Using Non-Linear Dynamical Systems for Web Searching
and Ranking

. - *
Panayiotis Tsaparas
Dipartmento di Informatica e Systemistica
Universita di Roma,“La Sapienza”

tsap@dis.uniromal.it

ABSTRACT weightfor every node in the graph, that captures the authoritative-

In the recent years there has been a surge of research activity inNess of the node. Most LAR algorithms can be definedissrete

the area of information retrieval on the World Wide Web, using dynamical systemé\ dynamical system assigns an initial weight to
link analysis of the underlying hypertext graph topology. Most of each node, and tht_an performs_a We_lght-propagatlon scheme on the
the algorithms in the literature can be described as dynamical sys-9"@Ph- The dynamical system iteratively updates the node weights,
tems, that is, the repetitive application of a function on a set of settlng_the new weights to be a function of the purreptwelghtg, until
weights. Algorithms that rely on eigenvector computations, such the. weights converge. The output of the algorithm is the s}aﬂpngry
asHiTs andPAGERANK, correspond to linear dynamical systems. weights of the c_iynamlcal sy_stem. When the _update function is lin-
In this work we consider two families of link analysis ranking al- ear, we have ginear dyngmlcal systemAlgorithms that depend
gorithms that no longer enjoy the linearity property of the previ- ©N €igenvector computations [15, 6, 3, 16, 18, 17, 1] correspond to

ous approaches. We study in depth an interesting special case ofinear (_jynamical systems. -

these two families. We prove that the corresponding non-linear . In this paperwe.work within the h.UbS gnd authorities framework
dynamical system converges for any initialization, and we provide mtroducefd ﬁy Klelnlbergh[ls]. \éVe |dentn‘y dsome pfoter_Flal V\;ealk-
a rigorous characterization of the combinatorial properties of the NEsSes o thediTs algorit m, and we consiaer two families o ar
stationary weights. The study of the weights provides a clear and 9°1thms that use alternative ways of computing hub and authority
insightfui view of the mechanics of the algorithm. We also present weights. A characteristic of the new families of algorithms is that

extensive experimental results that demonstrate that our algorithmthey apply nonl.-llnearsperlqtors. The corresp(?ndlng dyr;amlqal Syi’
performs well in practice. tems are non-linear. Non-linear systems are less popular, since the

mathematical tools for analyzing their properties are not as well
developed as in the case of linear systems. We study in detail the
1. INTRODUCTION Max algorithm, a special case of both families, and we prove that
Ranking is an integral component of any information retrieval the corresponding dynamical system has good behavior, that is, it
system. In the case of Web search the role of ranking becomesconverges for any initialization. We also study the combinatorial
even more important. Due to the size of the Web, and the impatient properties of the stationary weights. The study provides valuable
nature of Web users, it is imperative to have ranking functions that insight to the algorithm, and reveals a clear and structured mech-
capture the user needs, and output the desired documents withimanism for assigning weights. Théax algorithm has been previ-
the first few pages of results. To this end the Web offers a rich ously considered by Gibson, Kleinberg and Raghavan [11] for clus-
context of information which is expressed through the hyperlinks. tering categorical data. Our work resolves an open question raised
Intuitively a link from pagep to pageq denotes an endorsement  in [11] regarding the rigorous analysis of this dynamical system.
for the quality of page;. The seminal papers of Kleinberg [15], We also present extensive experiments of our algorithm both for
and Brin and Page [6] built upon this idea, and introduced the area ranking and for finding related pages. The results indicate that our
of Link Analysis Rankingwhere hyperlink structures are used to algorithm performs well, and in many cases outperforms other link

determine the relativauthority of Web pages. analysis approaches.

A Link Analysis Ranking (LAR) algorithm starts with a set of The rest of this paper is structured as follows. Section 2 reviews
Web pages interconnected with hypertext links. It takes as input some of the related work. In Section 3 we introduce the two (non-
the underlying hyperlink graph, and returns as outpuaatfority linear) families of algorithms, and we define thiax algorithm.

Section 4 presents the main concepts about dynamical systems. In
Section 5 we study the convergence of tl@x algorithm, and

the properties of the stationary configuration. Section 6 presents
an experimental evaluation of various algorithms for ranking and
finding related pages. Section 7 concludes the paper with some
directions for future work.

*A major part of this work was completed while the author was a
graduate student at University of Toronto.
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on a specific Web query. Kleinberg [15] describes a process for

obtaining such a set of pages. Ledenote the size of the sét.

The input to the link analysis algorithm is thex n adjacency ma-

trix W of the underlyinghyperlink graphG, whereW i, j] = 1

if there is a link from node to nodej, and zero otherwise. The

output of the algorithm is an-dimensional vectoa, wherea;, the

i-th coordinate of the vectat, is the authority weight of nodein

the graph. These weights are used to rank the pages. Figure 1: A bad example for the HITs algorithm
We also introduce the following notation. For some negdee

denote byB(i) = {j : W[j,4] = 1} the set of nodes that point to

node: (Backwards links), and by'(¢) = {j : Wi, j] = 1} the set

of nodes that are pointed to by nod@orward links). Furthermore,

The HiTs and PAGERANK algorithms were followed by a sub-
; - . . stantial number of variations and enhancements. Most of the sub-
we d?f'”e arauthority nodein the grapht to be a node with non- sequent work follows a similar algebraic approach, manipulating
zero in-degree, and laub nodein the graphG: to be a node with .. some matrix related to the web graph [5, 3, 16, 18, 2, 1, 17]. Re-
non-zero out degree. A node can be both a hub and an aUthorItycently, there were some interesting attempts in applying statistical,

node. We used to denote the set of authority nodes, aHdto ; ; ; : :
denote the set of hub nodes. We have fat A U . zlaz]d machine learning tools for computing authority weights [5, 7,

Our work builds upon the hubs and authorities framework intro-
duced by Kleinberg. In his framework, every page can be thought
of as having two identities. THeubidentity captures the quality of

the page as a pointer to useful resources, anduitteority identity 3. THETWO FAMILIES OF ALGORITHMS

captures the quality of the page as aresource itself. l.f we make The idea underlying théliTs algorithm can be captured in the
two copies of each page, we can visualize gréphs a bipartite following recursive definition of quality: “A good authority is one

graph, where hubs point to authorities. There is a mutual reinforc- that is pointed to by many good hubs, and a good hub is one that
ing relationship between the two. A good hub is a page that points points to many good authorities”. Therefore, the authority quality

to good authorities, while a good authority is a page pointed to by of some page (captured by the authority weight of pagg de-

good hubs. In order to quantify the quality of a page as a hub and ; 7 .
) . ; . pends on the hub quality of the pages that poinp {@aptured in
an authority, Kleinberg associated every page with a hub and an the hub weight of the pages), and vice versa. Kleinberg proposes

authority weight. Following the mutual reinforcing relationship be- . . : "
- . ) . to associate the hub and authority weights through the addition op-
tween hubs and authorities, Kleinberg defined the hub weight to be eration. This definition has the following two implicit propertie.

the sum of the authority weights of the nodes that are pointed to by . - o : :
. . ; It is symmetric in the sense that both hub and authority weights
the hub, and the authority weight to be the sum of the hub weights are defined in the same way, and it is litarian, in the sense

et port o e Siorty. ek denote e mensnal 5t when computng h b et of some pagie oty
hub weight of nodé We ha{ve that ’ weights of the pages that are ponnted to by pagee all treated
' equally (similarly when computing the authority weights).
o ) o ) However, these two properties may some times lead to non-intuitive
“= Z hj and - hi= Z i - @ results. Consider for example the graph in Figure 1. In this graph

there are two components. The black component consists of a sin-

Kleinberg proposed the following iterative algorithm for com-  gle authority pointed to by a large number of hubs. The white com-
puting the hub and authority weights. Initially all authority and ponent consists of a single hub that points to a large number of
hub weights are set to 1. At each iteration the operatidif&ut”) authorities. If the number of white authorities is larger than the
andZ (“in”) are performed. The operation updates the authority ~humber of black hubs then th#iTs algorithm will allocate all au-
weights, and th& operation updates the hub weights, both using thority weight to the white authorities, while giving zero weight
Equation 1. A normalization step is then applied, so that the vectors to the black authority. The reason for this is that the white hub is
a andh become unit vectors in some norm. The algorithm iterates deemed to be the best hub, thus causing the white authorities to
until the vectors converge. Kleinberg proves that after a sufficient receive more weight. However, intuition suggests that the black
number of iterations the vectossandh converge to the principal  authority is better than the white authorities and should be ranked
eigenvectors of the matricé& T W andW W7, respectively. This  higher.
idea was later implemented as tHers (Hyperlink Induced Topic In this example, the two implicit properties of th&iTs algo-
Distillation) algorithm [12]. rithm combine to produce this non-intuitive result. Equality means

Independently, about the same time, Brin and Page introducedthat all authority weights of the nodes that are pointed to by a hub
the PAGERANK algorithm [6], which later became an integral com- ~ contribute equally to the hub weight of that node. As a result, quan-
ponent of the Googlesearch engine. ThBAGERANK algorithm tity becomes quality. The hub weight of the white hub increases in-
assumes the random surfer model, where a user is following links ordinately because it points to many weak authorities. This leads us
on a graph, while at some points she performs a jump to a randomto question the definition of the hub weight, and consequently the
page. The algorithm performs a random walk which proceeds at other implicit property oHITs. Symmetry assumes that hubs and
each step as follows. With probabilityit jumps to a page chosen  authorities are qualitatively the same. However, there is a differ-

JEB(i) JEF (i)

uniformly at random, and with probability— e it jumps uniformly ~ ence between the two. For example, intuition suggests that a node
atrandom to one of the pages linked from the current page. The au-With high in-degree is likely to be a good authority. On the other
thority weight of node (the PageRank value of nodgis defined hand, a node with high out-degree is not necessarily a good hub. If

as the limiting fraction of time spent on pagby the random walk. this was the case, then it would be easy to increase the hub quality
of a page, simply by adding links to random pages. It seems that

http://www.google.com we should treat hubs and authorities in a different manner.




Max(a®) proposed by Gibson, Kleinberg and Raghavan [11] for clustering
categorical data.

itiali i i 0
Initialize authority weights ta Again, it is interesting to examine the behavior of the algorithm

Repeat until the weights converge:

For every hub € H in the extreme cases of the valpeForp = 1 the NoRM(1) algo-
hi = max;c p(;) a; rithm is theHITs algorithm. Forp = oo the p-norm reduces to the
For every authority € A max operator.
a; = ZjeB(i) h;
Normalize in thel.oc norm 3.3 TheMAXx algorithm

TheMAXx algorithm is a special case of both tA€ (k) algorithm
for the threshold valué = 1, and theNoRrRM(p) algorithm for the
valuep = oo. The underlying intuition is that a hub node is as
good as the best authority that it points to. That is, a good hub is
3.1 The Authority Threshold (AT (k)) family ~ ©ne that points o at least one good authority.
of algorithms _ Formally, we deflne_ théax algorithm as follqws. The algp-
- i rithm sets the hub weight of nodeto be the maximum authority
We would like to reduce the effect of the weak authorities on the eight over all authority weights of the nodes pointed to by node
computation of the hub weight, while at the same time we retain ; The authority weights are computed as in the's algorithm.

the positive effect of the strong authorities. A simple solution is Therefore, the authority and hub weights as computed as follows.
to apply a threshold operator, that retains only the highest author-

ity weights. Borodin et al. [5] proposed tiuthority-Thresholgd a; = Z h; and  h; = max a; .

AT (k), algorithm which sets the hub weight of nodé¢o be the JEF (i)

sum of thek largest authority weights of the authorities pointed to

by nodei. This corresponds to saying that a node is a good hub if ~ The outline of the algorithm is shown in Figure 2. We set the

it points toat leastk good authorities. The value &fis passed as normalization norm to be thmax(or infinity) norm. This makes

a parameter to the algorithm. the analysis oMAXx easier, but it does not affect the convergence,
Formally, let i (i) denote the subset df'(i) that containsk and the combinatorial properties of the stationary configuration.

nodes with the highest authority weights. That is, for any node

€ F(i), such thap ¢ Fy (i), ap < aq, forall ¢ € Fy(3). If
fF(i)l SZ k, thenFy (i) = }k«“(lz'). ql'heA?I'(k) algor?thm cl:)nzputes 4. DYNAMICAL SYSTEMS

Figure 2: The MAaXx Algorithm

JjeB(i)

the authority and hub weights as follows. A discrete dynamical system is defined [9] as a process that starts
with ann-dimensional real vector, and repeatedly applies a func-
a; = Z h; and h; = z aj tion g : R” — R™. We define aconfigurationof the system as
jEB() FEFR(D) any intermediate value of the vector. The initial assignment of val-

ues is called thénitial configurationof the dynamical system. Of
particular interest are thixed configurationgor fixed pointg of
the dynamical system. These are vectersuch thay(z) = .
We will also refer to these vectors as thtationaryconfigurations
of the dynamical system. An interesting question in dynamical sys-
tems is the limiting value of the dynamical system. That ig {tc)

; ; denotes the-th iteration of the functioy, then we are interested in
3.2 TheNORM(p) Famll_y of A|gOI’Itth o understanding the limiting behavior ¢f(x), ast — oo, for differ-

The Authority Threshold algorithm operates on the principle of - gnt injtial values ofc. The critical question is whether the system
prefgrentlal treatmenof the auth_orlty Welgl_wts. That is, hlg_her au-  reaches a fixed configuration (converges} as oo, and whether
thority weights should be more important in the computation of the the stationary configuration depends on the initialization. For an
hub weight. This principle is enforced by applying a threshold op- introduction to dynamical systems, we refer the reader to the texts
erator. A smoother approach is¢oalethe weights, so that lower by Denavey [9] , and Sandefur [19].
authority weights contribute less to the hub weight. An obvious |, the case of link analysis algorithms, the real vector is the au-
question is how to select the scaling factors. A natural solution is thority weight vector, and the function propagates the authority

It is interesting to examine what happens at the extreme values
of k. Fork = 1, the threshold operator becomes thex operator.
We will discuss this case in detail in Section 3.3. dl,: is the
maximum out-degree in the gragh then fork > do.+, the AT (k)
algorithm is theHITs algorithm.

to use the weights themselves for the scaling factors. weight in the graphG. Let a’ denote the authority weight vec-

This idea is implemented in theorm(p) family of algorithms. tor aftert iterations of the algorithm. The outline of a dynamical
In this case we set the hub weight of naidt be thep-norm of system for link analysis ranking is shown in Figure 3. Obviously,
the vector of the authority weights of the nodes pointed to by node jn grder for the LAR algorithm to be well defined, we need some
i. Recall that thep-norm of vectorx = (z1,...,zn) is defined guarantees about the convergence of the dynamical system. Ideally,
asx|l, = (>, xf)l/p. The authority and hub weights are the dynamical system should always converge, and the stationary
computed as follows: configuration should not depend on the initial configuration.

1/p

DYNAMICAL SYSTEM, (aP)

ai=» h; and hi=| Y a

JEB() JEF () Initialize authority weights ta
Repeat until the weights converge:
The value op is passed as a parameter to the algorithm. We assume at = g(at™1)

thatp € [1, o] As p increases the value of tipenorm is dominated
by the highest weights. For example, for= 2, we essentially ) _ _
scale every weight with itself. An almost identical algorithm was Figure 3: The outline of a dynamical system



Depending on the function we distinguish between two types
of dynamical systemdinear andnon-linear. In linear dynamical
systems, the functiop is of the formg(x) = Max, wherelM is
ann x n matrix. The majority of the link analysis algorithms that

authorityi in the graphG, and letd = max{d; : i € A}, denote
the maximum in-degree of any authority in the graphLetS C A
denote the set of nodes with in-degréeWe call these nodes, the
seedf the algorithm. Seed nodes play an important role in the

have appeared so far in the literature [15, 6, 16, 18, 5, 1, 17] can beMaXx algorithm. We defind/ to be the set of non-seed nodes.
described as linear dynamical systems. For such systems, linear alThus,A = SUU.

gebra offers the tools to analyze the limiting behavior of the system.
The conditions for convergence and the combinatorial properties of
the stationary weights are well understood. Things become more

complicated when the functiapis non-linear. Outside of the well
understood world of linear algebra, we know very little about the

5.1 Convergence of theVlAx algorithm

In this section we prove that the algorithm converges for any
initial configuration. First, we prove that the weights of the seed
nodes always converge.

behavior of dynamical systems. For non-linear systems, such as the

AT (k) andNoRmMm(p) families of algorithms we do not even know
if they converge, which is a basic requirement for a well defined
Link Analysis Ranking algorithm.

In the following we study in detail th& Ax algorithm. This al-
gorithm was previously explicitly considered by Gibson, Kleinberg

LEMMA 1. The weight of every seed node€ S is a non-
decreasing function of time.

PrROOF Consider any seed nodec S, and lett > 0 be some
time in the execution of the algorithm. At iteration+ 1, for every
hub nodej, we have that; = max{a! : i € F(5)}. Thus, for

and Raghavan [11], but it was not rigorously analyzed. We prove every hubj ¢ B(s), h; > al. Therefore, at timg + 1, the un-

that the algorithm converges, and we characterize the combinatorialnormalized weight of node is a*! = >

properties of the stationary configuration.

5. ANALYSIS OF THE MAX ALGORITHM

We will now introduce some of the terminology that we will use
for the analysis of théAx algorithm. We first define a notion of
time We define timet to be the moment immediately after the
th iteration of the algorithm. We denote iy the un-normalized
weight of nodei at timet. We assume that the weights are nor-
malized in theL, norm. This means that the normalization factor
at stept is the maximum un-normalized authority weight, and the
maximum normalized weight is 1. We ugkto denote the normal-
ized weight of node at time¢. When not specified, the weight of
nodes at timet refers to the normalized weight of nodat timet.

We denoter; = lim;_. . af, the limit of the weight of node, as

t — oo, assuming that the limit exists. When convenient we will
usea’(s), a*(i), anda(i) for the quantitiesi, a}, anda, respec-
tively.

We also define the mappintf : H — A, where the huly is
mapped to authority, if at time ¢ the authority; is the authority
with the maximum weight among all the authorities pointed to by
hubj. If there are many authorities if'(j) that have the largest
weight, we arbitrarily select one of the authorities (e.g., according
to some predefined ordering). We ugg) = lim;— f%(j) to
denote the limit of the mapping function as— oo, assuming
again that the limit exists. For an authoritythe un-normalized
weight of nodei at timet isa; = 3. 5,y o' (/1))

Recall thatG = (P, E) denotes the underlying hyperlink graph,
andA denotes the set of authorities in the graph. Get= (A, E,)

jen(sy hy > dal. Let
x be the authority node with maximum un-normalized weight at
timet 4 1. Since the weight of any authority at timiés at most
1, we have that for every hup € B(z), h; < 1. It follows that
@t =3 e pay My < do < d. Therefore, after normalization

t+1 t t
as' 2 —gyas = As
(29

which concludes the proof.[]

COROLLARY 1. The weight of every seed nodec S con-
verges for any initial configuration.

PrROOF. For every seed node € S, the weight ofs is a non-
decreasing function that is upper-bounded, therefore it will con-
verge. [

Note that “non-decreasing” means that the weights either in-
crease, or remain constant. We now prove that there always exists
a timeto when the weight of some seed node takes the maximum
value 1, which remains constant for alb ¢,.

LEMMA 2. For every initial configuration there exists a point
in time ¢o, such that for some seed nodec S, o = 1, for all
t > to.

PROOF. Assume that for every € S, al < 1, forallt > 0.
We will now prove that for every € S, al > a2d’/(d — 1) by
induction ont. Fort = 0 it is trivially true. Now, assume that at
timet, a® > a2d’/(d—1)'. Attimet+ 1, we have (as in the proof
of Lemma 1) that the un-normalized weight ofs a‘*! > dal.

Let x be the node with maximum un-normalized weight at time

denote the undirected graph, where there exists an undirected edgé + 1. Nodez cannot be a seed node, since then we would have

between two authorities if they share a hub. We will refe(Gtp
as theauthority graph Assume now that the grapf, consists
of k connected components, Cs, . .., Ck. Leta® be the weight
vector of the initial configuration. The weight assigned by configu-
rationa® to componend; is the sum of weights of all authorities in
C;. We define dair initial configuration as a configuration that as-
signs non-zero weight to all components in the graph We will
assume that the initial configuration is always fair. If the compo-
nentC; is assigned zero weight by the vectdt, then the weights
of the nodes inC; will immediately converge to zero. Thus, we
can disregard the nodes in the compon€ntand assume that the
algorithm operates on a smaller gra@ghinitialized to a fair con-
figurationa®.

Finally, for some node € A, let d; denote the in-degree of

thata’t! = 1, reaching a contradiction with our initial assumption.
Sincez is not a seed nod@, < d, < d — 1. Normalizing the
weight of s by @%, we have that

altt > d d al .

(d—1) (d— 1)ttt
Therefore, the weight of every seed node is an increasing function
of time. Ast — oo, a! — oo. Since, the weights are bounded,
we reach a contradiction. Therefore, there must exist some point
in time, to, such that, for some node € S, af° = 1. From
Lemma 1 we know that the weight of the seed nodes is a non-
decreasing function, thus! = 1, for all t > t,. Therefore, for
this seed node, the weight increases until it becomes 1, and then it
remains constant for the remaining iteration§]

t
ag >




Aux(a”, u) is, Aux(a®,a’?) and Max (a®) are equivalent; the systerux
converges if and only if the systemax converges. ThAuX sys-

i 0
Run theMax algorithm ona tem serves the purpose of “disconnecting” the seed nodes from the

Let¢p be the time that the seed nodes converge

2) =a? 20 =u non-seed nodes. This will become clear in the following.
Repeat until the weights converge: We will now prove that in the limit the configuration éfux is
For every hubh € H independent of the initial configuration of the non-seed nodes.
hi = max ¢ p(;) 2} To assist the proof, we introduce the following conventions. We
For every authority € U assume that at the initialization of theux system, each node
e =Y e h receives an amount ofiassy? of color i. The weight of this mass
For every authority € S is 2, where a unit of mass corresponds to a unit of weight. That

t t t+1
$1;+1 _ aso+ +

= is, there is a one to one correspondence between mass and weight,
Normalize in theL . norm

except for the fact that mass has color. As mass is moved around
in the graph, by measuring the amount of mass of coldrtimet,

we can quantify the contribution of the initial weight of authority

to the configuration:*at timet.

Consider theAux system at time — 1. Recall that the function
i~ maps every hub to the authority; which at timet — 1 has
the maximum weight among all authorities #(j). We take the
following view of the ¢-th iteration. Every authority sends its
mass to all hubs that map toat timet¢ — 1 (assuming that mass
can be replicated). Consider a hgtfor which =1 (j) = 4. The
hub j receives the mass of the authorityand sends it to all the
authorities inF'(j), exceptthe seed nodes if. Every seed node
s € S receives mass of coloy, with weight a0, Non-seed
authority: receives mass from every hub B(:). The weight of
¢ is the total weight of all the mass it receives. If nadeceives
w1 units of mass of colok, we say that nodé containsy units of
mass of colok. The amount of mass of colércontained in nodeé
at timet is the contribution of the initial weight of nodek to the
weightz! of nodes, at timet. We useu’ to denote the total mass
of non-seed color in the system at timehat is, the total mass of
colork, forallk € U.

We are now ready to prove the following lemma.

Figure 4: The Aux dynamical system

For the following, given amccuracy constani, we say that the
weight of some nodéhas converged at timeg if |al™* — af| < 4,
forall t > ¢;.2 Corollary 1 and Lemma 2 guarantee that the seed
nodes will converge, and at least one of the seeds will converge
to weight 1. Lett, denote the first time that all seed nodes have
converged, and let be a seed node with weight 1. Fop to, the
un-normalized weight of is d. Furthermore, it is easy to see that
for every other authority, at < @.. Therefore, for alt > ¢, the
normalization factof|a’|| is equal tod, the maximum in-degree
of graphG, independent of the vectar'.

We are now ready to consider the convergence oMh& algo-
rithm. The proof proceeds roughly as follows. We first prove that as
t — oo the configuratiora’ of the MAx algorithm is independent
of the weights of the non-seed nodes at timeand depends solely
on the stationary weights of the seeds. Then, we set the weights of
the non-seed nodes to zero at timeand we prove that in this case
the system converges. The fact that the configuration is indepen-
dent of the non-seed weights implies that the system converges for | emma 3. In the Aux system, ag — oo, ! — 0.
any other configuration of the non-seed nodes, which in turn im- . L
plies convergence of thelax algorithm. However, “setting” the PROOF. First, we note that by definition of théux system, no
weights of the non-seed nodes to zero is not simple to do without S&€d node ever receives mass of non-seed éolfar anyk < U.
disrupting theMAXx algorithm. To this end, we need to introduce Ve Will prove thf‘t forallt > 0, every authorityi € U contains at
an auxiliary systemux. mo_st(_d —_1_) /d" units of mass of po_n-seed cc_)lor. For= 0 the

The systemAux is defined with two parameters. The first is glalm is trivially true. As;ume that it is true at tlmeAt the itera-
the initial configurationa® of the Max algorithm. The second t'?n‘t + 1, the hubyj receives the mass of the authorjtysuch that
is a weight vectoru for the non-seed nodes iti. Given some f'(G) = p. By tthetlndu_ctlve hypothesis, every authority contains
configuration vectow, we usevs to denote the projection af on at most(d — 1)°/d" units of mass of non-sged color; therefore,
the seed nodes, andw; to denote the projection af on the non- after thtIS ftlrst _step of the iteration every hybcontains at most
seed node#/. For the following we use' to denote the weight (d —1)"/d" units of mass of nqn-seed color. _ )
vector of theMax algorithm at timef, andz* to denote the weight Consider now some authoritye U. Authority i receives the
vector of the systerAux at timet. The structure oAuX is given m?sstofdi_ < d — 1 hubs. Since every hub contains at mast-
in Figure 4. 1)*/d* units of mass of non-seed color it follows that at the end

The systemAux runs theMax algorithm with initial configu- of iterationt + 1 authorityi contains at mostd — -1)t+1/dt units
ration a® until time #,, when the weights of the seed nodes con- of mass of non.-seled color. At the normalization step, the mass
verge. It then initializes the weights of the seed nodesfg and at every authority is scaled by a factofd. Thui?t tthfl end of
the weights of the non-seed nodeatgand proceeds iteratively as  Itérationt + 1, authority: contains at mostd — 1) /d""" units
follows. For thet-th iteration, it updates the weights of the non- ©f mass of non-seed color. _ )
seed nodes in the regular fashion, while it sets the weights of the 1 herefore, Ehe total mass cif n?n-seed color in the graph at time
seed nodes to the weight they would receive in(he+ t)-th it- tis at mosty” = |A|(d — 1)t /d’, where|A] is the number of
eration of theMax algorithm. Essentially, thdux system fixes ~ authorities. Thus, as— oo, p* — 0. [
the weights of the seed nodes to the stationary weights dflthe
algorithm when run on the initial configuratia?, while it updates
the weights of the non-seed nodes in the regular fashion. Note that  coroLLARY 2. The configuratiodim_... z* of theAux sys-

if u = a;9, then for every nodé, «{ = a; ", forall ¢ > 0. That tem is independent of the initialization vecter

Corollary 2 follows immediately from Lemma 3.

2Any other method for testing convergence is applicable. Our anal- ~ Let 0 denote the vector of all zeros. We now prove the following
ysis does not depend on the definition of convergence. lemma.



LEMMA 4. The systerux(a’, 0) converges for any configu-
ration a®.

PrRoOF We will prove that the weights of all authorities in the

iterations, the mass of non-seed color is equal'te< |A|(d'/d)*.

N i log(|A[/4)
We have thatA|(d'/d)" < 6, if t > T4+ . Thus, the rate

of convergence depends upon the size of the graph, and the ratio

system are non-decreasing functions of time. Since the weights areP&tween the highest, and second-highest in-degree in the graph.

upper bounded it follows that they will converge.

For every seed node € S, z! = alt', that is, the weight of
the seed nodes in theux system at time is the same with the
weight of the seed nodes in théAax system at time + ¢o. From
Lemma 1 we know that for th®ax algorithm, the weights of all
seed nodes are non-decreasing functions of time. Therefbiis,
a non-decreasing function of time, for alie S.

We will now prove that for every authorityc U, =} > z~! for
all t > 1, using induction on time. Far= 1, z! > 0, so the claim
is trivially true. Assume that it is true at time Consider now the
differencez!™" — @t We break up the hubs iB (i) into two sets.
The sefV contains the hubg € B(i) such thatf*(j) = f*~1(4);
that is, the hubs whose mapping does not change atttiffiee set
W contains the hubg € B(i) such thatf*(5) # f*~'(j), that s,
the hubs whose mapping changes at time

We have that! ™" — 7t = Sy + S2, where

Sio= 2 @) - T0))
$20= D (" (S'G) =2 (W) -

For everyj € V, there exist® € A such thatf’(j) = f*1(j) =
p. By the inductive hypothesis we have thdt—x}, ' > 0. There-
fore, S1 > 0. For everyj € W, there exisip,q € A such that
fi() = p, and f*71(j) = ¢. Since at timet the mapping of
the hubj switches fromg to p, it follows thatz} > «, and
a7t < al7t (orap, > 2, andz, ' <z depending on the

P P

way that we break the ties). By the induction hypothesis we have

thatz) > x!~'. Thereforex) — z!™" > !, — 2}, > 0. Thus,
Sy > 0,andz;™" — ! > 0. Sincex!t" — 2} = ("' — =) /d,

it follows that2!™* > zf. O

The following theorem follows directly from Lemmas 3 and 4.

THEOREM 1. TheMAX algorithm converges for any initial con-
figuration. The stationary configuration MAX is determined by
the stationary weights of the seed nodes.

PROOF. For any initial configuratiom® the systenAux (a’, 0)
converges. From Corollary 2 the limiting behaviorAfx is inde-

pendent of the initial configuration of the non-seed nodes. There-

fore, for any vectow, the Aux (a®, u) system will converge, and it
will converge to the same vector asx(a’, 0). Whenu = a}?,
the systemAux(a®, ago) is equivalent to thé ax (a®) algorithm.
Therefore, theMiax algorithm converges for any initial configura-
tion. From Corollary 2 it follows that the stationary configuration
depends only on the weights of the seed nodes at#ime[]

We are particularly interested in thaiforminitial configuration,

5.2 The stationary configuration

In this section we give a characterization of the way khax
algorithm assigns the weights to the authorities. We first introduce
the auxiliary graphG 4. Assume that the algorithm has converged,
and leta; denote the stationary weight of nodeDefine H (i) =
{j € H : f(j) = i} to be the set of hubs that are mapped to
authority . Recall that the authority grapfi, is an undirected
graph, where we place an edge between two authorities if they share
a hub. We now derive thairected weightedjraphGa = (A, E4)
on the authority noded, from the authority grapld=,, as follows.
Lets andj be two nodes i, such that there exists an edge;)
in the graphG,, anda; # a;. Let B(4,j) = B(i) N B(j) denote
the set of hubs that point to both authoritieend;. Without loss of
generality assume that > a;. If H({)NB(i, j) # 0, thatis, there
exists at least one hub iB(z, j) that is mapped to the authority
then we place a directed edge frono j. The weightc(s, ) of the
edge(s, j) is equal to the size of the sét(:) N B(i,7), that is, it
is equal to the number of hubs B(3, j) that are mapped to The
intuition of the directed edgg, j) is that there are(%, j) hubs that
propagate the weight of noddo nodej. The graphG 4 captures
the flow of authority weight between authorities.

Now, let N (¢) denote the set of nodesdn, that point to node.
Also, lete; = . v(; (4, 9), denote the total weight of the edges
that point toi in the graphG 4. This is the number of hubs in the
graphG that point toi, but are mapped to some node with weight
greater thari. The remainingl; — ¢; hubs (if any) are mapped to
nodes, or to some node with weight equal to the weight ofVe
setb; = d; — ¢;. The numbeb; is also equal to the size of the set
H (i), the set of hubs that are mapped to nedehen all ties are
broken in favor of node.

An example of the graph&, G, andG 4 is shown in Figure 5.
Every edge{s, j} in the graphG, is tagged with the number of
hubsB(i) N B(j) that point to bothi andj nodes. The numbers
next to the nodes of grapfi 4 are the stationary weights, and the
weights on the edges are thg@, j) values. Note that there is no
edge between nodasandy in the graph 4. Although they share
a hub, this hub is mapped to nogle

The following proposition gives a recursive formula for weight
a;, given the weights of the nodes M(%).

PrROPOSITION 1. The weight of nodésatisfies the equation

a; = Z c(j,i)aj/deriai/d, (2)

JEN(3)

PrOOF. Recallthatforeverynodga; =3, 5, a (f(4)) /d.
From the hubs irB(i), b; of them are mapped to nodeor to some
node with weight equal ta;. These hubs recycle the weight of

when all nodes are initialized to the same weight. Since the con- nodes, and they contribute weigltta; /d to the weight of node.

figuration is a unit vector in thé ., norm all nodes are initialized

The remaining hubs bring in the weight of some other authority.

to weight 1. In this case from Lemma 1, we know that the weight For every;j € N (i), there are:(j,¢) hubs inB(i) that are mapped
of the seed nodes will immediately converge to 1. In the case of to nodej. These hubs propagate the weightof node; to node:.
the uniform initial configuration we also have a very clear charac- Thus, they collectively contribute weightj, i)a;/d to the weight

terization of therate of convergencef the algorithm. In this case,

the seed nodes converge immediately to weight 1. Given an accu-

racy constant, the MAx algorithm converges when the mass of
the non-seed color becomes less thiahet d’ denote the second-
highest in-degree in the graph. As we saw in Lemma 3, dfter

of nodei. Therefore, we obtain equation 2[]]

By definition, the graph= 4 is a DAG. Therefore, there must
exist some nodes, such that no nodedn points to them. We
define asource noden the graphG 4 to be a noder, such that
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Figure 5: Graphs G, G, and G 4.

N(z) = 0 (i.e., there is no node i& 4 that points taz), anda, >

PrRoOF We will prove that every reachable node has positive

0. Lemma 2 guarantees that at least one such node exists. In theveight using induction on the length of the shortest path from a
example of Figure 5(c), there is only one source node, the seedseed node to nodein the graphGa. Let radiusa(s,i) be the

nodes. Nodesv andu have no incoming edges, but they are not

length of the shortest path from seed nede node: in the graph

source nodes, since they have zero weight. We now prove that theG 4. Letradiusa (i) = minses radiusa(s, ) be the shortest path

set of source nodes is identical to the set of the seed nodes.

LEMMA 5. Anode is a source node of the gragh, if and only
if it is a seed node in the grap.

PROOF Letx be a source node of the graghy. SinceN (z) =
(0, it follows that alld,, hubs that point ta: are mapped ta, or to
some node with weight equal to.. Thereforeb,, = d.. We have
thata, = a»d./d. Sincea, > 0, it follows thatd, = d.

Let s be a seed node. Assume thas not a source node in the
graphG 4. Then, eithes = 0, or N(s) # 0. We have assumed
that the initial configuration is a fair configuration, that is, the initial
configuration assigns to every component of the g@pimon-zero
weight. If C; is the component in the graggh, that contains node
s, then at least one node @, was initialized to non-zero weight.
Therefore, there exists some point in timesuch that the’s > 0.
From Lemma 1 we know that the weight of every seed node is a
non-decreasing function of time, therefoué,> o’ forall t > ¢,.
Thereforeas > 0.

Assume thaiV(s) # 0. We have that

as = Z c(i, s)a;/d + bsas/d .

i€N(s)

For everyi: € N(s) we have that; > a,. Therefore, it follows
that

as = Z c(i,8)a;/d+bsas/d > csas/d+bsas/d = asd/d = as,
i€EN(s)

thus reaching a contradiction[]

We now turn our attention to the non-seed nodes of the graph.
For the following, we say that nodeis connectedo a seed node
in the graph,, if there exists a path in the gragh, from a seed
node to node. We say that nodéis reachablefrom a seed node
in the graphG 4 if there exists a directed path in the gragh
from a seed node to the node We will often say that a node is

from any seed node to nodein the graphG.4. For every node
¢ with radiusa (i) = 0, that is, the seed nodes themselves, the
lemma is trivially true. Assume that it is true for every nadeith
radiusa(i) < £. Every nodej with radiusa(j) = ¢ + 1 must be
connected to a nodewith radiusa (i) = £. From Proposition 1
we have thati; > c(4, j)a;/d > 0.

Assume now that nodie€ U is not reachable from a seed node.
If N(i) = 0, then it must be that; = 0. Otherwise, nodé is a
source node. From Lemma 5 this is not possible, since ndasle
not a seed node. Assume now thafi) # 0, that is, there exists
some node in the grapf¥ 4 that points to node. Then starting
from node: we can follow edges backwards in the gra@h to
other non-reachable nodes. Since the gi@phcontains no cycles,
we will eventually find a nodg that is not reachable, and has no
incoming edges. Sincgis not a seed node, we have that= 0,
anda; > a; > 0, thus reaching a contradiction. Therefore, there
cannot be any node pointing to nodenda; = 0. [

LEMMA 7. A node is reachable from a seed node in the graph
G 4 ifand only if it is connected to a seed node in the graph

PROOF Obviously, by definition of the graph§, and G4, if
a node is not connected to a seed node, then it is not reachable
from a seed node. We will now prove that every nad¢hat is
connected to a seed node in the gréph it is also reachable from
a seed node in the gragha, using induction on the length of the
shortest path from a seed node to nade the graphG,. Let
radiusq(s,1) be the length of the shortest path from seed node
to s in the graphG,. Letradiuse (i) = minses radiuse(s, ) be
the shortest path from any seed node to nodethe graphG.,.
For every node such thatradius, (i) = 0, that is, the seed nodes
themselves, the lemma is trivially true. Assume that it is true for
every node with radiusq (i) = £. Now consider some nodewith
radius.(j) = ¢+ 1. Since nodg is connected to a seed node in
the graphG,, there exists a nodewith radiusq (i) = ¢ such that
the edge(, j) belongs to graplt?,. This implies that there exits
at least one hulh that points to both andj. Let f(h) = k be
the mapping of this hub. Nodeis not necessarily nodeor j, and

reachable to indicate that it is reachable from a seed node in theit is not necessarily the case thatdius, (k) < £. However, we

graphG 4. In the example of Figure 5, nodesy, z are connected
to, and reachable from the seed nadevhile nodesu andv are
neither connected to, nor reachable from seed Bode

LEMMA 6. A nodei is reachable from a seed node in the graph
G 4 ifand only ifa; > 0.

know that hubh points to bothi andk, and thatax. > a,;. By the
inductive hypothesis, nodés reachable, sa;, > 0. Thus,a; > 0.
Consider now the nodesandk. If a; > ax, thena; > 0,
therefore, nodg is reachable. Otherwise, for the pai, j) we
have that: [a] there exists an ed@e 7) in the graphG, (since the
nodesj andk share the hub); [b] B(k,j) N H(k) # 0 (since the



hub i is mapped tdk); [c] ar > a;. Therefore, there must exist ~ The arbitrary initial configuration case: If we knew the station-

a directed edgék, j) in the graphGa. Sinceasx > 0, Lemma 6 ary weights of the seed nodes then we would be able to compute
guarantees that nodeis reachable from a seed nodeGh,. Thus, the weights of the rest of the nodes recursively, using the formula
nodej is also reachable. ] in Theorem 2. However, the weights of the seeds depend on the ini-

tial configuration. Lemma 2 guarantees that at least one seed will
receive weight 1. In the case that the graph contains a single seed
node (a case we encounter often in our experimentsithg al-
gorithm converges to the same configuration as in the uniform case.
One would hope that all seeds converge to weight 1, for all initial
configurations, in which case the stationary configuration would be
unique. However, this is not the case. One can construct simple ex-

THEOREM 2. Given a graphG, let C, Cs, ... Cy be the con- amples of graphs that consist of multiple disconnected components,
nected components of the gragh,. For every component’;, where, depending on the weight assigned to each component, the
1 < i < k, if componentC; does not contain a seed node, then algorithm converges to different configurations. A natural question
a; = 0, for all z in C;. If componentC; contains a seed node, is whether we can prove a similar result if we consideaathority

For some node, and some seed nodewe definedist(s, ) to
be the distance of the longest pathGn from s toi. We define the
distance of node, dist(i) = maxsecs dist(s,), to be the maxi-
mum distance from a seed nodeif@ver all seed nodes. We note
that the distance is well defined, since the gréphis a DAG. We
now summarize the results of this section in the following theorem.

then every node in C; is reachable from a seed node @, and connectedgraph, that is, a grap&, such that the authority graph
a; > 0. Given the weights of the seed nodes, we can recursively G, is connected. We now present a counter example, where we
compute the weight of a reachable (in the graph) nodezx at show that for an authority connected gra@hthere exists an ini-
distancef > 0, using the equation tial configuration such that one of the seed nodes converges to a
1 ) weight less than 1. Furthermore, there exist non-seed nodes that
e = g - > el x)ay, have weight greater than the weight of that seed node.
JEN(=)

. N e PrRoPOSITION 2. The MAX algorithm does not always con-

where for allj € N (i), dist(j) < L. verge to the same weight vector for all initial configurations, even
PROOF. LetC; denote the-th component of the grapH... Ob- when restricted on authority connected graphs.

viously, if a node is not connected to a seed node in gr@phit

cannot be reachable from a seed node in the géaphTherefore,

if component; does not contain a seed node, then, from Lemma 6,
for everyz in C;, a, = 0. Assume now that the componeff
contains a seed node. Lemma 7 guarantees that everyrriade;
becomes reachable from a seed node in the géaphThe weight

of nodex € C; can be computed recursively using Proposition 1.
We have that

PROOF Consider the grapty’ in Figure 6(a). The large red and
white nodes are the authorities, while the small black nodes are
the hubs. The shaded (red) nodes are the seed nodes of the graph
G. There are four seeds in the graph, each with in-degree 3. Fig-
ure 6(b) shows the corresponding gragh. The initial configura-
tion assigns weight 1 to all seed nodes, except for the central seed,
which receives zero weight. The non-seed nodes are also initialized
to zero weight. The initial weights for each node are shown next to
ag = Z c(j,x)aj/d+ bgaz/d . vertices of the graph in Figure 6(a).

JEN(x) When the algorithm converges, we obtain gr&ph shown in
Figure 6(c). The numbers next to the nodes in the graph are the

Therefore, . . g
1 stationary weights of the nodes. The weights on the edges are equal
g = Z c(j,x)aj . to thec(z, j) values. Obviously, the algorithm does not converge to
TP jeN(x) the same stationary configuration as when initialized to the uniform

configuration, since the central seed node receives weight less than
1. Also, in this example there exist non-seed nodes that receive
weight greater than the weight of the central seed node.

If nodez is at distance, then all nodeg € N(z) havedist(j) <
£. Therefore, starting from the seed nodes, we can iteratively com-
pute the weights of all nodes at increasing distancés.

Theorem 2 is in agreement with our findings in the Section 5.1, 5. EXPERIMENTAL EVALUATION
where we observed that the stationary configuration depends solely In this section we studv the performance of Max algorithm
on the stationary weights of the seed nodes. Note that Theorem 2f Web h study df pf_ di lated 9
does not provide a constructive way of assigning weights to the or WWeb search queries, and for finding related pages.
nodes, since the graggi, depends on the stationary configuration. § 1 \WNeb Search queries
However, it provides a useful insight in the mechanics of the algo-

fithm, and in the way the weight is propagated from the seed nodeswere constructed in the fashion described by Kleinberg [15]. We

to the remaining authorities. All weight emanates from the seed : )
nodes, and it floods the rest of the nodes, propagated in the gralohstart with a Root Set of 200 pages that are returned by a search en

Ga. As the distance from the seed nodes increases, the weightgine' In our experiments we use the Google search engine. Then,

decreases exponentially by a scaling factoHowever, well con- for each page in the Root Set, we include all the pages that are
nected nodes, and nodes with high in-degree in the’ ofaein- pointed to by this page, and the first 50 pages (in the order re-

force their own weight. For nod there areb; hubs that recycle turned by the Google search engine) that point to this page. Given

the weight of nodé. Thus, high in-degree can increase the weight this Base Set of web pages, we _construct_the_underlylng hyperlink
of anode, even if it is far from a seed node. graph. We removaavigational links that is, links between the

same domain.

The uniform initial configuration case: In the case of the uniform We compare thdM Ax algorithm against théliTs, PAGERANK,
initial configuration we know that the seed nodes will converge im- AT (k), andNoRM(p) algorithms, as well as theiDEGREEheuris-
mediately to weight 1. Therefore, théax algorithm will rank the tic where all nodes are ranked according to their in-degree in the hy-
seed nodes first. The rest of the nodes receive less weight than theerlink graphG. For theNoRrMm(p) family, we setp = 2 and we de-
seed nodes. note this algorithm ablorm. For theAT (k) family of algorithms,

We experiment on thirty four different queries. The data sets
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Figure 6: An example with a non-uniform initial configuration for authority connected graphs

given a graphG, we compute the distribution of the out-degrees in algorithm || avg HR ratio | avg Roratio
the graph and we experiment withbeing the median, and the av- E/—l\-(l;SERANK 242102 2202
erage out-degree, where median an_d average are taken over all the INDEGREE 35% 58%
hub nodes. We denote these algorithmsA@sMeD and AT-AVG MAX 38% 64%
respectively. For th€AGERANK algorithm, we set the jump prob- AT-MED 34% 60%
ability to e = 0.2, a value that has been previously considered by AT-AVG 28% 51%
Brin and Page [6]. A detailed comparisonifax with other LAR NORM 24% 44%

algorithms can be found at [20]. Results are presented at the Web
pages http://www.cs.toronto.edubsap/experiments/thesis, and
http://www.cs.toronto.edu/tsap/experiments/journal .

ForHITs and its variantsNORM, AT (k), MAX) we initialize all
weights to 1, that is, to the uniform configuration. This is a natural
initialization that assumes no a-priori knowledge, thus, assigning hibit the worst performance.
equal initial weight to all nodes. We note that in our experiments  The performance of th1AX algorithm is strongly affected by
for almost all queries the authority graph, contains a giant com- the quality of the seed node, as well as the quality of the nodes
ponent, which contains a single seed node. Thus, with respect to thewith the highest in-degree, and the nodes that are most heavily co-
HiTs andMAX algorithms anyfair initial configuration produces  cited with the seed node. We actually observed that in most cases,
the same output as the uniform initialization. the top-10 nodes returned B Ax are a subset of the ten nodes

The measure that we will use for the evaluation of the quality with the highest in-degree, and the ten nodes that are most co-cited
rankings isprecision over the top-10Ne define thdiigh relevance with the seed node. The ratios Bfax indicate that the seed node
ratio as the fraction of documents in the top 10 positions of the is usually relevant to the query. This observation agrees with the
ranking that are highly relevant to the query. We also define the performance ratios of thenDEGREE algorithm. ThelNDEGREE
relevance raticas the fraction of documents within the top-10 po- algorithm achieves the second best high relevance ratio, and the
sitions that are relevant, or highly relevant to the query. Similar third best relevance ratio and it outperforms more sophisticated al-
quality measures are used in the TREC conferences for evaluatinggorithms likeHiTs andPAGERANK . This is rather surprising given
Web search algorithns. the simplicity of thel NDEGREEalgorithm. We should note though

In order to determine the relevance of the results, we performed that exactly due to its simplicity, theNDEGREE algorithm is the
a user study. The study was performed on-line. In the starting pageone that is most affected by the choice of the search engine that it
of the study, the set of queries was displayed and the users had thas used for generating the Base Set of Web pages. Therefore, the
option to select any query they felt they were capable of evaluat- performance of théNDEGREEalgorithm reflects, in part, the qual-
ing. Then, they were presented with a set of results that belong toity of the Google search engine, which uses, to some extent, link
union of the top-10 results of the different algorithms. The pages analysis techniques.
were presented in a random order, and the users did not know which  For theAT-MED, AT-AvG andNORM algorithms, close exami-
algorithm introduced each result. They were asked to rate the re-nation of the results reveals that they usually have the same ratios
sults as “Highly relevant”, “Relevant”, “Non-Relevant”, or “Don’t  as either théd1Ts or theMAX algorithm. In most cases, the top-10
Know”, if they could not assess the relevance of the result. results of these algorithms are a subset of the union of the top-10

The evaluations of each user define a relevance and a high relesesults ofHITs and MAx. Thus the average performance ratios
vance ratio for each algorithm. We take the average of these ratiosof AT-MED, AT-AvG andNORM take values between the ratios of
over all users and over all queries. The average ratios are shownMAX andHITs.
in Table 1. TheMax algorithm emerges as the clear best among  The poor performance of thiEiTs and thePAGERANK algo-

Table 1: Web Search: Average Performance Ratios

the algorithms we consider. The second best options areitbe- rithms can be attributed to type obmmunitieghat the algorithms
GREEandAT-MED algorithms, followed by th&T-AvG algorithm. tend to promote in the top positions of the rankings. ForHives
At the low end, thePAGERANK, NORM andHITS algorithms ex- algorithm it is well known [15, 16, 5, 10] that it tends to promote

the mostTightly Knit Communityof hubs and authorities in the

®For TREC relevance and high relevance is usually predefined by graph. ThePAGERANK algorithm tends to favor isolated nodes
a set of experts. with high in-degree that form two link cycles with one or more




nodes [4]. In both cases, we observed that the communities that algorithm avg HR ratio | avg R ratio
HiTs andPAGERANK tend to favor are usually not relevant to the ;A'(T;RANK ‘2%02 2?102
query, \_Nhich accounts for @he topic drift Qf the two algorithms. INDEGREE 40% 62%
The influence of the various communities on the ranking of the MAX 49% 76%
MAXx algorithm is primarily exerted through the seed node. The COCITATION 49% 76%
community that contains the seed node, and the co-citation of the GOOGLE 52% 72%

seed node with the remaining nodes in the community determine
the focus of thévl Ax algorithm. For example, Table 4 (Appendix A)
shows the top-10 results for the query “movies”. The seed node is
the Internet Movie Databa$éMDB), and the algorithm converges

Table 2: Related Pages: Average Performance Ratios

to a set of movie databases and movie reviews sites. In this case, algorithm avg HR ratio | avg Rratio | avg grade
the MAX algorithm manages to distill the relevant pages from the EAH(—ESERANK giof) ggo/o 2.2

. L < () % 2.2
community to which it converges. On the other hand, in the case of INDEGREE 33% 66% 3.0
the “affirmative action” query (Table 5, Appendix A) the seed node MAX 36% 66% 2.9
is a copyright page from the University of Pennsylvania, and as a COCITATION 31% 59% 2.7
result theM Ax algorithm outputs a community of university home GOOGLE 18% 41% 1.4

pages.
Itis also interesting to observe the behavioMbix on the query
“abortion”. Table 6 (Appendix A) shows the top-10 results of the
algorithm. The seed node in the graph is the “NARAL Pro-Choice”
home page. We observed that there is only light co-citation between
the pro-choice and pro-life communities, so one would expect that

the algorithm would converge to pro-choice pages. However, the HiTs algorithm, or other heuristics for discovering related pages.

Max algorithm mixes pages from both communities. The third We propose thé1ax algorithm as a novel alternative for discov-
page in the ranking d¥lAx is the “National Right To Life” (NRTL) ering related pages. In order for the algorithm to work, the query

home page, and there are two more in the fifth and seventh positions :
: oo pageq must be the seed of the algorithm. The rest of the nodes
K:}:Qel_ rsggén%é':f:ﬁ;esxscn;'nnc‘;’ur']?gh%fstth; fjdag;g:/aeigb;zr\;erggﬂat It:r:ﬁ_will then be ranked according to their relationgpwhere relation

o : is defined naturally by thax algorithm. However, it may not
thermore, its in-degree (189) is very close to that of the seed node . o
(192), and it belongs to a tightly interconnected community. In this always be the case that the page the seed of the vicinity graph.

case. the NRTL page acts asecondanseed node for the aldo- In these cases, we engineer the graph, so as to make sure that the
rithm’ pulling pagrt)esgfrom the pro-life cowr;]munity to the top-log As Paged has the highest in-degree. We go through the nodes of the
a resiJIt the algorithm mixes pages from both communities. . graph and find the node with the highest in-degfetVe then add

Similar mixing behavior for thélAx algorithm is observed for enough extra ‘dummy” nodes in the graph, that point only to node

the cases where the graph contains two seeds (“randomized algo-q' S0 that the in-degree gfbecomes greater thah Thus the page

rithms” query — Table 7, Appendix A), or that the seed node be- q bgcomes t_he seed r_lode for the Base Set_.l\ﬂm alg_orithm_will_
longs to two different communities (“basketball” query). More re- assign maximum weight 1 to page Following the discussion in

. Section 5.2, the weight will be diffused from the seed node to the
Zﬂlsig:n be found at the Web pages that contain the results for aIIremaining nodes of the graph, through the hubs. The amount of

weight that reaches nodewill be used as a measure of its related-
. ness to the seed node.
6.2 Related pages queries Other tharM AX, we also experiment with thdiTs, INDEGREE,

The property of theMAx algorithm to diffuse the weight from  and PaAGERANK algorithms. We also consider tH2oCITATION
the seed node to the remainder of the graph has the effect that theneuristic (also considered by Dean and Henzinger [8]) which is de-
pages that are ranked highly are usually “related” to the seed node fined as follows. Given the query pagefor each page in the
Therefore, if we could set the seed node to some selected page, theRicinity graph compute the number of hubs that point to bp#md
we could use thé/ Ax algorithm to find pageselatedto thatpage.  p. Then, rank the pages according to the number of hubs that they
Finding pages related to a query Web page is a standard feature ohave in common with the query page. Furthermore, we also per-
most modern search engines. This is an active research area with ormed a comparison with the actual Google search engine.
growing literature [15, 8, 13]. The current technigues use content  \We experimented with 20 different queries, and we collected
analysis, link analysis, or a combination of both. We propose the yser feedback in a similar fashion as for the Web Search queries.
use of theMAx algorithm as a tool for discovering Web pages, Table 2 reports the average high relevance and relevance ratios.
related to a query Web page. The GooGLE search engine achieves the best high relevance ra-

The idea of using link analysis algorithms for finding related tjo, while theMax andCoCiTaTION algorithms tie in the second
pages was fist suggested by Kleinberg [15], and it was later ex- position. The results indicate that co-citation plays a significant
tended by Dean and Henzinger [8]. In this section, we use the ter- role when handling queries for related pages. Whex andCoC-
minology of Dean and Henzinger [8]. First, we note that we need a tation algorithms outperform th&ooGLE search engine when
different algorithm for constructing the hyperlink graph that willbe  considering the relevance ratio. This was rather surprising, given
given as input to the LAR algorithm. Given a query pag@®ean the fact that Google is a complete search engine that uses a combi-
and Henzinger propose to construct a “vicinity graph” arogiacs nation of link analysis, text analysis, and (possibly) user statistics.
follows. Let B denote a step that follows a link backwards, and let |t was also interesting to observe that thers algorithm performs
F denote a step that follows a link forward. Starting from the query  significantly better in this context, and that the sSimpl®EGREE
heuristic remains competitive.

We also performed a different experiment, where we used as

Table 3: Homepages: Average Performance Ratios

pageq, collect a set of pages that can be reached by followng
F, BF, andF B paths. The vicinity graph is the underlying hyper-
link graph of this set of pages. The authors then propose to run the

“http://www.imdb.com



query pages the home pages of ten researchers and professors. We

then asked them to evaluate the results, and also to (blindly) rate

the six algorithms with an (integer) grade between 0 (unaccept- [7]
able) and 4 (excellent). Table 3 presents the average relevance and
high relevance ratios, as well as, the average grade for each algo-

rithm. A number of surprising facts emerge from this table. First,
the GooGLEsearch engine emerges as the worst algorithm with re-

spect to both ratios and grades. TPresERANK algorithm, which

had the worst performance in Table 2, exhibits the best relevance

ratio. The best high relevance ratio is achieved byNhex algo-
rithm. However, the best average grade is given td HREGREE
algorithm, followed closely by th&1ax and CoCITATION algo-

rithms. We note that for these queries we usually had to add to the

(8]

9]
[10]

graph a large number of dummy nodes (on average 42) to make the

guery page the seed node of the graph. The special nature of thes
queries may explain the discrepancy between the previous results.

7.

CONCLUSIONS

f1y

In this paper, we considered two families of non-linear dynami- [12]
cal systems and we studied in detail i@ x algorithm, a special

case of both families. We proved that the algorithm converges for
any initial configuration, and we provided a combinatorial descrip-
tion of the stationary weights. We also performed extensive exper-

iments that indicate that the algorithm performs well in practice.

Our work suggests as a possible future research direction the
study of other non-linear systems.

For the familB(k) and

NoRM(p), for the two extreme values @f andk, we have a very

good understanding of how the algorithms behave. It is an intrigu-
ing question to understand what happens for the intermediate val-
ues ofp andk. Do the algorithms converge, and are there any other

values ofp andk for which they meet?
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APPENDIX

A. SAMPLE QUERY RESULTS

In this appendix we present the top-10 results offhex algo-
rithm for some sample queries. In the tables below, each result is
marked as “Highly Relevant”, “Relevant”, or “Not-Relevant”. Rel-
evant results are the pages for which the “Relevant” and “Highly
Relevant” votes were more than the “Non-Relevant” ones. “Highly
Relevant” are the Relevant pages that have more “Highly Relevant”
than “Relevant” votes. Highly Relevant documents are marked
with boldface, Relevant documents with italics, while Non-Relevant
documents are in regular font.

MAX

1. (1.000)The Internet Movie Database (IMDDb).
URL:www.imdb.com

2. (0.296) Signs on DVD
WWW.Signs.movies.com

3. (0.253) Google
www.google.com

4. (0.219)Hollywood.com - Your entertainment
URL:www.hollywood.com

5. (0.211)Empty title field
URL:www.film.com

6. (0.174) Get Wild - GetWild - getwild.com
www.getwild.com

7. (0.161)All Movie Guide
URL:www.allmovie.com

8. (0.159)Movie Review Query Engine
URL:www.mrge.com

9. (0.159)ROTTEN TOMATOES: Movie Reviews
URL:www.rottentomatoes.com

10. (0.142)Greatest Films
URL:www.filmsite.org

Table 4: Top-10 results of theMAax algorithm for the query
“movies”

MAX

1. (1.000) Copyright Information
www.psu.edu/copyright.html

2. (0.447)PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice

3. (0.314) Welcome to Penn State’s Home on the
www.psu.edu

4. (0.010) University of lllinois
www.uiuc.edu

5. (0.009) Purdue University-West Lafayette, |
www.purdue.edu

6. (0.008) UC Berkeley home page
www.berkeley.edu

7. (0.008) University of Michigan
www.umich.edu

8. (0.008) The University of Arizona
www.arizona.edu

9. (0.008) The University of lowa Homepage
www.uiowa.edu

10. (0.008) Penn: University of Pennsylvania
www.upenn.edu

Table 5: Top-10 results of theMax algorithm for the query
“affirmative action”

MAX

(1.000)prochoiceamerica.org : NARAL Pro-Ch
URL:www.naral.org

(0.946)Planned Parenthood Federation of Am
URL:www.plannedparenthood.org

(0.918)National Right to Life
URL:www.nrlc.org

(0.819)NAF - The Voice of Abortion Provide
URL:www.prochoice.org

(0.676)Priests for Life Index
URL:www.priestsforlife.org

(0.624)Pregnancy Centers Online
URL:www.pregnancycenters.org

(0.602)ProLifelnfo.org
URL:www.prolifeinfo.org

(0.557)Abortion Clinics OnLine
URL:www.gynpages.com

9.

(0.551)After Abortion: Information on the
URL:www.afterabortion.org

10.

(0.533)FEMINIST MAJORITY FOUNDATION ONLINE
URL:www.feminist.org

Table 6:

Top-10 results of theMax algorithm for the query

“abortion”

MAX

(1.000)Algorithms Courses on the WWW
URL:www.cs.pitt.edu/ kirk/algorith

(1.000)Computational Geometry, Algorithms
URL:www.cs.uu.nl/geobook

(0.270) Directory of Computational Geometry
www.geom.umn.edu/software/cgli

(0.258) LEDA moved to Algorithmic Solutions
www.mpi-sb.mpg.de/LEDA/leda.ht

(0.257)ANALYSIS of ALGORITHMS HOME PAGE
URL:pauillac.inria.fr/algo/AofA

(0.237) IEEE Computer Society
computer.org

(0.205)Center for Discrete Mathematics and
URL:dimacs.rutgers.edu

(0.183)MFCS’98 home page
URL:www.fi.muni.cz/mfcs98

9.

(0.182) Computer Science Papers NEC Researd
citeseer.nj.nec.com/cs

10.

(0.178) Welcome to Springer, springer-verla
www.springer.de

Table 7:

Top-10 results of theMAx algorithm for the query

“randomized algorithms”



