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Abstract—Temporal interaction networks capture the history
of activities between entities along a timeline. At each interaction,
some quantity of data (money, information, traffic) flows from
one vertex of the network to another. Flow-based analysis can
reveal important information, such as unusually large money
transfers in a part of a financial transaction network. In this
paper, we introduce the flow computation problem between two
vertrices in an interaction network. We propose and study two
models of flow computation, one based on a greedy flow transfer
assumption and one that finds the maximum possible flow. We
show that the greedy flow computation problem can be easily
solved by a single scan of the interactions in time order. For the
harder maximum flow problem, we propose precomputation and
simplification approaches that can greatly reduce its complexity
in practice. We also approach the problem of flow pattern
enumeration in interaction networks and propose an effective
path indexing technique. We evaluate our algorithms using real
datasets. The results demonstrate the efficiency and scalability
of our algorithms.

I. INTRODUCTION

Temporal interaction networks model the transfer of data
quantities between entities along a timeline. At each inter-
action, a quantity (money, messages, traffic) flows from one
network vertex (entity) to another. Analyzing interaction net-
works can reveal important information (e.g., cyclic transac-
tions, message interception). For instance, financial intelligent
units (FIUs) are often interested in finding subgraphs of a
transaction network, wherein vertices (financial entities) have
exchanged a significant amount of money directly or through
intermediaries. Such exchanges may be linked to criminal
behavior, such as money laundering or theft [18].

Problem. In this paper, we study the problem of computing
the flow through an interaction network, from a designated
vertex s, called source to a designated vertex t, called sink. As
an example, Fig. 1(a) shows a toy interaction network, where
vertices are bank accounts and each edge is a sequence of in-
teractions in the form (ti, qi), where ti is a timestamp and qi is
the transferred quantity (money). To model and solve the flow
computation problem from s to t, we assume that throughout
the history of interactions, any quantity that originates from
s and reaches a vertex v is temporarily accumulated at v’s
buffer Bv , before being relayed by interactions from v to other
vertices. As a result of an interaction (ti, qi) on edge (v, u),
vertex v may transfer from Bv to u’s buffer Bu a quantity in
[0,min{qi, Bv}]. For example, if interaction (1, $3) on edge
(s, x) transfers $3 from Bs to Bx, interaction (5, $5) on edge
(x, z) can transfer at most $3 from Bx to Bz . At the end of

the timeline, the buffered quantity at the sink vertex t models
the flow that has been transferred from s to t.
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Fig. 1. A toy interaction network

We propose and study two models of flow transfer, as an
effect of an interaction (ti, qi) on an edge (v, u), and the
corresponding flow computation problems. The first one is
based on a greedy flow transfer assumption, where v transfers
to u the maximum possible quantity, i.e., min{qi, Bv}. This
model is suited for applications, where reserving flow in
intermediate nodes is not practical (e.g., in transportation
networks). According to the second model, v may transfer
to u any quantity in [0,min{qi, Bv}], reserving the remaining
quantity for future outgoing interactions from v (to any vertex).
The objective is then to compute the maximum flow transferred
from s to t through the subgraph that links s to t. This model
is suitable for applications where vertices may opt to transfer
their incoming flow at any future outgoing interaction (e.g.,
in financial transaction networks). We also study the problem
of finding, in a temporal interaction network, the instances of
a small graph pattern and measuring the flow through each
instance, using our flow computation models.

Applications. Flow computation in interaction networks finds
application in different domains. As already discussed, com-
puting the flow of money from one financial entity (e.g., bank
account, cryptocurrency user) to another can help in defining
their relationship and the roles of any intermediaries in them
[16]. As another application, consider a transportation network
(e.g., flights network, road network) and the problem of
computing the maximum flow (e.g., of vehicles or passengers)
from a source to a destination vertex. Identifying cases of
heavy flow transfer can help in improving the scheduling
or redesigning the network. Similarly, in a communication
network, measuring the flow between vertices (e.g., routers)
can help in identifying abnormalities (e.g., attacks) or bad
design. Recent studies in cognitive science [5] associate the
information flow in the human brain with the embedded net-
work topology and the interactions between different (possibly
distant) regions. Finally, information propagation analysis in



social networks [4] can benefit from measuring the transferred
flow from one vertex to another. The transferred flow can be
used to model the relationships between vertices and can serve
as a building block for popular graph analysis tasks, such as
link recommendation and clustering.

Novelty. Although (maximum) flow computation in graphs
is a classic problem [8], [9], there is no previous work that
formulates and studies this problem for temporal interaction
networks. Specifically, in previous work, the edges of the input
graph are assumed to have a capacity and the objective is to
find the maximum flow from a source vertex s that can reach
a sink vertex t. Maximum flow computation has also been
studied for graphs where edges have transit times [24] and
for networks with time-dependent or ephemeral capacities [2].
Our problem is different, since our vertices model entities and
edges are time-series of interactions, each of which happens
at a specific timestamp; i.e., our edges do not have capacities
and the computed flow is not continuous. For this reason, our
problem cannot be solved by algorithms that compute the flow
in conventional or temporal graphs with capacities (e.g., [9],
[24]) and we propose novel solutions for it.

Contributions. We define flow computation in temporal in-
teraction networks, based on two flow transfer models. We
show that flow computation based on greedy transfer can be
done very efficiently by scanning all interactions in order of
time and updating two buffers at each interaction. We show
that maximum flow computation, assuming that intermediate
vertices can transfer an arbitrary quantity, can be formulated
and solved using linear programming (LP). Since the direct
application of LP is expensive, we study this problem more
thoroughly and propose a set of techniques that can greatly
reduce its cost. First, we show that for a certain class of
networks, we can compute (exactly) the maximum flow in
linear time to the number of interactions. Second, we propose
a preprocessing algorithm that eliminates interactions, edges,
and vertices that cannot contribute to the maximum flow, with
a potential to greatly reduce the problem size and complexity.
Third, we design an algorithm that performs flow computation
on a part of the graph in linear time and simplifies the graph
on which LP has to be eventually applied. For example, the
path formed by edges (s, x) and (x, z) can be reduced to a
single edge (s, z) as shown in Fig. 1(b). Overall, we take
advantage of our efficient greedy flow computation module to
reduce the cost of maximum flow computation as much as
possible. Finally, we define and tackle the problem of finding
the instances of a given small graph pattern in a temporal
interaction network and computing the flow of each instance.
We propose an effective flow path precomputation technique
for this purpose.

Our contributions can be summarized as follows:

• This is the first work, to our knowledge, which studies
flow computation in temporal interaction networks. We
propose two models for flow computation; the first one
comes together with a linear-time computation algorithm,
while maximum flow computation can be formulated and

solved as an LP problem.
• For the expensive maximum flow computation, we pro-

pose (i) an efficient check for verifying if it can be
solved exactly by the greedy transfer algorithm, (ii)
a graph preprocessing technique, which can eliminate
interactions, vertices and edges from the graph, (iii) a
graph simplification approach, which progressively re-
duces paths of the graph to edges, the flow of which
can be computed in linear time.

• We approach the flow pattern search problem in interac-
tion networks and propose an effective graph preprocess-
ing technique that facilitates fast enumeration of patterns
and their flows.

• We conduct experiments using data from four real inter-
action networks to evaluate our techniques. The results
confirm the efficiency of the greedy algorithm and show
that our maximum flow computation approach typically
achieves one order of magnitude speedup over directly
applying LP. We also analyze the flow distribution, the
approximation quality of the greedy algorithm for the
maximum flow problem, and the performance of pattern
search.

Outline. The rest of the paper is organized as follows. Section
II reviews related work. Section III defines basic concepts and
introduces the two models for flow computation. Section IV
presents algorithms for greedy and maximum flow computa-
tion. In Section V, we present an algorithmic framework which
can solve the maximum flow computation problem much
faster than the direct application of an LP solver. Section VI
approaches the flow pattern search problem. Our experimental
evaluation is presented in Section VII. Finally, Section VIII
concludes the paper with directions for future work.

II. RELATED WORK

The maximum flow problem is well studied in the literature
[1], [8], [10], [13]. Given a graph with a source node s with
no incoming edges and a sink node t with no outgoing edges
and assuming that each edge has a capacity, the objective is
to find the maximum flow that can be transferred from s to t.
The graph is assumed to be static, i.e., the existence of edges
and their capacities do not change over time. In addition, the
flow is assumed to be transferred instantly from one vertex to
another and to be constant over time.

We are the first to address flow computation in temporal
interaction networks. Our problem is related but not identical
to temporal maximum flow computation problems (see [24]
for a survey). In these problems, the graph is static, but
each edge, besides having a capacity, is characterized by a
transit time, i.e., the time needed to transfer flow equal to
its capacity [15]. The objective is to find the maximum flow
that can be transferred from s to t within a time horizon H
[3], [22]. A variant of this problem assumes that each edge
is ephemeral, i.e., it can be used to transfer flow only at
specific time intervals [2], and the objectice is to find the
maximum flow that can be transferred within a given time
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Fig. 2. Interaction network and subnetwork of interest

interval. Flow computation when the capacities of the edges
are time-varying was also studied in [14]. As opposed to
all temporal flow computation problems studied in previous
work [2], [24] we do not consider networks where edges have
capacities (variable or constant), but edges having sequences
of instantaneous interactions, which transfer flow at specific
timestamps. Our objective is to compute the flow from a given
source to a given sink vertex considering all interactions on
the edges and assuming that vertices have the ability to buffer
their incoming quantities.

Pattern enumeration in general graphs and temporal net-
works is a well-studied problem [11], [20], [21], [23], [25],
[27]. However, most previously proposed techniques apply on
labeled graphs and all of them disregard flow computation.
Kosyfaki et al. [17] studied a flow pattern enumeration prob-
lem in temporal interaction networks, based on a different
definition of flow transfer; each vertex along the path of
a pattern instance is only allowed to transfer its buffered
quantities to the next vertex just once. In addition, flow
can be measured only along paths, but not arbitrary graphs.
The objective is to find occurrences of (path) patterns and
measuring the flow through them during time windows of
specific length. On the other hand, in our pattern enumeration
problem, the objective is to compute the maximum flow (based
on our definition), at all instances of more complex patterns
than simple paths.

III. PROBLEM DEFINITION

In this section, we formally define temporal interaction
networks, the flow computation problems, and the pattern
search problem that we study.

Definition 1 (Temporal Interaction Network): A temporal
interaction network is a directed graph G(V, E). Each edge e =
(v, u) in E includes a sequence eS = {(t1, q1), (t2, q2), . . . }
of interactions from node v to node u. Each interaction (ti, qi)
has a quantity qi that is moved from v to u at timestamp ti.

Fig. 2(a) shows a toy example; sequence {(6, 2), (8, 1)} on
edge (z, x) means that z transferred to x a quantity of 2 units
at time 6 and then a quantity of 1 unit at time 8.

We study the problem of measuring the total flow from a
specific source vertex s to a specific sink vertex t (s and t
might coincide), through a subnetwork G of G, which is a
directed acyclic graph (DAG) and can be formed by ignoring
irrelevant vertices (e.g., those having no incoming paths from
s or no outgoing paths to t) and edges. Fig. 2(b) shows the
subnetwork of interest when measuring the flow from s to t.

In order to define the flow f(G) through a DAG G(V,E),
we consider the interactions on the edges of G in order of
time.1 The goal is to compute the total quantity originating
from s, which is eventually accumulated at the sink vertex t.
However, the quantity at each interaction does not essentially
originate (entirely) from s. Hence, flow computation should
comply to the principle that an interaction (ti, qi) on an
edge (v, u) cannot transfer a larger quantity than what v has
received from its incoming interactions before time ti and
was not yet transferred via its outgoing interactions before ti.
Specifically, assume that each vertex v ∈ V , except s keeps,
in a buffer Bv , the total quantity originating from s, which has
been received from its incoming interactions and has not been
transferred by its outgoing interactions. Then, an interaction
on edge (v, u), may transfer from Bv to Bu any quantity in
[0,min{qi, Bv}].

Given a subgraph G(V,E) of the network G, with a source
vertex s ∈ V and a target vertex t ∈ V , we propose two
definitions of the flow f(G) from s to t through G:

Problem 1 (Greedy Flow Computation): Considering all
interactions in S by order of time, and assuming that each
interaction (ti, qi) on edge (v, u), transfers from Bv to Bu

the maximum possible quantity (i.e., min{qi, Bv}), f(G) is
the total quantity eventually buffered at the sink t.

Problem 2 (Maximum Flow Computation): Considering all
interactions in S by order of time, and assuming that each
interaction (ti, qi) on edge (v, u), could transfer from Bv to
Bu any quantity in [0,min{qi, Bv}], f(G) is the maximum
possible quantity eventually buffered at the sink t.

Problem 1 is based on the assumption that the maximum
possible quantity is transferred by each interaction. This as-
sumption holds in networks, where reserving quantities in ver-
tex buffers is costly and should be avoided (e.g., transportation
networks). Problem 2 assumes that the source vertex of each
interaction does not necessary transfer the maximum possible
quantity, but may reserve some quantity for future interactions;
this could increase the maximum overall quantity, transferred
from s to t. This assumption holds, for example, in financial
networks, where buffering does not bear any cost. In the next
section, we present solutions to both problems. As we will see,
Problem 1 is easy and its solution can be used as a module to
reduce the cost of Problem 2, which is more challenging.

We now define the pattern search problem that we study in
Section VI, which includes flow computation as a module.

Definition 2 (Network Patterns and Instances): A network
pattern GP (VP , EP ) is a directed acyclic graph, where each
vertex v ∈ VP has a label `(v). An instance of pattern GP in
a temporal interaction network G is a subgraph GM (VM , EM )
of G, such that:
• there is a surjection µ : VP → VM from the vertex set
VP of the pattern GP to the vertex set VM of GM ;

1In most applications, there are no ties between timestamps of interactions.
However, if ties exist, the incoming interactions to a vertex are given priority
compared to the outgoing ones (instant flow transfer). Between two (or more)
outgoing interactions, we break ties arbitrarily (still, any other rule can be used
to define an order).



• for two vertices v, u of GP , µ(v) = µ(u) iff `(v) = `(u);
• (v, u) ∈ EP iff (µ(v), µ(u)) ∈ EM .
Problem 3 (Flow Pattern Enumeration): Given a network G

and a pattern GP with a source s ∈ VP and a sink t ∈ VP ,
find all instances of GP in G; for each instance GM , compute
the (greedy or maximum) flow f(GM ).

Fig. 3 shows an example network G, a pattern and an
instance of the pattern. Note that two (or more) vertices of
the pattern that have the same label should be mapped to the
same vertex in G. Here, a, b, and c are mapped to u1, u2,
and u3, respectively. The goal is to find all pattern instances
and measure the (maximum) flow for each instance (e.g. $5
for the instance of Fig. 3(c)). Table I summarizes the notation
used frequently in the paper.
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TABLE I
TABLE OF NOTATIONS

Notation Description
G(V, E) temporal interaction network
G(V,E) subnetwork of G (problem input)
(ti, qi) an interaction with quantity qi at time ti

srci / desti source / destination vertex of interaction (ti, qi)
eS = {(ti, qi)} sequence of interactions on edge e

s / t source / target of flow computation
mG total number of interactions in graph G
Bv total quantity buffered at vertex v

IV. FLOW COMPUTATION ALGORITHMS

In this section, we present solutions to Problems 1 and 2.
In Section IV-A, we propose a greedy algorithm that solves
Problem 1 in time linear to the number mG of interactions
in the input graph G. Section IV-B shows that, in general,
the greedy algorithm cannot be used to solve Problem 2
and presents a linear programming (LP) formulation of the
problem.

A. Greedy flow computation

Algorithm 1 shows the steps of the greedy flow computation
algorithm, which solves Problem 1. First, we initialize the
buffers of all vertices in the DAG G. Recall that each buffer
accumulates the total quantity received from s, so all buffers
should be 0, except from Bs, which we set to ∞, in order for
all outgoing transactions (ti, qi) from s to transfer exactly qi
to their destination vertices. Then, we process all interactions
(ti, qi) in order of time. According to the definition of the
problem, each transaction subtracts min{qi, Bsrci} units from

the buffer Bsrci of its source vertex srci and adds them to
the buffer of its destination vertex desti. After processing all
transactions, the buffer Bt holds the total quantity f(G) that
has flown from s to t.

Algorithm 1 Greedy Flow Computation
Require: DAG G(V,E), source s ∈ V , sink t ∈ V

1: Bs =∞
2: for each v ∈ V \ {s} do
3: Bv = 0
4: end for
5: for each interaction (ti, qi) in G in order of time do
6: qtr = min{qi, Bsrci}
7: Bsrci = Bsrci − qtr; Bdesti = Bdesti + qtr
8: end for
9: return f(G) = Bt

Table II shows the steps of computing f(G) of the graph
shown in Fig. 2(b). The first column shows the currently
examined interaction, the second column the edge where it
belongs, and the last four columns the changes in the buffers of
the vertices after the interaction is processed. The temporally
last interaction (5, 1) on edge (z, t) transfers min{Bz, 1} = 1
units from Bz to Bt and the total flow of the graph is
f(G) = Bt = 1.

TABLE II
EXAMPLE OF GREEDY FLOW COMPUTATION

(ti, qi) (srci, desti) Bs By Bz Bt

(1, 5) (s, y) ∞ 5 0 0
(2, 3) (s, z) ∞ 5 3 0
(3, 5) (y, z) ∞ 0 8 0
(4, 4) (y, t) ∞ 0 8 0
(5, 1) (z, t) ∞ 0 7 1

Complexity. Algorithm 1 runs in O(mG) time, where mG is
the total number of interactions on the edges of G, assuming
that the interactions can be accessed in order of time.

B. Maximum flow computation using LP

We now turn our focus to Problem 2. Algorithm 1 does not
solve Problem 2 in the general case. For example, in the graph
of Fig. 2(b), the maximum possible transferred quantity from
s to t is 5; we get this if interaction (3, 5) on edge (y, z) does
not transfer any units from By to Bz , but reserves these units
for interaction (4, 4) from y to t, which happens later.

Problem 2 can be formulated and solved using linear pro-
gramming (LP). We define one variable xi for each interaction
(ti, qi) at any edge; xi corresponds to the quantity that will
be transferred as a result of the interaction. Note that, for
interactions which originate from the source vertex s, we have
xi = qi, since not transferring the maximum possible quantity
from s cannot increase the total quantity that reaches the sink
t. Hence, the number of variables is the number of interactions
that do not originate from the source.

The value of each variable xi cannot be negative and
cannot exceed qi. In addition, we have the constraint that
an interaction (ti, qi) on edge (srci, desti) cannot transfer a
larger quantity than Bsrci , i.e., the total incoming units to srci



minus the total outgoing units from srci, up to timestamp ti.
Given the above constraints, the objective is to find the values
of all variables xi, which maximize the total quantity that
arrives at the sink vertex. Hence, we formulate the following
linear program:

Maximize:
∑

desti=t xi

Subject to: 0 ≤ xi ≤ qi
xi ≤

∑
destj=srci∧tj<ti

xj −
∑

srcj=srci∧tj<ti

xj

Complexity. Problem 2 defines one variable per interaction;
hence, the number of variables in the LP problem is O(mG).
The complexity of LP problems is at least quadratic to the
number of variables [7], hence, the cost for computing the
maximum flow through G is at least O(m2

G).

V. A FRAMEWORK FOR MAXIMUM FLOW COMPUTATION

In view of the high complexity of LP compared to Algo-
rithm 1, we investigate approaches for solving Problem 2 faster
than directly using an LP solver. In Section V-A, we show
that for a specific class of graphs, we can solve Problem 2
in linear time using Algorithm 1. In Section V-B, we propose
a preprocessing approach, which eliminates interactions (and
possibly edges and vertices of G) that are guaranteed not to
affect the solution. Finally, in Section V-C, we present a graph
simplification approach, which computes part of the solution
using Algorithm 1 and, consequently, reduces the overall cost
of maximum flow computation. Putting all these approaches
together (Section V-D) results in a powerful maximum flow
computation technique for temporal interaction networks that
can be orders of magnitude faster than directly using an LP
solver, as we show experimentally in Section VII.

A. Graphs for which Algorithm 1 computes the maximum flow

We first show that, for a class of graphs, Algorithm 1
computes the maximum flow. This means that for these graphs,
we do not have to formulate and solve an LP problem, but we
can compute f(G) in time linear to the number of interactions.

Lemma 1: The greedy algorithm computes the maximum
flow through G if for every vertex v ∈ V \{s, t}, v has exactly
one outgoing edge.

Proof 1 (Sketch): Consider a graph G(V,E) that satisfies the
condition of the lemma. Assume that a vertex v ∈ V \{s, t}
having outgoing edge (v, u) does not transfer the maximum
possible flow as a result of an interaction (ti, qi) on (v, u),
but retains some quantity. Then this means that the amount of
flow available to u for transfer at time tj > ti will be strictly
less than the maximum possible. This can only decrease the
amount of flow that will leave u to reach t. The retained flow
at v cannot be utilized in some other way, since (v, u) is the
only outgoing edge from v (i.e., t can be reached from v only
via u). Hence, transferring the maximum possible quantity at
every interaction, results in accumulating the maximum flow
at the sink t.

Fig. 4 shows two exemplary DAGs for which the condition
is satisfied; hence, Algorithm 1 is guaranteed to compute
the maximum flow. The DAG in Fig. 4(a) is a chain, i.e.,
a sequence of pairwise connected vertices starting at s and
ending at t. The DAG in Fig. 4(b) is another graph where
every vertex, except s and t has exactly one outgoing edge.

Complexity. Checking whether the input graph G satisfies
the condition of Lemma 1 (i.e., examining the out-degree of
each vertex) costs just O(|V |) time.
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B. Graph preprocessing algorithm

Before applying LP to compute the maximum flow on a
DAG which does not satisfy the condition of Lemma 1, we can
reduce the complexity of the problem by removing interactions
that do not affect the solution. For example, interaction (2, $3)
on edge (z, t) of the graph of Fig. 1(a) can be removed,
because timestamp 2 is smaller than all the timestamps of all
interactions that enter z. Removing interactions can be crucial
to the performance of LP because its cost is quadratic to their
number mG. In addition, removing interactions may possibly
lead to the removal of edges and vertices and may greatly
simplify the input graph G.

We propose a preprocessing algorithm, which eliminates
from G interactions, edges, and vertices, which cannot con-
tribute to the maximum flow computation. Algorithm 2 de-
scribes the steps of our method. We consider all vertices of G
in a topological order and, for each vertex, which is not the
source or the sink, we examine its outgoing edges and remove
from them all interactions with a smaller timestamp than the
smallest incoming timestamp to the vertex (lines 9–13). If no
interactions are left on an edge, the edge is deleted from G
(lines 14–15). The deletion of interactions on an outgoing edge
from the current vertex v may reduce the minimum timestamp
of the incoming interactions to vertices that follow u in the
topological order. Hence, only a single pass over the vertices
is required to eliminate needless interactions. In addition, the
deletion of an outgoing edge from v may cause a vertex u
that follows v in the order to have no incoming edges. Such
an event, will cause u and all its outgoing edges to be deleted
(since there is no way that u can transfer any quantity from s
to t). This case is handled at lines 3–5 of Algorithm 2. If all
outgoing edges from the current vertex v are deleted, then we
have to delete v and all its incoming edges (lines 18–21). This
may cause one or more of the vertices w which connect to v
to have no outgoing edges too. In this case, a recursive vertex
deletion is triggered. If the recursive deletion causes the source
s to have no outgoing edges, then Algorithm 2 terminates with
the conclusion that f(G) = 0, rendering the execution of LP



unnecessary. The same happens when all vertices that connect
to the sink t are deleted.

Algorithm 2 DAG preprocessing
Require: DAG G(V,E)

1: define topological order for G’s vertices
2: for each vertex v ∈ V \{s, t} in topological order do
3: if v has no incoming edges then
4: delete all outgoing edges from v
5: delete v from V
6: else
7: mintime = min(w,v)∈E{min(ti,qi)∈(w,v)S ti}
8: for each (v, u) ∈ E do
9: for each (t, q) ∈ (v, u)S do

10: if t < mintime then
11: delete (t, q) from (v, u)S
12: end if
13: end for
14: if (v, u)S = ∅ then . all interactions deleted
15: delete (v, u) from E
16: end if
17: end for
18: if v has no outgoing edges then
19: delete v from V
20: delete from E all edges (w, v) incoming to v and
21: recursively delete all w ∈ V with no outgoing edges
22: end if
23: end if
24: end for

Figure 5 shows two application examples of Algorithm 2.
The algorithm removes four interactions from DAG G1 of Fig.
5(a), which is reduced to the graph shown in Fig. 5(b). The
reduction of DAG G2 in Fig. 5(c) to the graph in Fig. 5(d)
is more effective, since, in addition to eight interactions, four
edges and two vertices are eliminated. On the resulting graph
of Fig. 5(d), we can now use Algorithm 1 to compute the
maximum flow, while we cannot on the initial G2, because y
has two outgoing edges. Hence, if Algorithm 2 removes edges
from the graph, we test again the condition of Lemma 1, to
check the possibility of computing the maximum flow f(G)
using Algorithm 1 instead of using LP.
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Fig. 5. DAG preprocessing examples

Complexity. The cost of Algorithm 2 is linear to the number
of interactions, as for each examined edge its interactions are

processed at most once (from the temporally earliest to the
latest). Each edge is checked for deletion at most twice (once
as an outgoing edge and at most once as an incoming edge).
Topological sorting of the vertices (in the beginning of the
algorithm) examines each edge of the DAG once [8]. Hence,
the complexity of Algorithm 2 is O(mG).

C. Graph simplification

The last part of our algorithmic framework for Problem 2
is a graph simplification algorithm, based on the observation
that chains which originate from the source vertex can be
reduced to single edges. In a nutshell, graph simplification
iteratively identifies and reduces such chains by applying the
greedy algorithm on them, until no further reduction can be
performed. The resulting graph is then solved using LP.

A chain C, denoted by a sequence of vertices v1v2 . . . vk,
is a subgraph of G, such that every vertex vi, i ∈ [2, k − 1]
has exactly one outgoing edge in G to vertex vi+1 and exactly
one incoming edge in G from vertex vi−1. Our algorithm is
based on the fact that any chain that starts from the source of
the graph G can be reduced (in time linear to the number of
interactions on the edges of the chain) to a single edge without
affecting the correctness of maximum flow computation in the
graph. To perform the reduction of a chain sv1v2 . . . vk to
an edge (s, vk), we run a variant of Algorithm 1, shown as
Algorithm 3, on the chain, and define one interaction for each
interaction on the last edge (vk−1, vk) of the chain. Algorithm
3, after initializing all buffers to 0 (except for Bs which is set
to ∞), accesses all interactions in the chain in order of time
and updates the buffers of the corresponding vertices, as in
Algorithm 1. Each interaction (ti, qi) having as destination the
last vertex vk of the chain generates a new interaction with the
quantity that is transferred to vk from vk−1. After processing
all interactions, the algorithm returns the new edge (s, vk)
with the constructed interaction set (s, vk)S . For example, the
chain of Fig. 4(a) can be reduced to a single edge (s, t) with
interactions {(6, 3), (8, 4)}.

Algorithm 3 Chain Reduction
Require: Chain subgraph C(VC , EC), VC = {s, v1, v2, . . . , vk}

1: Bs =∞
2: for each vi ∈ VC \ {s} do
3: Bvi = 0
4: end for
5: Initialize replacement edge e with eS = ∅
6: for each interaction (ti, qi) on edges of EC in order of time do
7: qtr = min{qi, Bsrci}
8: Bsrci = Bsrci − qtr; Bdesti = Bdesti + qtr
9: if desti = vk and qtr > 0 then eS = eS ∪ (ti, qtr)

10: end if
11: end for
12: return e

The following lemma shows that, for a DAG G, the replace-
ment a chain starting from the source vertex s by the single
edge computed by Algorithm 3 does not affect the correctness
of maximum flow computation.



Lemma 2: Let G be a DAG having s as its source vertex.
Assume that G includes a chain sv1v2 . . . vk. Let G′(V ′, E′)
be the DAG for which V ′ = V −{v1, v2, . . . , vk−1} and E′ =
E −{(s, v1), (v1, v2), . . . , (vk−1, vk)}+ {e}. The new edge e
is computed by Algorithm 3 taking the chain sv1v2 . . . vk as
input. Then, the maximum flow through G is equal to the
maximum flow through G′.

Proof 2 (Sketch): Recall that reserving flow in the source
vertex s of G cannot increase the maximum flow that reaches
its sink. The same holds for all vertices {v1, v2, . . . , vk−1} in
a chain sv1v2 . . . vk that originates from the source s, except
from the last vertex vk, as Lemma 1 suggests. Hence, replacing
chain sv1v2 . . . vk by the edge e computed by Algorithm 3
does not affect the correctness of maximum flow computation
in G, as the quantity received by vk from vk−1 at any time
is equal to the quantity received by vk via (s, vk) = e at any
time.

Algorithm 4 is a pseudocode for the proposed graph sim-
plification approach, which uses Algorithm 3 to progressively
reduce chains that start from s. Note that the edge (s, vk) = e
that should replace a chain sv1v2 . . . vk may already exist in
the graph. In this case, the interactions eS of the new edge
e produced by Algorithm 3 are merged with those of the
existing edge (s, vk). The reduction of a chain and the potential
merging of the resulting edges may cause new chains to exist
in G; hence, the algorithm re-checks for possible new chains
after each reduction.

Fig. 6 illustrates the functionality of Algorithm 4. Assume
that the initial graph G is as shown in Fig. 6(a). After reducing
to edges the two chains that originate from the source s,
the graph is simplified as shown in Fig. 6(b). Note that the
reduction of chain (s, y, z) introduces a new edge (s, z) with
interactions {(3, 2), (7, 1)}, however, an edge (s, z) already
exists in the graph with interactions {(2, 5), (11, 2)}. In such
a case, the two edges are merged to a single edge with all four
interactions as shown in Fig. 6(c). After the merging, a new
chain (s, z, w) that originates from the source s is created. This
chain is then reduced to single edge (s, w) as shown in Fig.
6(d). At this stage the graph cannot be simplified any further.
Note that the LP optimization problem of the initial graph
in Fig. 6(a) has 9 variables (as many as the interactions that
do not originate from s), whereas the reduced graph in Fig.
6(d) requires only 3 variables. This demonstrates the reduction
to the cost of solving the problem achieved by our graph
simplification approach.

Complexity. Each edge along the chains of G is examined
just once before being reduced. In addition, each newly created
edge is examined at most once if it becomes part of a chain.
The newly generated interactions by a chain reduction cannot
be more than the interactions on the last edge of the chain.
Hence, Algorithm 4 examines each edge (and the interactions
on it) at most twice. Overall, its cost is O(mG).

D. Putting it all together

Algorithm 5 summarizes our proposal for maximum flow
computation in temporal interaction networks. First, we test
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Algorithm 4 Graph simplification
Require: Graph G(V,E)

1: while G contains a chain sv1v2 . . . vk from source s do
2: run Algorithm 3 to simplify chain to edge e
3: remove edges {(s, v1), (v1, v2), . . . (v2, vk)} from E
4: if (s, vk) /∈ E then . edge (s, vk) does not exist
5: add edge (s, vk) = e to E
6: end if
7: (s, vk)S = (s, vk)S ∪ eS . merge interactions
8: end while

whether maximum flow can be computed on the DAG G by
testing the condition of Lemma 1. If this is not possible,
we apply Algorithm 2 to remove interactions (and possibly
vertices and edges) irrelevant to the problem. If the structure
of the resulting graph changes, we check again whether
Algorithm 1 can solve the max-flow problem. Otherwise,
we first simplify the graph, by applying Algorithm 4 before
computing the maximum flow on the resulting graph using LP
(as described in Section IV-B).

Algorithm 5 Maximum flow computation
Require: Graph G(V,E)

1: if If Algorithm 1 can compute f(G) then . Lemma 1
2: run Algorithm 1 on G to compute max-flow
3: else
4: preprocessGraph(G) . Algorithm 2
5: if Algorithm 1 can compute f(G) then . Lemma 1
6: run Algorithm 1 on G to compute max-flow
7: else
8: simplifyGraph(G) . Algorithm 4
9: LP(G) . Section IV-B

10: end if
11: end if

VI. FLOW PATTERN SEARCH

So far, we assumed that the DAG through which we want
to compute the flow is given. In this section, we address
Problem 3: find the instances of a small DAG pattern GP in a
temporal interaction network and measure the maximum flow
for each instance. Finding the instances of a graph pattern is a
classic search problem in unlabeled graphs. On the other hand,
maximum flow computation for a subgraph can be expensive,
so simply finding the pattern instances, using some approach
from previous work (e.g., [25]), and computing the flow for



each instance might not be the best approach. We propose a
flow path indexing technique, which precomputes paths of the
network G, along with their flow. Pattern search can greatly
benefit from the preprocessed data. Before presenting our
proposal, we discuss a baseline graph browsing approach.

A. Graph browsing approach

A direct approach for solving the pattern search problem
traverses the whole network G, and identifies instances of GP

by gradually expanding partial matches of the pattern. As
discussed in [25], graph browsing is appropriate for pattern
search in unlabeled graphs (like G), where the number of
instances can be huge. Specifically, the graph browsing (GB)
approach, considers the vertices of GP (VP , EP ) in a topologi-
cal order. GB is a backtracking algorithm [26], which, starting
from the source vertex of GP , attempts to map each vertex
vP ∈ VP to a vertex v ∈ G, choosing from the neighbors
in G of the currently instantiated vertex and making sure
that all mapping and structural constraints w.r.t. all previously
instantiated vertices are satisfied. For each identified pattern
instance, we compute the corresponding flow.

Note that for certain patterns, like the chain pattern of
Fig. 3(b), which satisfy the condition of Lemma 1, we can
compute the maximum flows of their instances incrementally.
That is, for each partial instance which matches a prefix of
the pattern, we can apply Algorithm 3 to model it as an edge
eI . When the partial instance is expanded by one edge e, we
then incrementally update the flow by running Algorithm 3
on a graph with two consecutive edges eI and e. When we
backtrack and before expanding again, we can re-use eI and
avoid redundant flow re-computations.

B. Flow path indexing

Before searching for any pattern, we propose the preprocess-
ing of the network G and the extraction from it of small paths
that can be components of pattern instances. This way, we can
avoid searching for subgraphs of a pattern GP from scratch;
instead, we can retrieve the pattern’s structural components
(and precomputed flow data) and then “stitch” them together
using join algorithms. The idea of extracting and indexing
subgraphs in order to facilitate graph pattern search has been
used before [6], [25]; here, we apply it in the context of
flow pattern search and show how we can benefit from the
precomputation of the flow along the indexed paths.

Index Construction. We apply GB to identify and index all
paths up to k hops. We form one table for each length up to
k, holding all paths of that length. That is, for each path, we
store: (i) the sequence of vertex-ids that form the path, (ii) the
sequence of interactions eS that result from the application of
Algorithm 3 to the path. Each table is sorted w.r.t. the vertex-id
sequences, in order to facilitate merge joins.

Pattern Search. Algorithm 6 shows the steps of the proposed
pattern search algorithm that uses our index. To find the
instances of a given pattern GP , we first identify the indexed
path subpatterns in GP and access and join the corresponding

tables, in order to form instances of GP . As soon as a
complete pattern match GM is identified, we compute the flow
f(GM ) for GM . We take advantage of the precomputed flow
sequences eS for the constituent paths of GM to reduce the
cost of computing f(GM ).

Algorithm 6 Pattern Search
Require: Network G(V, E), pattern GP (VP , EP )

1: Decompose GP to a set of paths
2: Access and join corresponding tables to form instances of GP

3: for each instance GM of GP do
4: compute f(GM ) using precomputed flows (if possible)
5: end for

Consider, for example, the flow pattern GP1
shown in Fig.

7(a). Assume that we have preprocessed and have available
all instances of two-hop and three-hop cyclic paths that start
from and end to the same node a in two tables L2 and
L3, respectively. In this case, we can easily compute all
instances of GP1 , by only accessing and using preprocessed
data. Specifically, we scan L2 and L3 and merge-join them, in
order to find all pairs of paths from L2 and L3 that have the
same start (and hence end) vertex. To compute the total flow
of each pattern instance, we simply sum up all precomputed
incoming flows to the sinks of the two paths.

The precomputed flows cannot always be used. For exam-
ple, in the pattern GP2

of Fig. 7(b), the path a→ b→ c→ d
is not isolated; hence, precomputed flow information for its
instances is not useful. Still, even when precomputed flow
information is not useful, the tables of the index can be used
to accelerate finding the instances of the patterns.

ba c a

d

1

ba c a

1

(a) Pattern GP1 (b) Pattern GP2

Fig. 7. Examples of flow patterns

C. Non-rigid patterns

The patterns that we have defined so far have a rigid struc-
ture. In some applications, however, we might be interested in
searching for patterns with more relaxed structure. Consider,
for example, a money-laundering pattern where a source node
a is sending payments to recipients (which do not have a
fixed number) and then these recipients send money back to
a. Right now, we could only define a set of different patterns
and measure their flows independently, as shown in Fig. 8(a).
Then, we could aggregate the flows of all instances of the
different patterns that correspond to the same node a in order
to compute the total flow from a to a via other nodes.

This approach has several shortcomings. First, we would
have to compute and merge the results of multiple pattern
queries. Second, there is no limit on how many patterns we
should use. Third, the final result might not be correct, as
the flows of subpatterns could be included in the flows of
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Fig. 8. 2-hop non-rigid pattern

superpatterns (for example, an instance of the 2nd pattern in
Fig. 8(a) includes two instances of the first pattern).

In order to avoid these issues, we can define a relaxed
pattern as shown in Fig. 8(b), which links a to a by parallel
paths via any number of intermediate nodes. Finding the
instances of this pattern and measuring their flows is very
easy using our precomputation approach, as we only have to
scan the 2-hop cycle table L2 and, for each instance of a, we
have to aggregate the flows of the corresponding rows of the
table. We can also set constraints to the number of paths in
a non-rigid pattern. For example, we might be interested in
instances of the pattern shown in Fig. 8(b) which include at
least 10 cycles.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the flow
computation techniques on real datasets. All methods were
implemented in C and the experiments were run on a MacBook
Pro with an 2.3 GHz Quad-Core Intel Core i5 and 8GB
memory. For the implementation of LP, we used the lpsolve
library2 (version 5.5.2.5). The source code of the paper is
publicly available.3

A. Description of datasets

We used four real datasets, generated from real interaction
networks: the Bitcoin transactions network, an internet traffic
network, a loans exchange network, and a taxis transport
network. We now provide details about the data. Table III
summarizes their characteristics.

Bitcoin: This dataset includes all transactions in the bitcoin
network [19] up to 2013.12.28 from https://senseable2015-
6.mit.edu/bitcoin/. The data were collected and formatted
by the authors of [16]. We joined tables ‘txedge.txt’ with
‘txout.txt’ to create a single table with transactions of the
form (sender, recipient, timestamp, amount). We used table
‘contraction.txt’ to merge addresses which belong to the same
user. Addresses were mapped to integers in a continuous range
starting from 0. We converted all amounts to B (originally in
Satoshis, where 1 Satoshi=10−8B) and removed all insignifi-
cant transactions with amounts less than 10000 Satoshis.

CTU-13: We extracted data from a botnet traffic network4,
created in CTU University [12]. The vertices of the graph are
IP addresses and the interactions are data exchanges between
them at different timestamps. We consider as flow the total
amount of bytes transferred between IP addresses.

2https://sourceforge.net/projects/lpsolve/
3https://github.com/ckosyfaki/FlowComputation
4https://www.stratosphereips.org/datasets-ctu13

Prosper Loans: Prosper5 is an online peer-to-peer loan ser-
vice. We consider Prosper as an interaction network between
users who lend money to each other. Each record includes the
lender, the borrower, the time of the transaction and the loan
amount. We disregarded the tax that the borrower paid for the
transaction and considered only the net loan amount. The data
were downloaded from http://konect.cc/networks/.

Taxis Network: We downloaded data from NYC yellow taxi
trips6 on January 1st 2019. Each record has the pick-up and
drop-off locations (taxi zones), the drop-off time and the
number of the passengers on each trip (flow). We created a
graph, where vertices are taxi zones and edges are trips.

TABLE III
CHARACTERISTICS OF DATASETS

Dataset #nodes #edges #interactions avg. qi
Bitcoin 12M 27.7M 45.5M 34.4B
CTU-13 607K 697K 2.8M 19.2KB

Prosper Loans 88K 3M 3.04M $76
Taxis 255 10.4K 231K 1.53

B. Flow computation

In order to evaluate the flow computation algorithms, we
extracted a number of subgraphs from each network and we
computed the flow on each of them. Specifically, for the first
three networks, we identified seed vertices from which there
are paths (up to three hops) that pass through other vertices
and then return to the origin. For each seed vertex, we unified
all edges along these paths to form a single subgraph of the
network. For the Taxis network, which is very dense, for all
possible source/sink pairs, we unified all paths up to three hops
that connect them to create the respective DAGs.

We discarded subgraphs with more than 10K interactions
because the LP algorithm for maximum flow computation was
too slow on them.7 The number of tested subgraphs extracted
from each dataset and their statistics are shown in Table IV.
For the first three datasets, the subgraphs are relatively small
in terms of vertices and edges, but they have a relatively large
number of interactions (for example in Bitcoin subgraphs there
are about 70 interactions per edge on average, while there are
about 2 interactions per edge on average in the entire Bitcoin
graph). For the Taxis dataset, the subgraphs are substantially
larger and denser. In general, computing the maximum flow
through the tested subgraphs is relatively expensive, due to the
large number of interactions.

Competitors. We applied the following methods to compute
the flow on the extracted subgraphs from each dataset.
• The greedy algorithm (Algorithm 1) presented in Sec-

tion IV-A, which computes the flow based on the greedy
transfer assumption, i.e., it does not (always) find the
maximum flow.

5https://en.wikipedia.org/wiki/Prosper Marketplace
6https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
7Our graph preprocessing and simplification approaches for max-flow

computation reduce the size of LP problem and are independent to the LP
solver used. Hence, they can be applied on larger graphs with more scalable
LP solvers.



TABLE IV
STATISTICS OF SUBGRAPHS

Dataset #subgraphs avg |V | avg |E| avg #interactions
Bitcoin 48.7K 5.16 6.42 448.4
CTU-13 9235 3.24 2.49 15.9
Prosper Loans 137 6.1 8 611.5
Taxis 33.6K 28.8 93.6 2542.39

• LP, which solves the maximum flow problem using linear
programming, as discussed in Section IV-B, using a direct
application of the LP solver.

• Pre, which applies all steps of Algorithm 5 except from
graph simplification (i.e., line 8). We include this version
of our algorithm in order to assess the effect of testing
for Lemma 1 and the preprocessing Algorithm 2.

• PreSim is our complete solution for maximum flow
computation (i.e., Algorithm 5).

Runtime comparison. Table V (columns ‘All’) shows the
average runtime (in msec) of the compared flow computation
methods on the tested subgraphs from each dataset. The greedy
algorithm is lightning fast, as its cost is linear to the number
of interactions. Its running time in all cases is in the order
of microseconds. For the maximum flow problem, LP is quite
slow especially on the Bitcoin and Taxis subgraphs, which
contain the largest number of interactions on average (see
Table IV). With the help of the preprocessing approach (Pre),
the graphs are simplified and maximum flow computation
becomes up to 14 times faster compared to LP. Note that the
time for preprocessing the graphs is included in the measured
runtimes. Finally, the graph simplification method (PreSim)
further reduces the cost by a factor of at least two compared to
Pre on the first three networks. On the other hand, the average
improvement is very small on the Taxis dataset because the
subgraphs are quite dense and they can rarely be simplified.
On average, the speedup of our proposed maximum flow
computation approach (PreSim) over LP is 11x, 13x, 32x, and
4.5x on the four networks.

For a more detailed analysis of the results, we divided the
tested subgraphs in three classes. Class A contains the easiest
subgraphs, which are found to be solved by Algorithm 1. The
cost of verifying this (i.e., testing the condition of Lemma
1) is very low, so the cost of computing the maximum flow
on these graphs equals the cost of running Greedy. Class
B contains the subgraphs, which are found to be solvable
Algorithm 1 after preprocessing. The cost for computing the
maximum flow on these graphs is again close to that of Greedy.
Finally, class C contains the hardest graphs, which even after
preprocessing cannot be solved using the greedy algorithm.
The corresponding columns of Table V average the runtimes
of the tested methods on each of the three classes of subgraphs.
Note that the results on the hardest graphs of class C, show
the actual improvement of PreSim over Pre (as these are the
only cases where graph simplification is applied).

To assess the scalability of the approaches, we divided the
tested subgraphs into three categories based on the number
of interactions they include (<100 interactions, between 100

and 1000 interactions, >1000 interactions). Fig. 9 compares
the average performance of all methods on each category of
subgraphs from each dataset. As expected, the costs of all
methods increase with the number of interactions. In general,
the savings of PreSim and Pre over LP are not affected by
the magnitude of the problem size. Overall, the experiments
confirm the efficiency and the scalability of the proposed
techniques for greedy and maximum flow computation.

Greedy vs. maximum flow. As we have seen, maximum
flow computation (Problem 2) is very expensive compared to
greedy flow computation (Problem 1). A natural question is
how often the greedy Algorithm 1 computes the maximum
flow and what is the relative difference between the maxi-
mum flow and the flow computed under the greedy transfer
assumption. Since for subgraphs belonging to classes A and
B, the greedy algorithm finds the maximum flow, we analyzed
the flows of the subgraphs that belong to class C from all
four datasets. Table VI shows the average relative difference
fM (G)−fG(G)

fM (G) between the maximum flow fM (G) and the
flow fG(G) computed by Algorithm 1 in all subgraphs G
and the fraction of subgraphs where Algorithm 1 computes
the maximum flow. Observe that the relative difference is
quite small on average and that the probability that the
greedy algorithm finds the maximum flow is quite high, which
indicates that Algorithm 1 can be used as an approximation
algorithm for maximum flow computation (although there is
no quality guarantee).

Flow distribution analysis. We collected some statistics that
demonstrate the applicability of flow computation. Fig. 10(a)
shows the cumulative distribution of the computed maximum
flows on the tested subgraphs of the Bitcoin network. We
observe a powerlaw distribution: the maximum flow for the
majority of DAGs is smaller than 10 and there are only few
DAGs with flow greater than 10000. This indicates that there
are few interesting cases of DAGs with large flow which may
ring a bell to financial analysts. Fig. 10(b) shows the (greedy)
flow distribution for all subgraphs of the Taxis network as
a heatmap. Observe that (i) the heatmap is symmetric (i.e.,
the flow from a region a to a region b is similar to the flow
from region b to region a), (ii) the flow between regions of
small IDs (less than 60) is much higher compared to the flow
between other pairs of regions, (iii) there are regions, from/to
which there is very little flow (black lines), e.g., zone 71 (East
Flatbush in Brooklyn). These results may provide insights to
transportation/urban analysts.

C. Pattern Search

We now evaluate the flow pattern enumeration techniques
presented in Section VI, i.e., the graph browsing (GB) ap-
proach and the preprocessing-based (PB) approach. We com-
pared the time they need to find the instances of several simple
graph patterns in the Bitcoin and Prosper Loan networks and to
compute the maximum flow of each instance. We constructed
main-memory representations of the networks that facilitate
graph browsing (i.e., we can navigate to the neighbors of



TABLE V
AVERAGE RUNTIME (MSEC) ON THE TESTED SUBGRAPHS

Bitcoin subgraphs CTU-13 subgraphs Prosper Loans subgraphs Taxis subgraphs
All(48.7K) A(35.4K) B(7.9K) C(5.4K) All(9235) A(9199) B(3) C(33) All(137) A(94) B(25) C(18) All(33.6K) A(6.6K) B(2.8K) C(24.1K)

Greedy 0.05 0.007 0.295 0.353 0.0035 0.0032 0.0037 0.076 0.0027 0.0015 0.004 0.0067 0.13 0.005 0.02 0.17
LP 5775 2667 7179 24248 10.313 3.835 71.07 1810 0.5105 0.5072 0.5646 0.4527 4650 0.62 209 6452
Pre 838.8 0.0078 0.575 7615.8 6.314 0.0033 0.0074 1767 0.0352 0.0016 0.008 0.2373 1091 0.005 0.03 1520
PreSim 524.5 0.0078 0.575 4762 0.7902 0.0033 0.0074 220.2 0.0157 0.0016 0.008 0.0889 1085 0.005 0.03 1512
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Fig. 9. Runtime of algorithms as a function of the number of interactions

TABLE VI
FLOW COMPARISON (CLASS C ONLY)

Statistics Bitcoin CTU-13 Prosper Loans Taxis
Avg. relative difference 0.18 0.11 0.16 0.30
ratio of fG(G) = fM (G) 0.49 0.57 0.55 0.31
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Fig. 10. Flow statistics in subgraphs

each vertex with the help of adjacency lists). Due to the high
precomputation and storage cost, in Bitcoin, we were able to
precompute and store only paths up to 3 hops where the start
and the end vertex are the same (i.e., cycles). Paths of longer
sizes and of arbitrary nature require a lot more space than the
original datasets. On the other hand, the precomputed cycles
up to three hops require at most 20% space compared to the
size of the entire graphs. For the Prosper Loans dataset, we
also precomputed 2-hop chains (i.e., paths of three different
nodes) which could easily be accommodated in the main
memory of our machine.

Figure 11 shows the set of patterns that we tested in the
experiments. We experimented with six rigid patterns (P1–P6)
and three relaxed patterns (RP1–RP3). In the non-rigid patterns
(see Section VI-C), all vertices in the parallel paths (except
for the source and the sink) are required to be different.

Tables VII and VIII compare the performance of GB to that
of PB on enumerating the instances of the various patterns
and computing their maximum flow. Note that for Bitcoin, the
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Fig. 11. Set of tested patterns

TABLE VII
PATTERN SEARCH ON BITCOIN

Pattern Instances Average flow GB PB
P2 22.3G 56.15 23.2 hours 30.59 sec
P3 2.8M 4786.18 3155.96 sec 179.70 sec
P4 17.7M 1378.32 3.8 hours 2.3 hours
P5 577.5M 8069.2 15 days (est.) 179.74 sec
P6 2.74T 9043.12 6.3 hours 5.2 hours

RP2 655K 39.86 422.79 sec 53.273 msec
RP3 1.2M 1.86 306 min 13.53 msec

processing times for P1 and RP1 were not included because
PB was not applicable in this case (we have not precomputed
any path that would be useful). In general, we observe that
preprocessing pays off for most of the tested patterns, as the
runtimes of PB in most cases are orders of magnitude lower
than the corresponding ones of GB.

For some patterns and networks, prepcocessing (PB) does
not give much benefit compared to GB (e.g., P4 and P6 on
the Bitcoin network). For these patterns, the preprocessed
flows cannot be used and the maximum flow of the instances
must be computed by LP. Hence, on the Bitcoin network, PB
has a similar cost as GB, as the instances contain numerous
interactions and maximum flow computation dominates the
overall cost of pattern enumeration.

Flow patterns may have a huge number of instances. In such



TABLE VIII
PATTERN SEARCH ON PROSPER LOANS

Pattern Instances Average flow GB PB
P1 5.12M 45.89 119.08 sec 2.80 sec
P2 201 223.23 88.66 msec 0.004 msec
P3 268 100.44 3.57 sec 1.3 msec
P4 98 299.55 3.54 sec 0.723 msec
P5 1833 121.47 605.67 msec 0.021 msec
P6 1296 43.55 474.61 msec 11.13 msec

RP1 25.5M 25.12 133.37 sec 3.01 sec
RP2 260 58.061 0.016 msec 0.004 msec
RP3 532 10.94 503.89 msec 0.040 msec

cases, the analyst might be interested in the instances with the
largest flow, or in instances having flow above a threshold.
Indicatively, Fig. 12 shows the cumulative flow distribution of
two patterns. Observe that, as in the case of DAGs, a small
percentage of instances have large flow. In the future, we will
study the problem of finding the top instances of a given
pattern with the largest flow efficiently.
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Fig. 12. Cumulative flow distribution of pattern instances

VIII. CONCLUSIONS

In this paper we studied the problem of flow computation
in temporal interaction networks. We defined two models for
flow computation, one based on greedy flow transfer between
vertices and one that assumes arbitrary flow transfer and the
objective is to compute the maximum flow. We showed that
computation based on the first model can be done in linear
time. We proposed and evaluated a number of techniques
that greatly reduce the cost of the more interesting maxi-
mum flow computation problem. The value of our greedy
computation approach is not only in solving efficiently the
problem under the greedy transfer assumption, but also in
simplifying maximum flow computation wherever possible.
Note that our techniques are readily applicable for the time-
restricted version of the problem, where we only consider
interactions that happen within a time window (i.e., by simply
ignoring all interactions outside the window). In addition,
the greedy algorithm can seamlessly be used to continuously
maintain the incoming flow at the sink, if interactions come
from a stream in time order.

Directions for future work include (i) the investigation of
additional techniques for reducing the cost of the maximum
flow problem, (ii) the investigation of similar simplification
techniques to other flow computation problems, and (iii) the

systematic discovery of interesting patterns and subgraphs that
have significantly more flow than expected.
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