
Fairness in Package-to-Group Recommendations

Dimitris Serbos
University of Ioannina
dserbos@cs.uoi.gr

Shuyao Qi
University of Hong Kong

qisy@connect.hku.hk

Nikos Mamoulis
University of Ioannina
nikos@cs.uoi.gr

Evaggelia Pitoura
University of Ioannina
pitoura@cs.uoi.gr

Panayiotis Tsaparas
University of Ioannina

tsap@cs.uoi.gr

ABSTRACT
Recommending packages of items to groups of users has sev-
eral applications, including recommending vacation pack-
ages to groups of tourists, entertainment packages to groups
of friends, or sets of courses to groups of students. In this
paper, we focus on a novel aspect of package-to-group rec-
ommendations, that of fairness. Specifically, when we rec-
ommend a package to a group of people, we ask that this
recommendation is fair in the sense that every group mem-
ber is satisfied by a sufficient number of items in the package.
We explore two definitions of fairness and show that for ei-
ther definition the problem of finding the most fair package
is NP-hard. We exploit the fact that our problem can be
modeled as a coverage problem, and we propose greedy al-
gorithms that find approximate solutions within reasonable
time. In addition, we study two extensions of the problem,
where we impose category or spatial constraints on the items
to be included in the recommended packages. We evaluate
the appropriateness of the fairness models and the perfor-
mance of the proposed algorithms using real data from Yelp,
and a user study.

Keywords
Recommendation systems; Package-to-Group; Fairness; Pro-
portionality; Envy-freeness

1. INTRODUCTION
Recommender systems have attracted a lot of research

attention and have been deployed in a wide range of appli-
cations [23, 1]. Besides the classic and well-studied problem
of recommending a new item to a user, there has been in-
creasing interest in suggesting a package (or bundle) of items
to a user [6, 27], or an item to a group of users [29, 20]. In
a recent work the problem of recommending a package to a
group of users was addressed [18]. This is a problem with
many practical applications. Examples include creating a

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052612

.

vacation package for a group of tourists, suggesting an en-
tertainment package to a group of friends for a night out,
deciding a session of movies to show to an audience, plan-
ning a 5-course dinner, selecting papers for oral presentation
for a conference, and many more.

In this paper, we study the problem of fairness in package-
to-group recommendations. This is a novel characteristic,
unique to the package-to-groups recommendations. User
groups may be heterogeneous, consisting of people with dis-
similar tastes. A recommendation to the group should try
to accommodate the preferences of all group members. This
consideration is usually taken into account in the selection of
a preference aggregation function [13, 18], that tries to find
a consensus among the users. However, even the best items
according to this function may still leave some users feeling
dissatisfied and slighted. We can address this problem di-
rectly when recommending a package of items to the group,
by requiring that for each user in the group, we include at
least one item in the package that is high in her preferences,
even if the resulting package is not the best overall. Intu-
itively, in this case the package is fair : for every user in the
group, there exists at least one item that satisfies her.

Formally, given a group of users G and a set of items I,
we want to recommend to group G a package P ⊆ I of a
given cardinality |P | = K. We assume that the preferences
of the users to items in I are known or can be inferred, e.g.,
by applying collaborative filtering (CF) [21]. We say that
the package P is fair to a user u in the group G if there is
at least a number m of items in P that “satisfy” user u.

We consider two alternative definitions of fairness, de-
pending on our definition of what it means for an item i
to satisfy user u. In fairness proportionality, we say that u
is satisfied by item i, if i is ranked in the top-rated items
for u. Intuitively, in this definition, the user u considers the
package fair for her, if there are at least m items that the
user likes. In envy-freeness, we say that u is satisfied by
item i, if the rating of user u for item i is among the top
ratings of the users in the group G for i. Intuitively, in this
definition, the user u considers the package fair for her, if
there are at least m items for which the user does not feel
envious. These definitions are inspired by the corresponding
fairness concepts in fair division of resources [22, 9, 4].

Given a fairness definition, we can now measure how fair
a package P is for the entire group G by computing the frac-
tion of users in G to whom P is fair. Our recommendation
objective is then to find the most fair package for G. We

model this problem as a classic set coverage problem [11].
An item i covers a user u, if u is satisfied by i. Our prob-
lem becomes that of selecting a package P of K items that
maximizes the number of users who are covered at least m
times. This problem is NP-hard. For the case where m = 1,
there is a greedy algorithm with a (1− 1/e)-approximation
guarantee. For m > 1 we propose a greedy algorithm that
achieves good performance in practice.

In addition, we study two extensions of the problem where
there are additional constraints on the selection of the items
to be included in the package. In the first extension, the
items in I belong to categories, and for each category a spe-
cific number of items is to be selected. For this problem, we
propose a 1/2-approximation greedy algorithm for the case
where m = 1. In the second generalization, we assume that
the items have spatial locations (e.g., they are entertain-
ment venues), and there is a maximum distance constraint
ε on the pairwise distances of items in the package. For this
version, we propose an exact algorithm that exploits spatial
indexing to prune and explore the search space. In view of
the potentially high cost of this method, we also propose
greedy heuristics.

In summary, in this paper we make the following contri-
butions:

• We define the novel problem of maximizing fairness
in package-to-group recommendations, and we propose
models and algorithms for the problem.

• We consider two interesting and practical extensions of
the problem where we add category and spatial con-
straints, and we propose appropriate algorithms.

• We evaluate the proposed models and algorithms with
experiments on real data from Yelp and a user study.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 formally defines the
concept of fairness in package-to-group recommendations,
and introduces the problem of fairness maximization and
its variants. In Section 4, we propose algorithms for the
different problem variants. Section 5 presents an extensive
experimental evaluation on Yelp data, and a user study on
movie data. Section 6 concludes the paper.

2. RELATED WORK
Recommender systems have attracted extensive research

attention and have been deployed in a wide range of appli-
cations [19]. We stress that the goal of this work is not to
propose a new algorithm for estimating the preferences of
the users, but rather to use the preferences to find the most
fair package for a group of users.

The work most closely related to ours is the recent work
in [18], where the authors formulate the problem of package-
to-group recommendations, and propose probabilistic mod-
els for capturing the group preferences for a package. The
concept of fairness is also included in their model, but the
main objective of the work in [18] is to define the notion
of quality of a package for a group. In this work, we focus
on modeling and formally defining fairness, and we propose
algorithms that optimize it directly.

The package-to-group recommendation is also related to
item-to-group and package-to-user recommendations. To
recommend single items to a group of users, earlier models

combine the ratings of all group members [13] or aggregate
the items recommended to each group member [16]. Recent
works introduce additional factors into the model, such as
agreement [3] or social relationships [14] among group mem-
bers, feedback from users [20], and the impact of individual
members to the group [15, 29]. In addition, more models
based on probability [7] and topic modeling [15, 29] are also
proposed and studied. These works consider the notion of
fairness only indirectly, through the choice of the aggrega-
tion function. There are no explicit models or algorithms
for guaranteeing fairness.

The problem of recommending a package of items to a sin-
gle user has also been studied extensively. In [6] the authors
show that several of the problem variants are NP-hard; the
complexity can be reduced by user-defined constraints (e.g.
[17]). The problem has also been considered under bud-
get constraints [26, 2], as a learning problem for predicting
the package interestingness [27], or as a profit maximization
problem [30]. There is no notion of fairness in this case,
since there is a single user to recommend to.

The fairness problem we propose in this paper is unique
to package-to-group recommendations. Nevertheless, it is
related to the least misery (LM) approach for the item-
to-group recommendation problem. In the least-misery ap-
proach the quality of an item for a group is defined as the
minimum preference score for this item, over all users in the
group. The goal is to find the item with the maximum least-
misery score. We can easily extend this metric to packages
by taking the minimum LM score over all items. Intuitively,
least misery aims at minimizing dissatisfaction of individual
group members due to the presence in the package of items
they do not like. Our fairness definition aims at maximizing
the satisfaction of members due to the presence of items they
like. Furthermore, the problem of ensuring user satisfaction
becomes more complex with the presence of multiple items
in the package. Least misery treats the problem indirectly,
while we explicitly model the fairness of the package.

Our proportionality and envy-freeness definitions of fair-
ness are inspired from the problem of fair division in Eco-
nomics [22, 9, 4], where the objective is to fairly divide re-
sources to a group of people who may have different prefer-
ences to the resources, such that everybody is happy about
their share. Our problem is different, since the suggested
package of items is shared among the group users and it is
not pre-defined but it must be selected from a number of
possible item combinations.

Finally, our problem is indirectly related to the problem
of diversifying recommendations. Various studies have tried
to diversify the recommended items with respect to topics
[31], explanations [28], and user interests [25]. Fairness in
package-to-group recommendation is related to result diver-
sification, in the sense that a fair package is likely to include
items that satisfy different users.

3. PROBLEM DEFINITION
In this section we provide the definitions of fairness we

consider in this paper, we define the basic problem of fairness
maximization, and extensions of the problem that consider
different types of constraints.

3.1 Fairness Definition
Consider a collection I of items and a set U of users,

who use and rate items from I. We use r(u, i) to denote

the rating of user u for item i. In addition to the ratings
recorded by the users, with the help of collaborative filtering
[21] or some other base recommendation approach, we can
predict a non-recorded rating r(u, i) of a user u on an item
i, i.e., the anticipated preference of u for i.

Given a group (subset) G ⊆ U of users, we want to rec-
ommend to G a package (subset) of items P ⊆ I of size K.
In this paper, we focus on the case where we want to form
packages that are fair to the users in G.

We consider two different aspects of fairness. One aspect
looks into the items in the package and asks that each user
finds a sufficient number of items in the package that she
likes compared to items not in the package. We call this
aspect of fairness proportionality. The other aspect looks
into the other users in the group and asks that for each user
there is a sufficient number of items in the package that she
likes more than other users do. We call this aspect of fairness
envy-freeness. Next, we formalize these two aspects.

Proportionality. Given a package P , and a parameter ∆,
we say that a user u likes an item i ∈ P , if i is ranked in the
top-∆% of the preferences of u over all items in I.

Definition 1. For a user u, and a package P , we say
that P is m-proportional for u, for m ≥ 1, if there exist at
least m items in P , that u likes.

The rationale in this definition is that the existence of at
least m items in the package for which u has high preference
would make the user tolerant to the existence of other items
that she may not prefer, considering that there are other
members in the group who may like these items. In the fol-
lowing, we call m-proportional packages single-proportional
if m = 1 and multi-proportional otherwise.

We can now define our first fairness metric: m-proportionality.

Definition 2 (m-proportionality). For a group of
users G, and a package P , we define the m-proportionality
of the package P for the group G as

Fprop(G,P) =
|Gp|
|G| , (1)

where Gp ⊆ G is the set of users in the group for which the
package P is m-proportional.

Envy-freeness. Given a group G, a package P , and a pa-
rameter ∆, we say that a user u ∈ G is envy-free for an item
i ∈ P , if r(u, i) is in the top-∆% of the preferences in the
set {r(v, i) : v ∈ G}.

Definition 3. For a user u, a package P , and a group G,
we say that the package P is m-envy-free for u, for m ≥ 1,
if u is envy-free for at least m items in P .

The rationale in this definition is that a user u feels that
the package is fair, if there are items for which the user is in
the favored top-∆% of the group. Otherwise, the user has
envy against the other members of the group, who always
get a better deal, and thus feels she is being treated unfairly.

We can now define our second fairness metric: m-envy-
freeness.

Definition 4 (m-envy-freeness). For a group of users
G, and a package P , we define the m-envy-freeness of the
package P for the group G as

Fef(G,P) =
|Gef |
|G| , (2)

where Gef ⊆ G is the set of users in the group for which the
package P is m-envy-free.

3.2 Fairness Maximization
We now define the basic fairness maximization problem

that we consider in this paper. For the following, we use F to
denote a fairness metric, which can be eitherm-proportionality,
or m-envy-freeness.

Problem 1 (Fairness Maximization). Given a fair-
ness metric F , a collection of items I, a group of users
G ⊆ U , and a value K, construct a package P ⊆ I with
|P | = K, such that F (G,P) is maximized.

3.3 Fairness Maximization with Constraints
Problem 1 can be generalized to include constraints that

restrict the set of candidate packages that can be recom-
mended to the user group G. In this section, we define two
extensions which have practical applications.

3.3.1 Item Categories
In many applications, the items to be recommended be-

long to categories. For example, points of interests in a
vacation package can be classified to museums, landmarks,
parks, etc.; movies have genres; courses cover different scien-
tific areas. Thus, we assume that we have a set of categories
C, |C| ≥ 1, and that each item in I belongs to one or more
categories. The following formulation captures the fact that
most often we want to form packages including items from
different categories.

Problem 2. Given a fairness metric F , a set of cate-
gories C, a collection of items I, a group of users G ⊆ U ,
and a set of ` pairs (Cj , kj), where Cj ∈ C and kj ≥ 1, find
a package P ⊆ I that includes kj items from category Cj,
and maximizes F (G,P).

This is a very general formulation of the problem. For
example, when ` = 1, all items in the package belong to a
single category Cj and kj = K (i.e., our original problem),
while by setting for all pairs, kj = 1, we select a single item
from each category.

3.3.2 Distance Constraints
In some applications, the package selection is constrained

by the relationships between the items in it. For example, if
the items are venues in an entertainment or vacation pack-
age, these venues cannot be far from each other, otherwise
the package would not be appealing to the user group or
even feasible.

We now consider the package-to-group recommendation
problem, where we impose constraints on the pairwise dis-
tances between the items. Given a distance threshold ε, we
require that all items are within distance ε. Therefore, we
have the following problem definition.

Problem 3. Given a fairness metric F , a collection of
items I, a group of users G ⊆ U , a value K, and a dis-
tance threshold ε, construct a package P ⊆ I with |P | = K,
such that F (G,P) is maximized, and for any im, i` ∈ P ,
dist(im, i`) ≤ ε

4. ALGORITHMS
In this section, we study the complexity and propose al-

gorithms for the fairness maximization problems we defined
in Section 3.

We first introduce some additional notation. Let G ⊆ U
be a group of users. For a fairness metric F , we define for
each item i ∈ I, the set SatG(i) ⊆ G as the set of users in G
that are satisfied by item i. The definition of what it means
for an item i to satisfy a user u ∈ G depends on the fairness
metric under consideration. For proportionality, SatG(i)
contains the users that “like” the item i, that is, the users
for which item i belongs in their top-∆% most preferable
items. For envy-freeness, SatG(i) contains the users that
are envy-free for the item i. It is easy to see that a package
P is fair for u (m-proportional, or m-envy-free), if there are
at least m items i in P such that u ∈ SatG(i).

In the following, the proofs and algorithms we consider
are defined using SatG(i), and thus they are applicable to
both fairness metrics.

4.1 Fairness Maximization
We first consider the basic fairness maximization problem

we defined in Problem 1. We can easily show the following
Lemma.

Lemma 4.1. The Fairness Maximization problem is NP-
hard.

We omit the details of the formal proof, but it is easy to
see that in the case where m = 1, the fairness maximiza-
tion problem is equivalent to a maximum coverage problem.
Each item i ∈ I corresponds to a set SatG(i), consisting of
the users that are satisfied by i. Since m = 1, if we include
i to a package P , it follows that the package P is fair for all
users in SatG(i). We say that in this case the item i covers
the users in SatG(i). Given a package P , the set of users
for which the package P is fair is ∪i∈PSatG(i). Therefore,
finding K items to maximize fairness is equivalent to the
maximum coverage problem of finding K sets to maximize
coverage. In the following, we will often use interchangeably
the notion of maximizing fairness with that of maximizing
coverage.

Fairness maximization for m = 1. We refer to this case
as the single coverage case. We have the following lemma.

Lemma 4.2. There is a (1−1/e)-approximation algorithm
for the Fairness Maximization problem, when m = 1.

The lemma follows from the equivalence between fairness
maximization and maximum coverage. For the latter prob-
lem, the greedy algorithm has approximation ratio 1−1/e [10],
where e is the base of the natural logarithm. The algo-
rithm constructs the package P greedily, each time adding
to the set the item that covers (i.e., satisfies) the largest
number of non-covered users. Specifically, let SatG(P) de-
note the users covered (satisfied) by the package P . We de-
fine the utility of adding item i to package P as fG(P, i) =
|SatG(P ∪ {i}) \ SatG(P)|. The Greedy algorithm at each
step adds to the package P the item i that maximizes the
utility. The algorithm outline is shown in Algorithm 1. We
will refer to this algorithm as SPGreedy in the case that we
are maximizing the single proportionality metric, and EF-
Greedy in the case we maximize the envy-freeness metric.

ALGORITHM 1: Greedy Fairness Maximization

Input : Group of users G, items I, value K
Output: Package P

1 P ← ∅
2 Candidates ← I
3 for j = 1 to K do
4 i ← arg maxi∈Candidates fG(P, i)
5 P ← P

⋃
{i}

6 Candidates ← Candidates \ {i}
7 return P

Fairness maximization for m > 1. We refer to this case
as the multi-coverage case. In this case, we require that a
user is satisfied by m items in order to be considered covered.
This corresponds to a multi-cover of the set G. The prob-
lem of finding the minimum multi-cover has been studied
extensively [8, 11, 12], but the problem of maximum multi-
coverage is not as well understood. In [24], the authors show
a connection of this problem with the K-densest subgraph
problem for m = 2, for which there are no known efficient
approximate solutions.

We propose to adapt the Greedy algorithm for the single
coverage to the multi-coverage case. In the case of single
coverage, the utility of an item i is the number of users that
are satisfied for the first time. In the case of multi-coverage,
we count the number of users that item i satisfies an addi-
tional time (up to m). Specifically, let Satj

G(P) denote the
set of users in G that are satisfied exactly j times. We define
the utility of adding item i to a package P , as

fG(P, i) =

m∑
j=1

wj |Satj
G(P ∪ {i}) \ Satj

G(P)| (3)

that is, the weighted sum of the users that are satisfied an
additional time. The weight wj controls the importance of
covering a user for the j-th time. We assume that w1 ≤
w2 ≤ ... ≤ wm, that is, the closer we are to fully covering a
user, the higher the weight. In our experiments we consider
weights that define an arithmetic and a geometric sequence.

We refer to the Greedy algorithm for multi-coverage as
MPGreedy when we use them-proportionality fairness met-
ric, and as MEFGreedy when we use the m-envy-freeness
metric.

4.2 Fairness Maximization with Constraints
We now consider algorithms for the two extensions we

defined in Section 3.3.

4.2.1 Category constraints
We first consider Problem 2, where the items belong to

categories, and we can only pick a fixed number of items per
category. For the exposition, we assume for the moment that
we can only pick a single item per category. For this prob-
lem, we apply directly the Greedy algorithms we described
in Section 4.1. The only modification is that once we select
an item from a specific category, we remove the items of this
category from the candidate set. We use SPCGreedy and
EFCGreedy to denote the algorithms that maximize single
proportionality and envy-freeness respectively.

We can prove the following lemma. A similar proof ap-
pears in [5].

Lemma 4.3. The Greedy algorithm is a 1/2-approximation
algorithm for the Fairness Maximization problem with cat-
egory constraints.

Proof. We will prove the theorem using induction on
the steps of the Greedy algorithm. Let Pk denote the first
k items selected by Greedy, for k ≤ K. By definition, the
k items must belong to k distinct categories. Let P ∗k de-
note the items selected by the optimal algorithm for the
corresponding k categories. Also, let Lk = SatG(Pk) and
L∗k = SatG(P ∗k) denote the corresponding sets of users in
G that are satisfied by the items in Pk and P ∗k . We will
show that |L∗k \ Lk| ≤ |Lk| for all 1 ≤ k ≤ K. Since
|L∗k \ Lk| ≥ |L∗k| − |Lk|, it follows that |Lk| ≤ 1

2
|L∗k|, which

proves our claim when k = K.
For k = 1 our claim is trivially true, since |L∗1| ≤ |L1|,

by definition of the Greedy algorithm. Assume that it is
true for k = j. Let Nj+1 denote the users that are satisfied
by the item selected by the greedy algorithm for category
j + 1, and let N∗j+1 denote the corresponding set of users
for the item selected in the optimal solution. We have that
L∗j+1 = L∗j ∪N∗j+1. Therefore,

|L∗j+1 \ Lj+1| = |(L∗j \ Lj+1) ∪ (N∗j+1 \ Lj+1)|
≤ |L∗j \ Lj+1|+ |N∗j+1 \ Lj+1|
≤ |L∗j \ Lj |+ |N∗j+1 \ Lj |
≤ |Lj |+ |Nj+1 \ Lj |
= |Lj+1|

The last inequality follows from the inductive hypothesis and
the property of the Greedy algorithm that it always selects
the item that maximizes the additional number of users that
are satisfied by the package.

For the general case where we select kj items from each
input category Cj , we create kj replicas Cl

j , l = 1, . . . , kj , for
each input category Cj . We then run Greedy on this dataset.
Note that the same item cannot be selected multiple times
since it will have coverage zero.

4.2.2 Distance constraints
We now consider Problem 3, where we want the items

in the package to satisfy distance constraints. We can still
adapt the basic Greedy algorithm for this case, by consider-
ing as candidate items only the items that when added to the
existing solution satisfy the distance constraints. We can-
not prove any guarantees for this algorithm. Actually, there
are cases when the Greedy algorithm may terminate before
finding K items. We now propose two heuristics, and one
exact algorithm that take advantage of spatial partitioning
and indexing to reduce the search space.

A space-partitioning approach. For this algorithm, we
divide the space by a grid, such that each cell has width
and height ε/

√
2, that is, a diagonal of length ε. Thus,

any two items inside the same cell are within the ε-distance
threshold. For each cell, we then run one instance of the
Greedy algorithm, considering only the items that appear
in the cell, and report the best solution. This approach
greedily solves one local problem per cell, however, it fails
to consider packages that include items from different cells.
We refer to this algorithm as PartitionGreedy.

Grid-based greedy algorithm. The second approach is
again a greedy method based on a space partitioning. We

partition the space by a grid again, but this time each cell
has side length ε. Then, we run again the Greedy algorithm
for each cell, but this time, we allow the search to extend
neighboring cells if necessary. Let Lj denote the j-th cell
that is examined by the algorithm. The first item i in Lj

is selected greedily. We then take advantage of the grid to
reduce the number of candidate items to consider. It is easy
to see that any item in Lj can only form valid packages with
items inside Lj , or its direct neighbors (at most 9 cells in
total). Furthermore, as more items are selected, the 9-cell
search space is further reduced.

Figure 1 shows an example with a 4×4 grid. Suppose the
Greedy algorithm on cell L6 selects i1 as the first item. For
the second item, it will consider as candidates only items
that fall in L6 or in one of the 8 cells surrounding L6 (i.e.,
the cells {L1–3, L5–7, L9–11}). If the second item selected is
i2, which falls in L2, the third item cannot be selected from
cells L9–11 because all items in them are further than ε from
i2. Therefore, for the third item, we only have to consider
cells {L1–3, L5–7}. If the third item is i3 in L7, the fourth
item can only be selected from cells {L2–3, L6–7}, and so on.
Therefore, having partitioned the items based on the grid,
we can dynamically prune the search space of candidate cells
and items. We will refer to this algorithm as GridGreedy.

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

𝜖

𝜖

𝜖

𝜖
𝜖𝑖#

𝑖$

𝑖%

Figure 1: Grid Example

Grid-based backtracking algorithm. It is possible to
change the GridGreedy algorithm to an exhaustive search
optimal algorithm that generates all valid item combina-
tions based on the distance constraint. This algorithm uses
the grid to minimize the cost of generating item combina-
tions by early-eliminating items that are too far from the
current (partial) combination. The grid-based backtracking
algorithm runs one search for each item i in I, by taking i
as the first item in the combination. Then, it considers all
possible items to add next to the package (thus, generating
a search tree rooted at i), by examining only the neighbor-
ing cells of the one that includes i. For each item added,
the search space for the next ones to add is restricted. As
soon as a complete combination is formed, its fairness score
is measured, and finally the best package overall is returned.
We refer to this algorithm as GridOptimal.

5. EXPERIMENTS
The goals of the experiments are three-fold. First, to un-

derstand the tradeoff between fairness and quality. We want
to quantify the effect on quality when optimizing for fairness
and vice versa, and understand how the hardness of the in-

put affects these two metrics. Second, we are interested in
understanding the effect of the different constraints on the
performance of the algorithms. Finally, we perform a user-
study to qualitatively evaluate our algorithms and metrics.

5.1 Experimental Setup
We use the Yelp Challenge dataset1 in our evaluation.

The items are venues in the city of Phoenix, rated by Yelp
users; we use data from a single city, in order to make our
packages more realistic. We consider venues from the five
most popular categories: restaurants, shopping, beauty &
spa, health & medicine, and nightlife. The resulting dataset
contains about 100K users, 17K venues and 476K ratings.

Since the ratings matrix of Yelp is very sparse, we employ
collaborative filtering (CF) [21] to fill the matrix as much as
possible. In particular, we use Apache Mahout2 to build an
item-based CF recommender and predict for each user u the
item ratings that are not present in the dataset. The above
procedure results in 53M ratings.

For the construction of the groups, in order to obtain
meaningful results, we consider users for which we can ob-
tain a sufficient number of ratings. More specifically, we cre-
ate groups with users that have at least 3,000 ratings in the
completed matrix. For a given group, the candidate items
for the packages are the items with a recorded or predicted
rating by all users in the group.

To avoid groups for which there are trivial solutions (e.g.,
there is an item that satisfies all users), we make sure to
maximize the diversity of preferences in the group. There-
fore, we use the following procedure for creating the groups.
We sample the first user uniformly at random from the set
of candidate users. Then, we select the second user to be
the user that is the least similar to the selected user. The
similarity is computed using the Pearson correlation coef-
ficient between the rating vectors of the users. Proceeding
like that, the k-th user is selected so as to minimize the max-
imum similarity with the previously selected k − 1 users in
the group. In our experiments we report average values over
50 different random group initializations. In Section 5.2.1 we
report experiments with other group initializations.

All algorithms were implemented in Java and the tests ran
on a machine with Intel Core i5-760 2.80GHz and 4GB main
memory, running Windows 7. We consider different param-
eter values in our experiments. When not clearly specified,
the default values that we use in our experiments are |G| = 8
for the group size, K = 4 for the package size, and ∆ = 5%.

5.2 Algorithm Performance
We now study the performance of our algorithms for the

different problems we defined.

5.2.1 Single proportionality and envy-freeness
As we have already mentioned, our goal is to study the

fairness-quality tradeoff. We thus consider four different
greedy algorithms where each algorithm optimizes a differ-
ent metric, either for fairness or quality, and then compare
all algorithms against these metrics. More specifically, we
study the following algorithms:

SPGreedy: The greedy algorithm described in Section 4
that maximizes Fprop(G,P).

1http://www.yelp.com/dataset challenge
2http://mahout.apache.org

EFGreedy: The greedy algorithm described in Section 4
that maximizes Fef(G,P).

AVRGreedy: A greedy algorithm that selects items greed-
ily to maximize the average rating of the package

AVR(G,P) =
1

|G||P |
∑
u∈G

∑
i∈P

r(u, i)

LMGreedy: A greedy algorithm that selects items greedily
to maximize the least misery metric of the package

LM(G,P) = min
u∈G

min
i∈P

r(u, i)

We also experimented with a random selection of items.
This algorithm is consistently outperformed by all other al-
gorithms, so we do not include it in the experiments to avoid
cluttering the plots.

Figure 2 shows the results of the four algorithms, for the
four different metrics we consider, as a function of the size
of the group and the package. The first observation is that
as expected each greedy algorithm performs the best for the
metric that the algorithm maximizes. The SPGreedy al-
gorithm achieves very high proportionality values (propor-
tionality 1 for small groups), but it is also competitive on
the envy-freeness metric, achieving essentially the same per-
formance as the EFGreedy. At the same time, the av-
erage rating of the packages produced by SPGreedy and
EFGreedy is close to that of the AVRGreedy algorithm,
indicating that we can achieve fairness while not sacrificing
the average quality. The two fairness-oriented algorithms
suffer when considering the least misery metric, where they
achieve low values. This is expected since the goal of the two
algorithms is to ensure that they include items that satisfy
the users, rather than avoiding the inclusion of items that
the users do not like. Correspondingly, the LMGreedy al-
gorithm achieves the lowest fairness values, close to random.
In comparison, AVRGreedy which focuses on optimizing
quality achieves much better fairness.

The differences between the algorithms become more pro-
nounced when the size of the packages decreases, or the size
of the group increases. That is to be expected, since the
problem becomes more difficult for the non-specialized al-
gorithms. It is noteworthy that the fairness values of the
fairness-oriented algorithms remain relatively stable as we
vary the sizes of the groups and packages. We also experi-
mented with different values of ∆ ranging from 1% to 20%.
As expected both fairness metrics increase with larger ∆,
because the fairness criterion becomes less strict. For the
other metrics, the performance remains relatively stable as
we increase ∆. We omit the results due to space constraints.

Finally we study the performance of our algorithms when
varying the degree of “difficulty” of the input group. In ad-
dition to the aforementioned anti-correlated groups, we also
consider random and correlated groups. In the latter case,
we construct groups so as to maximize the Pearson correla-
tion between users in the selection process. We consider such
groups as the “easy” inputs, where it is easy to find items
that satisfy the group. We also use the intersection between
to top-∆% rated items of two users as their similarity, and
using the same mechanism as before, we construct groups
that minimize this similarity. We will refer to these groups
as disjoint. We consider these groups to be the most difficult
cases, since there are few items that can satisfy many users.

4 8 12 16

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

SPGreedy EFGreedy AVRGreedy LMGreedy

4 8 12 16
|G|

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

(a) proportionality, varying |G|

4 8 12 16
|G|

0.0

0.2

0.4

0.6

0.8

1.0

En
vy

 F
re

en
es

s

(b) envy-freeness, varying |G|

4 8 12 16
|G|

0

1

2

3

4

5

Av
er

ag
e R

ati
ng

(c) average rating, varying |G|

4 8 12 16
|G|

0

1

2

3

4

5

Le
as

t M
ise

ry

(d) least misery, varying |G|

2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

(e) proportionality, varying K

2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

En
vy

 F
re

en
es

s

(f) envy-freeness, varying K

2 3 4 5
K

0

1

2

3

4

5

Av
er

ag
e R

ati
ng

(g) average rating, varying K

2 3 4 5
K

0

1

2

3

4

5

Le
as

t M
ise

ry

(h) least misery, varying K

Figure 2: Performance comparison, single-coverage

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.0

0.5

1.0

1.5

2.0

Pr
op
or
tio
na
lit
y

SPGreedy AVRGreedy LMGreedy EFGreedy

CORR RNDANTICORRDJNT
Group

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

(a) proportionality

CORR RNDANTICORRDJNT
Group,

0.0

0.2

0.4

0.6

0.8

1.0

En
vy

 F
re

en
es

s

(b) envy-freeness

CORR RND ANTICORRDJNT
Group

0

1

2

3

4

5
Av

er
ag

e R
ati

ng

(c) average rating

CORR RNDANTICORRDJNT
Group

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Le
as

t M
ise

ry

(d) least misery

Figure 3: Performance comparison with varying group difficulty

Figure 3 shows the results of our algorithms for the differ-
ent metrics. We observe that for the easy cases, quality and
fairness are essentially equivalent. Selecting items with high
average quality satisfies almost 100% of the group, and fair
packages achieve high quality. However, when the problem
becomes harder, selecting items with high average rating re-
duces fairness proportionality significantly. Surprisingly, the
opposite is not true; optimizing for fairness does not com-
promise quality significantly.

5.2.2 Multi-proportionality
We now consider the problem of multi-proportionality fair-

ness. Due to space constraints, we only present the perfor-
mance of the algorithms with respect to m-proportionality
fairness and average quality, as a function of m (see Figure 4.
We use the arithmetic weighting in the implementation of
the MPGreedy algorithm. We observe that as we increase
m the achieved proportionality drops fast for MEFGreedy,
AVRGreedy and LMGreedy. The quality of MPGreedy
is lower than before, but still high.

We also experimented with the geometric weighting scheme
for MPGreedy. The achieved fairness is lower than in the
arithmetic case, indicating that the geometric sequence is
too aggressive, pushing to include items that result in im-
mediate coverage, and missing on items that create the po-
tential to cover users in the future.

4

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

MPGreedy MEFGreedy AVRGreedy LMGreedy

1 2 3 4
m

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

(a) proportionality

1 2 3 4
m

0

1

2

3

4

5

A
ve

ra
ge

 R
at

in
g

(b) average rating

Figure 4: Performance comparison, varying cover-
age, arithmetic weighting

5.2.3 Including category constraints
We then study the case of including category constraints

in the single proportionality maximization. Figure 5 shows
the performance of the algorithms as a function of the num-
ber of categories, which is also the size of the package. The
general trends we observed in the case of single proportional-
ity with no categories still hold, but the overall numbers are
lower. The differences between the algorithms in terms of
single proportionality becomes clearer as the number of cate-
gories grows. The EFGreedy algorithm is now the worst in

4 8 12 16

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

SPGreedy EFGreedy AVRGreedy LMGreedy

2 3 4 5
|C|

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

(a) proportionality, varying |C|

2 3 4 5
|C|

0.0

0.2

0.4

0.6

0.8

1.0

En
vy

 F
re

en
es

s

(b) envy-freeness, varying |C|

2 3 4 5
|C|

0

1

2

3

4

5

Av
er

ag
e R

ati
ng

(c) average rating, varying |C|

2 3 4 5
|C|

0

1

2

3

4

5

Le
as

t M
ise

ry

(d) least misery, varying |C|

Figure 5: Performance comparison, single-coverage, with categories

terms of single proportionality and average rating, indicat-
ing that when trying to eliminate envy, this results in fewer
users having a high quality package. Interestingly, the dif-
ferences in the least misery metric become less pronounced
when having large number of categories.

5.2.4 Including distance constraints
Finally, we study the case of including distance constraints.

We consider the single proportionality case, and we also add
the category constraints to make the recommendation sce-
nario more realistic. We consider the three algorithms we
described in Section 4.2.2 and the modified SPCGreedy al-
gorithm that filters the candidate set based on the distance
constraints. We study the single proportionality metric and
the running time of the algorithms as a function of the dis-
tance threshold ε. We vary ε to be between 700 and 1600
meters.

The results are shown in Figure 6. We can see that simply
enforcing the distance constraints as a filtering step on the
SPCGreedy algorithm results in very poor performance.
This is due to the fact that in 25% of the cases the SPC-
Greedy algorithm is not able to find a solution. Of the
remaining algorithms, GridGreedy achieves performance
close to that of GridOptimal with PartitionGreedy fol-
lowing right after. In terms of running time, Partition-
Greedy is very close to simple SPCGreedy, followed by
GridGreedy. We conclude that GridGreedy and Par-
titionGreedy offer the best compromise between perfor-
mance and CPU cost, with GridGreedy giving a little
better performance, and PartitionGreedy being a little
faster. This is expected, since GridGreedy examines a
bigger candidate set. It can thus construct a slightly better
package, at the expense of slightly higher running time.

+4
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

SPCGreedy GridGreedy PartitionGreedy GridOptimal

700 1000 1300 1600
meters

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
na
lit
y

(a) proportionality

700 1000 1300 1600
meters

0.00

0.02

0.04

0.06

0.08

0.10

Co
st(
Se
co
nd
s)

(b) CPU cost

Figure 6: Performance comparison with distance
constraints, varying ε

5.3 User Study
We conducted a user study with 10 participants (students)

to test the effectiveness of different models in terms of find-
ing fair packages. We used a movie dataset for this task,
since it is easier to have users evaluate movies than venues.
First, we asked each participant to rate 70 popular movies
belonging to 5 different genres (action, animation, comedy,
romance, thriller). The participants were divided into 4
groups of 2-4 users each (there were overlaps among groups).
For each group, movie packages with 2-4 genres were gen-
erated using AVRGreedy, LMGreedy, SPGreedy and
Random. The setup corresponds to the case of single cov-
erage with category constraints. We asked each group to as-
sess the (single) proportionality of the created packages: for
each package, the group would discuss together how many
members were satisfied with the items in the package, and
rate the package accordingly, with an overall score in [0,1].
To avoid any bias, we did not provide any information on
how the packages were generated and presented them to the
groups in random order.

Table 1 shows the average of the proportionality values
given by the users. The first observation is that SPGreedy
performs the best, validating our approach. Interestingly,
the second best algorithm is LMGreedy. This indicates
that the user perception of fairness is guided primarily by the
satisfaction they experience from the items in the package
that they like, but, secondarily, to a great extend by the
dissatisfaction they experience by items that they do not
like. We plan to incorporate these considerations into our
fairness definition in the future.

Table 1: User Study
Random AVRGreedy LMGreedy SPCGreedy

Proportionality 0.61 0.77 0.79 0.83

6. CONCLUSIONS
In this paper, we studied the problem of fairness in package-

to-group recommendations. We introduced two definitions
of fairness, based on proportionality and envy-freeness. We
extended the definitions to consider category and distance
constraints for the items that can be included in a recom-
mended package. We proposed algorithms for all problem
variants. Our experimental results on real data show that
the recommended packages are superior in terms of fairness
compared to alternative selection approaches based on best
average rating or least misery, while maintaining high qual-
ity in terms of average rating.

Acknowledgements
This work was supported by grant 17205015 from Hong
Kong RGC and by Marie Curie Reintegration Grant projects
titled JMUGCS and LBSKQ which have received research
funding from the European Union.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17(6):734–749, June 2005.

[2] S. Amer-Yahia, F. Bonchi, C. Castillo, E. Feuerstein,
I. Méndez-Dı́az, and P. Zabala. Composite retrieval of
diverse and complementary bundles. IEEE TKDE,
26(11):2662–2675, 2014.

[3] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and
C. Yu. Group recommendation: Semantics and
efficiency. PVLDB, 2(1):754–765, 2009.

[4] S. J. Brams. Fair division. In Computational
Complexity, pages 1073–1080. Springer, 2012.

[5] C. Chekuri and A. Kumar. Maximum Coverage
Problem with Group Budget Constraints and
Applications, pages 72–83. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[6] T. Deng, W. Fan, and F. Geerts. On the complexity of
package recommendation problems. SIAM J. Comput.,
42(5):1940–1986, 2013.

[7] J. Gorla, N. Lathia, S. Robertson, and J. Wang.
Probabilistic group recommendation via information
matching. In WWW, pages 495–504, 2013.

[8] N. G. Hall and D. S. Hochbaum. A fast approximation
algorithm for the multicovering problem. Discrete
Applied Mathematics, 15(1):35 – 40, 1986.

[9] D. K. Herreiner and C. D. Puppe. Envy freeness in
experimental fair division problems. Theory and
Decision, 67:65–100, 2009.

[10] D. S. Hochbaum. Approximation algorithms for
np-hard problems. SIGACT News, 28(2):40–52, June
1997.

[11] Q. Hua, Y. Wang, D. Yu, and F. C. M. Lau. Set
multi-covering via inclusion-exclusion. Theor. Comput.
Sci., 410(38-40):3882–3892, 2009.

[12] Q. Hua, D. Yu, F. C. M. Lau, and Y. Wang. Exact
algorithms for set multicover and multiset multicover
problems. In ISAAC, pages 34–44, 2009.

[13] A. Jameson and B. Smyth. Recommendation to
groups. In The Adaptive Web, Methods and Strategies
of Web Personalization, pages 596–627, 2007.

[14] K. Li, W. Lu, S. Bhagat, L. V. S. Lakshmanan, and
C. Yu. On social event organization. In KDD, pages
1206–1215, 2014.

[15] X. Liu, Y. Tian, M. Ye, and W.-C. Lee. Exploring
personal impact for group recommendation. In CIKM,
pages 674–683, 2012.

[16] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl.
Polylens: A recommender system for groups of user.
In ECSCW, pages 199–218, 2001.

[17] A. G. Parameswaran, P. Venetis, and
H. Garcia-Molina. Recommendation systems with
complex constraints: A course recommendation
perspective. ACM TOIS, 29(4):20, 2011.

[18] S. Qi, N. Mamoulis, E. Pitoura, and P. Tsaparas.
Recommending packages to groups. In International
Conference on Data Mining (ICDM), 2016.

[19] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors. Recommender Systems Handbook. Springer,
2011.

[20] S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia,
G. Das, and C. Yu. Exploiting group recommendation
functions for flexible preferences. In ICDE, pages
412–423, 2014.

[21] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Item-based collaborative filtering
recommendation algorithms. In WWW, pages
285–295, 2001.

[22] H. Steinhaus. The problem of fair division.
Econometrica, 16(1):101–104, 1948.

[23] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Adv. in Artif. Intell.,
2009:4:2–4:2, Jan. 2009.

[24] P. Tsaparas, A. Ntoulas, and E. Terzi. Selecting a
comprehensive set of reviews. In KDD, pages 168–176,
2011.

[25] S. Vargas, P. Castells, and D. Vallet. Intent-oriented
diversity in recommender systems. In SIGIR, pages
1211–1212, 2011.

[26] M. Xie, L. V. S. Lakshmanan, and P. T. Wood.
Breaking out of the box of recommendations: from
items to packages. In RecSys, pages 151–158, 2010.

[27] M. Xie, L. V. S. Lakshmanan, and P. T. Wood.
Generating top-k packages via preference elicitation.
PVLDB, 7(14):1941–1952, 2014.

[28] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia.
Recommendation diversification using explanations. In
ICDE, pages 1299–1302, 2009.

[29] Q. Yuan, G. Cong, and C.-Y. Lin. Com: A generative
model for group recommendation. In KDD, pages
163–172, 2014.

[30] T. Zhu, P. Harrington, J. Li, and L. Tang. Bundle
recommendation in ecommerce. In SIGIR, pages
657–666, 2014.

[31] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In WWW, pages 22–32, 2005.

