minimizes unfairness,
frequently increases group modularity and diversity (Fig. 1 and
2, third column). Similarly, methods focused on group mod-

ularity, such as DEEPGROUP, GROUPDMON and GROUP-
SPECTRAL, can also increase fairness (Table IV, Facebook-
g 0.836, Twitch 0.998) and enhance diversity (Table IV,
Facebook-g 0.237, Twitch 0.250) by reinforcing the structure
of minority groups. While not consistent across all settings,
these gains highlight dependencies among fairness objectives.

V. RELATED WORK

Fairness in machine learning has attracted significant atten-
tion across tasks such as classification, recommendation, and
ranking [5]–[8], [23]. Fairness definitions are categorized as
either individual or group-based [24], [25]. In this work, we
focus on group fairness in the context of community detection,
where nodes in a network are clustered into communities, and
fairness is evaluated with respect to how different demographic
groups are connected within those communities.

Community detection is a special case of clustering [26],
where the goal is to identify subsets of nodes with dense
internal connectivity [2]. Much of the prior work on fair
clustering has focused on representation fairness, ensuring
proportional group representation in each cluster. The fairlets
framework [9] formalized this idea and has been extended to
support scalability [10], [27], [28], multiple attributes and fair
representation [29]. Proportionality fairness aims to ensure fair
treatment for any subset of the population [30].

Beyond group fairness, individual fairness methods seek to
ensure that similar nodes receive similar outputs. In clustering,
this has inspired formulations based on fair resource allocation
[31], as well as graph-based approaches that use similar-
ity matrices [32], multiview clustering extensions [33], and
models that enforce proportional neighbor representation [34].
Recently, [35] applies fairness-aware regularization to non-
negative matrix factorization, to encourage similar treatment
of nodes with shared attributes. However, these methods do
not directly optimize connectivity or modularity, nor are they
integrated into a deep learning framework.

A complementary perspective considers group-specific clus-
tering quality, aiming to minimize disparities in cluster co-
hesion, as seen in socially fair k-means [36] and equitable
clustering [37]. The group modularity framework aligns with
this perspective by measuring intra-community connectivity
separately for each group and optimizing structural inclusion.

Distinct from prior work, we adopt a connectivity-based
notion of fairness, extending link recommendation approaches
that promote inter-group connections [38]. The modularity-
based fairness framework we build upon introduces three key
metrics, group modularity, unfairness, and diversity, which
quantify intra-group strength, disparity across groups, and
cross-group interactions, respectively [12], [18]. Previously
incorporated into Louvain, we apply this framework to spectral
and deep clustering.

While several fairness-aware clustering methods leverage
spectral formulations with fairness constraints [11], [39], in-
cluding those targeting individual similarity preservation [32]–
[35], our approach is the first to apply modularity-based group



fairness principles in both spectral and deep learning settings,
enabling a unified view of community quality and fairness.

VI. CONCLUSION

In this paper, we addressed the problem of fairness in deep
community detection by building on the group modularity
framework, which quantifies how well different demographic
groups are connected within detected communities. While
prior work introduced modularity-based fairness metrics and
fairness-aware variants of the Louvain algorithm, we extended
these ideas into the spectral and deep learning settings.

Specifically, we proposed fairness-aware variants of the
modularity matrix that incorporate group structure into the
clustering objective. We applied these modifications in both
spectral and deep clustering settings. In the spectral case,
we introduced GROUPSPECTRAL and DIVERSITYSPECTRAL,
which optimize group-sensitive modularity objectives via spec-
tral decomposition. In the deep setting, we integrated these
variants into the Deep Modularity Network (DMON) frame-
work, resulting in five GNN-based models. GROUPDMON and
DIVERSITYDMON follow the spectral design by modifying
the input matrices to encode fairness objectives. In con-
trast, DEEPFAIRNESS, DEEPDIVERSITY, and DEEPGROUP
preserve the original input graph and enforce fairness via loss
function. Each model targets a distinct objective: intra-group
connectivity, diversity, or fairness.

Our experimental evaluation on synthetic and real-world
datasets demonstrated that the proposed models can effectively
improve connectivity fairness while maintaining competitive
modularity. We also showed that trade-offs between modular-
ity and fairness can be controlled through tunable parameters.

A promising direction for future work is to extend our
framework to multi-valued and continuous attributes. Another
line of work is to design link recommendation algorithms to
improve community fairness (e.g., along the lines of [40]) and
to study how fairness evolves over time.
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