
Using Non-Linear Dynamical Systems for Web Searching
and Ranking

Panayiotis Tsaparas
∗

Dipartmento di Informatica e Systemistica
Universita di Roma,“La Sapienza”

tsap@dis.uniroma1.it

ABSTRACT
In the recent years there has been a surge of research activity in
the area of information retrieval on the World Wide Web, using
link analysis of the underlying hypertext graph topology. Most of
the algorithms in the literature can be described as dynamical sys-
tems, that is, the repetitive application of a function on a set of
weights. Algorithms that rely on eigenvector computations, such
asHITS andPAGERANK , correspond to linear dynamical systems.
In this work we consider two families of link analysis ranking al-
gorithms that no longer enjoy the linearity property of the previ-
ous approaches. We study in depth an interesting special case of
these two families. We prove that the corresponding non-linear
dynamical system converges for any initialization, and we provide
a rigorous characterization of the combinatorial properties of the
stationary weights. The study of the weights provides a clear and
insightful view of the mechanics of the algorithm. We also present
extensive experimental results that demonstrate that our algorithm
performs well in practice.

1. INTRODUCTION
Ranking is an integral component of any information retrieval

system. In the case of Web search the role of ranking becomes
even more important. Due to the size of the Web, and the impatient
nature of Web users, it is imperative to have ranking functions that
capture the user needs, and output the desired documents within
the first few pages of results. To this end the Web offers a rich
context of information which is expressed through the hyperlinks.
Intuitively a link from pagep to pageq denotes an endorsement
for the quality of pageq. The seminal papers of Kleinberg [15],
and Brin and Page [6] built upon this idea, and introduced the area
of Link Analysis Ranking, where hyperlink structures are used to
determine the relativeauthorityof Web pages.

A Link Analysis Ranking (LAR) algorithm starts with a set of
Web pages interconnected with hypertext links. It takes as input
the underlying hyperlink graph, and returns as output anauthority

∗A major part of this work was completed while the author was a
graduate student at University of Toronto.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . .$5.00.

weightfor every node in the graph, that captures the authoritative-
ness of the node. Most LAR algorithms can be defined asdiscrete
dynamical systems. A dynamical system assigns an initial weight to
each node, and then performs a weight-propagation scheme on the
graph. The dynamical system iteratively updates the node weights,
setting the new weights to be a function of the current weights, until
the weights converge. The output of the algorithm is the stationary
weights of the dynamical system. When the update function is lin-
ear, we have alinear dynamical system. Algorithms that depend
on eigenvector computations [15, 6, 3, 16, 18, 17, 1] correspond to
linear dynamical systems.

In this paper we work within the hubs and authorities framework
introduced by Kleinberg [15]. We identify some potential weak-
nesses of theHITS algorithm, and we consider two families of al-
gorithms that use alternative ways of computing hub and authority
weights. A characteristic of the new families of algorithms is that
they apply non-linear operators. The corresponding dynamical sys-
tems are non-linear. Non-linear systems are less popular, since the
mathematical tools for analyzing their properties are not as well
developed as in the case of linear systems. We study in detail the
MAX algorithm, a special case of both families, and we prove that
the corresponding dynamical system has good behavior, that is, it
converges for any initialization. We also study the combinatorial
properties of the stationary weights. The study provides valuable
insight to the algorithm, and reveals a clear and structured mech-
anism for assigning weights. TheMAX algorithm has been previ-
ously considered by Gibson, Kleinberg and Raghavan [11] for clus-
tering categorical data. Our work resolves an open question raised
in [11] regarding the rigorous analysis of this dynamical system.

We also present extensive experiments of our algorithm both for
ranking and for finding related pages. The results indicate that our
algorithm performs well, and in many cases outperforms other link
analysis approaches.

The rest of this paper is structured as follows. Section 2 reviews
some of the related work. In Section 3 we introduce the two (non-
linear) families of algorithms, and we define theMAX algorithm.
Section 4 presents the main concepts about dynamical systems. In
Section 5 we study the convergence of theMAX algorithm, and
the properties of the stationary configuration. Section 6 presents
an experimental evaluation of various algorithms for ranking and
finding related pages. Section 7 concludes the paper with some
directions for future work.

2. BACKGROUND
A Link Analysis Ranking algorithm starts with a set of web

pages,P , interconnected with hyperlinks. In this work we will
assume that the set of pages isquery dependent, that is, it depends

on a specific Web query. Kleinberg [15] describes a process for
obtaining such a set of pages. Letn denote the size of the setP .
The input to the link analysis algorithm is then×n adjacency ma-
trix W of the underlyinghyperlink graphG, whereW [i, j] = 1
if there is a link from nodei to nodej, and zero otherwise. The
output of the algorithm is ann-dimensional vectora, whereai, the
i-th coordinate of the vectora, is the authority weight of nodei in
the graph. These weights are used to rank the pages.

We also introduce the following notation. For some nodei, we
denote byB(i) = {j : W [j, i] = 1} the set of nodes that point to
nodei (Backwards links), and byF (i) = {j : W [i, j] = 1} the set
of nodes that are pointed to by nodei (Forward links). Furthermore,
we define anauthority nodein the graphG to be a node with non-
zero in-degree, and ahub nodein the graphG to be a node with
non-zero out degree. A node can be both a hub and an authority
node. We useA to denote the set of authority nodes, andH to
denote the set of hub nodes. We have thatP = A ∪H.

Our work builds upon the hubs and authorities framework intro-
duced by Kleinberg. In his framework, every page can be thought
of as having two identities. Thehubidentity captures the quality of
the page as a pointer to useful resources, and theauthority identity
captures the quality of the page as a resource itself. If we make
two copies of each page, we can visualize graphG as a bipartite
graph, where hubs point to authorities. There is a mutual reinforc-
ing relationship between the two. A good hub is a page that points
to good authorities, while a good authority is a page pointed to by
good hubs. In order to quantify the quality of a page as a hub and
an authority, Kleinberg associated every page with a hub and an
authority weight. Following the mutual reinforcing relationship be-
tween hubs and authorities, Kleinberg defined the hub weight to be
the sum of the authority weights of the nodes that are pointed to by
the hub, and the authority weight to be the sum of the hub weights
that point to this authority. Leth denote then-dimensional vector
of the hub weights, wherehi, thei-th coordinate of vectorh, is the
hub weight of nodei. We have that

ai =
∑

j∈B(i)

hj and hi =
∑

j∈F (i)

aj . (1)

Kleinberg proposed the following iterative algorithm for com-
puting the hub and authority weights. Initially all authority and
hub weights are set to 1. At each iteration the operationsO (“out”)
andI (“in”) are performed. TheO operation updates the authority
weights, and theI operation updates the hub weights, both using
Equation 1. A normalization step is then applied, so that the vectors
a andh become unit vectors in some norm. The algorithm iterates
until the vectors converge. Kleinberg proves that after a sufficient
number of iterations the vectorsa andh converge to the principal
eigenvectors of the matricesW T W andWW T , respectively. This
idea was later implemented as theHITS (Hyperlink Induced Topic
Distillation) algorithm [12].

Independently, about the same time, Brin and Page introduced
thePAGERANK algorithm [6], which later became an integral com-
ponent of the Google1 search engine. ThePAGERANK algorithm
assumes the random surfer model, where a user is following links
on a graph, while at some points she performs a jump to a random
page. The algorithm performs a random walk which proceeds at
each step as follows. With probabilityε it jumps to a page chosen
uniformly at random, and with probability1− ε it jumps uniformly
at random to one of the pages linked from the current page. The au-
thority weight of nodei (the PageRank value of nodei) is defined
as the limiting fraction of time spent on pagei by the random walk.

1http://www.google.com

.......

.......
��
��
��
��
��

��
��
��
��
��

��

��

������
������
������
������
������

������
������
������
������
������

��

��		

���
�

�
�

���
�

Figure 1: A bad example for theHITS algorithm

The HITS andPAGERANK algorithms were followed by a sub-
stantial number of variations and enhancements. Most of the sub-
sequent work follows a similar algebraic approach, manipulating
some matrix related to the web graph [5, 3, 16, 18, 2, 1, 17]. Re-
cently, there were some interesting attempts in applying statistical,
and machine learning tools for computing authority weights [5, 7,
14].

3. THE TWO FAMILIES OF ALGORITHMS
The idea underlying theHITS algorithm can be captured in the

following recursive definition of quality: “A good authority is one
that is pointed to by many good hubs, and a good hub is one that
points to many good authorities”. Therefore, the authority quality
of some pagep (captured by the authority weight of pagep) de-
pends on the hub quality of the pages that point top (captured in
the hub weight of the pages), and vice versa. Kleinberg proposes
to associate the hub and authority weights through the addition op-
eration. This definition has the following two implicit propertie.
It is symmetric, in the sense that both hub and authority weights
are defined in the same way, and it is alsoegalitarian, in the sense
that when computing the hub weight of some pagep, the authority
weights of the pages that are pointed to by pagep are all treated
equally (similarly when computing the authority weights).

However, these two properties may some times lead to non-intuitive
results. Consider for example the graph in Figure 1. In this graph
there are two components. The black component consists of a sin-
gle authority pointed to by a large number of hubs. The white com-
ponent consists of a single hub that points to a large number of
authorities. If the number of white authorities is larger than the
number of black hubs then theHITS algorithm will allocate all au-
thority weight to the white authorities, while giving zero weight
to the black authority. The reason for this is that the white hub is
deemed to be the best hub, thus causing the white authorities to
receive more weight. However, intuition suggests that the black
authority is better than the white authorities and should be ranked
higher.

In this example, the two implicit properties of theHITS algo-
rithm combine to produce this non-intuitive result. Equality means
that all authority weights of the nodes that are pointed to by a hub
contribute equally to the hub weight of that node. As a result, quan-
tity becomes quality. The hub weight of the white hub increases in-
ordinately because it points to many weak authorities. This leads us
to question the definition of the hub weight, and consequently the
other implicit property ofHITS. Symmetry assumes that hubs and
authorities are qualitatively the same. However, there is a differ-
ence between the two. For example, intuition suggests that a node
with high in-degree is likely to be a good authority. On the other
hand, a node with high out-degree is not necessarily a good hub. If
this was the case, then it would be easy to increase the hub quality
of a page, simply by adding links to random pages. It seems that
we should treat hubs and authorities in a different manner.

MAX (a0)

Initialize authority weights toa0

Repeat until the weights converge:
For every hubi ∈ H

hi = maxj∈F (i) aj

For every authorityi ∈ A
ai =

∑
j∈B(i) hj

Normalize in theL∞ norm

Figure 2: The MAX Algorithm

3.1 The Authority Threshold (AT(k)) family
of algorithms

We would like to reduce the effect of the weak authorities on the
computation of the hub weight, while at the same time we retain
the positive effect of the strong authorities. A simple solution is
to apply a threshold operator, that retains only the highest author-
ity weights. Borodin et al. [5] proposed theAuthority-Threshold,
AT(k), algorithm which sets the hub weight of nodei to be the
sum of thek largest authority weights of the authorities pointed to
by nodei. This corresponds to saying that a node is a good hub if
it points toat leastk good authorities. The value ofk is passed as
a parameter to the algorithm.

Formally, letFk(i) denote the subset ofF (i) that containsk
nodes with the highest authority weights. That is, for any node
p ∈ F (i), such thatp 6∈ Fk(i), ap ≤ aq, for all q ∈ Fk(i). If
|F (i)| ≤ k, thenFk(i) = F (i). The AT(k) algorithm computes
the authority and hub weights as follows.

ai =
∑

j∈B(i)

hj and hi =
∑

j∈Fk(i)

aj

It is interesting to examine what happens at the extreme values
of k. Fork = 1, the threshold operator becomes themax operator.
We will discuss this case in detail in Section 3.3. Ifdout is the
maximum out-degree in the graphG, then fork ≥ dout, theAT(k)
algorithm is theHITS algorithm.

3.2 TheNORM(p) Family of Algorithms
The Authority Threshold algorithm operates on the principle of

preferential treatmentof the authority weights. That is, higher au-
thority weights should be more important in the computation of the
hub weight. This principle is enforced by applying a threshold op-
erator. A smoother approach is toscalethe weights, so that lower
authority weights contribute less to the hub weight. An obvious
question is how to select the scaling factors. A natural solution is
to use the weights themselves for the scaling factors.

This idea is implemented in theNORM(p) family of algorithms.
In this case we set the hub weight of nodei to be thep-norm of
the vector of the authority weights of the nodes pointed to by node
i. Recall that thep-norm of vectorx = (x1, . . . , xn) is defined

as ‖x‖p =
(∑n

i=1 xp
i

)1/p
. The authority and hub weights are

computed as follows:

ai =
∑

j∈B(i)

hj and hi =


 ∑

j∈F (i)

ap
j




1/p

.

The value ofp is passed as a parameter to the algorithm. We assume
thatp ∈ [1,∞] Asp increases the value of thep-norm is dominated
by the highest weights. For example, forp = 2, we essentially
scale every weight with itself. An almost identical algorithm was

proposed by Gibson, Kleinberg and Raghavan [11] for clustering
categorical data.

Again, it is interesting to examine the behavior of the algorithm
in the extreme cases of the valuep. Forp = 1 theNORM(1) algo-
rithm is theHITS algorithm. Forp = ∞ thep-norm reduces to the
max operator.

3.3 TheMAX algorithm
TheMAX algorithm is a special case of both theAT(k) algorithm

for the threshold valuek = 1, and theNORM(p) algorithm for the
valuep = ∞. The underlying intuition is that a hub node is as
good as the best authority that it points to. That is, a good hub is
one that points to at least one good authority.

Formally, we define theMAX algorithm as follows. The algo-
rithm sets the hub weight of nodei to be the maximum authority
weight over all authority weights of the nodes pointed to by node
i. The authority weights are computed as in theHITS algorithm.
Therefore, the authority and hub weights as computed as follows.

ai =
∑

j∈B(i)

hj and hi = max
j∈F (i)

aj .

The outline of the algorithm is shown in Figure 2. We set the
normalization norm to be themax(or infinity) norm. This makes
the analysis ofMAX easier, but it does not affect the convergence,
and the combinatorial properties of the stationary configuration.

4. DYNAMICAL SYSTEMS
A discrete dynamical system is defined [9] as a process that starts

with an n-dimensional real vector, and repeatedly applies a func-
tion g : Rn → Rn. We define aconfigurationof the system as
any intermediate value of the vector. The initial assignment of val-
ues is called theinitial configurationof the dynamical system. Of
particular interest are thefixed configurations(or fixed points) of
the dynamical system. These are vectorsx, such thatg(x) = x.
We will also refer to these vectors as thestationaryconfigurations
of the dynamical system. An interesting question in dynamical sys-
tems is the limiting value of the dynamical system. That is, ifgt(x)
denotes thet-th iteration of the functiong, then we are interested in
understanding the limiting behavior ofgt(x), ast →∞, for differ-
ent initial values ofx. The critical question is whether the system
reaches a fixed configuration (converges) ast → ∞, and whether
the stationary configuration depends on the initialization. For an
introduction to dynamical systems, we refer the reader to the texts
by Denavey [9] , and Sandefur [19].

In the case of link analysis algorithms, the real vector is the au-
thority weight vector, and the functiong propagates the authority
weight in the graphG. Let at denote the authority weight vec-
tor aftert iterations of the algorithm. The outline of a dynamical
system for link analysis ranking is shown in Figure 3. Obviously,
in order for the LAR algorithm to be well defined, we need some
guarantees about the convergence of the dynamical system. Ideally,
the dynamical system should always converge, and the stationary
configuration should not depend on the initial configuration.

DYNAMICAL SYSTEMg (a0)

Initialize authority weights toa0

Repeat until the weights converge:
at = g(at−1)

Figure 3: The outline of a dynamical system

Depending on the functiong we distinguish between two types
of dynamical systems:linear andnon-linear. In linear dynamical
systems, the functiong is of the formg(x) = Mx, whereM is
ann × n matrix. The majority of the link analysis algorithms that
have appeared so far in the literature [15, 6, 16, 18, 5, 1, 17] can be
described as linear dynamical systems. For such systems, linear al-
gebra offers the tools to analyze the limiting behavior of the system.
The conditions for convergence and the combinatorial properties of
the stationary weights are well understood. Things become more
complicated when the functiong is non-linear. Outside of the well
understood world of linear algebra, we know very little about the
behavior of dynamical systems. For non-linear systems, such as the
AT(k) andNORM(p) families of algorithms we do not even know
if they converge, which is a basic requirement for a well defined
Link Analysis Ranking algorithm.

In the following we study in detail theMAX algorithm. This al-
gorithm was previously explicitly considered by Gibson, Kleinberg
and Raghavan [11], but it was not rigorously analyzed. We prove
that the algorithm converges, and we characterize the combinatorial
properties of the stationary configuration.

5. ANALYSIS OF THE MAX ALGORITHM
We will now introduce some of the terminology that we will use

for the analysis of theMAX algorithm. We first define a notion of
time. We define timet to be the moment immediately after thet-
th iteration of the algorithm. We denote byat

i the un-normalized
weight of nodei at time t. We assume that the weights are nor-
malized in theL∞ norm. This means that the normalization factor
at stept is the maximum un-normalized authority weight, and the
maximum normalized weight is 1. We useat

i to denote the normal-
ized weight of nodei at timet. When not specified, the weight of
nodei at timet refers to the normalized weight of nodei at timet.
We denoteai = limt→∞ at

i, the limit of the weight of nodei, as
t → ∞, assuming that the limit exists. When convenient we will
useat(i), at(i), anda(i) for the quantitiesat

i, at
i, andai respec-

tively.
We also define the mappingf t : H → A, where the hubj is

mapped to authorityi, if at time t the authorityi is the authority
with the maximum weight among all the authorities pointed to by
hub j. If there are many authorities inF (j) that have the largest
weight, we arbitrarily select one of the authorities (e.g., according
to some predefined ordering). We usef(j) = limt→∞ f t(j) to
denote the limit of the mapping function ast → ∞, assuming
again that the limit exists. For an authorityi, the un-normalized
weight of nodei at timet is at

i =
∑

j∈B(i) at−1
(
f t−1(j)

)
.

Recall thatG = (P, E) denotes the underlying hyperlink graph,
andA denotes the set of authorities in the graph. LetGa = (A, Ea)
denote the undirected graph, where there exists an undirected edge
between two authorities if they share a hub. We will refer toGa

as theauthority graph. Assume now that the graphGa consists
of k connected componentsC1, C2, . . . , Ck. Let a0 be the weight
vector of the initial configuration. The weight assigned by configu-
rationa0 to componentCi is the sum of weights of all authorities in
Ci. We define afair initial configuration as a configuration that as-
signs non-zero weight to all components in the graphGa. We will
assume that the initial configuration is always fair. If the compo-
nentCi is assigned zero weight by the vectora0, then the weights
of the nodes inCi will immediately converge to zero. Thus, we
can disregard the nodes in the componentCi and assume that the
algorithm operates on a smaller graphG̃, initialized to a fair con-
figurationã0.

Finally, for some nodei ∈ A, let di denote the in-degree of

authorityi in the graphG, and letd = max{di : i ∈ A}, denote
the maximum in-degree of any authority in the graphG. LetS ⊆ A
denote the set of nodes with in-degreed. We call these nodes, the
seedsof the algorithm. Seed nodes play an important role in the
MAX algorithm. We defineU to be the set of non-seed nodes.
Thus,A = S ∪ U .

5.1 Convergence of theMAX algorithm
In this section we prove that the algorithm converges for any

initial configuration. First, we prove that the weights of the seed
nodes always converge.

LEMMA 1. The weight of every seed nodes ∈ S is a non-
decreasing function of time.

PROOF. Consider any seed nodes ∈ S, and lett ≥ 0 be some
time in the execution of the algorithm. At iterationt + 1, for every
hub nodej, we have thathj = max{at

i : i ∈ F (j)}. Thus, for
every hubj ∈ B(s), hj ≥ at

s. Therefore, at timet + 1, the un-
normalized weight of nodes is at+1

s =
∑

j∈B(s) hj ≥ dat
s. Let

x be the authority node with maximum un-normalized weight at
time t + 1. Since the weight of any authority at timet is at most
1, we have that for every hubj ∈ B(x), hj ≤ 1. It follows that
at+1

x =
∑

j∈B(x) hj ≤ dx ≤ d. Therefore, after normalization

at+1
s ≥ d

at+1
x

at
s ≥ at

s

which concludes the proof.

COROLLARY 1. The weight of every seed nodes ∈ S con-
verges for any initial configuration.

PROOF. For every seed nodes ∈ S, the weight ofs is a non-
decreasing function that is upper-bounded, therefore it will con-
verge.

Note that “non-decreasing” means that the weights either in-
crease, or remain constant. We now prove that there always exists
a timet0 when the weight of some seed node takes the maximum
value 1, which remains constant for allt ≥ t0.

LEMMA 2. For every initial configuration there exists a point
in time t0, such that for some seed nodes ∈ S, at

s = 1, for all
t ≥ t0.

PROOF. Assume that for everys ∈ S, at
s < 1, for all t ≥ 0.

We will now prove that for everys ∈ S, at
s ≥ a0

sd
t/(d − 1)t by

induction ont. For t = 0 it is trivially true. Now, assume that at
time t, at

s ≥ a0
sd

t/(d−1)t. At time t+1, we have (as in the proof
of Lemma 1) that the un-normalized weight ofs is at+1

s ≥ dat
s.

Let x be the node with maximum un-normalized weight at time
t + 1. Nodex cannot be a seed node, since then we would have
thatat+1

x = 1, reaching a contradiction with our initial assumption.
Sincex is not a seed node,at

x ≤ dx ≤ d − 1. Normalizing the
weight ofs by at

x we have that

at+1
s ≥ d

(d− 1)
at

s ≥ dt+1

(d− 1)t+1
a0

s .

Therefore, the weight of every seed node is an increasing function
of time. As t → ∞, at

s → ∞. Since, the weights are bounded,
we reach a contradiction. Therefore, there must exist some point
in time, t0, such that, for some nodes ∈ S, at0

s = 1. From
Lemma 1 we know that the weight of the seed nodes is a non-
decreasing function, thus,at

s = 1, for all t ≥ t0. Therefore, for
this seed node, the weight increases until it becomes 1, and then it
remains constant for the remaining iterations.

AUX(a0, u)

Run theMAX algorithm ona0

Let t0 be the time that the seed nodes converge
x0

S = at0
S x0

U = u
Repeat until the weights converge:

For every hubi ∈ H
hi = maxj∈F (i) xt

i
For every authorityi ∈ U

xt+1
i =

∑
j∈B(i) hj

For every authoritys ∈ S

xt+1
s = at0+t+1

s

Normalize in theL∞ norm

Figure 4: The AUX dynamical system

For the following, given anaccuracy constantδ, we say that the
weight of some nodei has converged at timeti if |at+1

i − at
i| ≤ δ,

for all t ≥ ti.2 Corollary 1 and Lemma 2 guarantee that the seed
nodes will converge, and at least one of the seeds will converge
to weight 1. Lett0 denote the first time that all seed nodes have
converged, and lets be a seed node with weight 1. Fort ≥ t0, the
un-normalized weight ofs is d. Furthermore, it is easy to see that
for every other authorityi, at

i ≤ at
s. Therefore, for allt ≥ t0, the

normalization factor‖at‖∞ is equal tod, the maximum in-degree
of graphG, independent of the vectorat.

We are now ready to consider the convergence of theMAX algo-
rithm. The proof proceeds roughly as follows. We first prove that as
t →∞ the configurationat of theMAX algorithm is independent
of the weights of the non-seed nodes at timet0, and depends solely
on the stationary weights of the seeds. Then, we set the weights of
the non-seed nodes to zero at timet0 and we prove that in this case
the system converges. The fact that the configuration is indepen-
dent of the non-seed weights implies that the system converges for
any other configuration of the non-seed nodes, which in turn im-
plies convergence of theMAX algorithm. However, “setting” the
weights of the non-seed nodes to zero is not simple to do without
disrupting theMAX algorithm. To this end, we need to introduce
an auxiliary systemAUX.

The systemAUX is defined with two parameters. The first is
the initial configurationa0 of the MAX algorithm. The second
is a weight vectoru for the non-seed nodes inU . Given some
configuration vectorv, we usevS to denote the projection ofv on
the seed nodesS, andvU to denote the projection ofv on the non-
seed nodesU . For the following we useat to denote the weight
vector of theMAX algorithm at timet, andxt to denote the weight
vector of the systemAUX at timet. The structure ofAUX is given
in Figure 4.

The systemAUX runs theMAX algorithm with initial configu-
ration a0 until time t0, when the weights of the seed nodes con-
verge. It then initializes the weights of the seed nodes toat0

S , and
the weights of the non-seed nodes tou, and proceeds iteratively as
follows. For thet-th iteration, it updates the weights of the non-
seed nodes in the regular fashion, while it sets the weights of the
seed nodes to the weight they would receive in the(t0 + t)-th it-
eration of theMAX algorithm. Essentially, theAUX system fixes
the weights of the seed nodes to the stationary weights of theMAX

algorithm when run on the initial configurationa0, while it updates
the weights of the non-seed nodes in the regular fashion. Note that
if u = at0

U , then for every nodei, xt
i = at+t0

i , for all t ≥ 0. That

2Any other method for testing convergence is applicable. Our anal-
ysis does not depend on the definition of convergence.

is, AUX(a0,at0
U) and MAX (a0) are equivalent; the systemAUX

converges if and only if the systemMAX converges. TheAUX sys-
tem serves the purpose of “disconnecting” the seed nodes from the
non-seed nodes. This will become clear in the following.

We will now prove that in the limit the configuration ofAUX is
independent of the initial configurationu of the non-seed nodes.
To assist the proof, we introduce the following conventions. We
assume that at the initialization of theAUX system, each nodei
receives an amount ofmassµ0

i of color i. The weight of this mass
is x0

i , where a unit of mass corresponds to a unit of weight. That
is, there is a one to one correspondence between mass and weight,
except for the fact that mass has color. As mass is moved around
in the graph, by measuring the amount of mass of colori at timet,
we can quantify the contribution of the initial weight of authorityi
to the configurationxtat timet.

Consider theAUX system at timet− 1. Recall that the function
f t−1 maps every hubj to the authorityi which at timet − 1 has
the maximum weight among all authorities inF (j). We take the
following view of the t-th iteration. Every authorityi sends its
mass to all hubs that map toi at timet − 1 (assuming that mass
can be replicated). Consider a hubj, for whichf t−1(j) = i. The
hub j receives the mass of the authorityi, and sends it to all the
authorities inF (j), exceptthe seed nodes inS. Every seed node
s ∈ S receives mass of colors, with weight at+t0

s . Non-seed
authorityi receives mass from every hub inB(i). The weight of
i is the total weight of all the mass it receives. If nodei receives
µ units of mass of colork, we say that nodei containsµ units of
mass of colork. The amount of mass of colork contained in nodei
at timet is the contribution of the initial weightx0

k of nodek to the
weightxt

i of nodei, at timet. We useµt to denote the total mass
of non-seed color in the system at timet, that is, the total mass of
colork, for all k ∈ U .

We are now ready to prove the following lemma.

LEMMA 3. In theAUX system, ast →∞, µt → 0.

PROOF. First, we note that by definition of theAUX system, no
seed node ever receives mass of non-seed colork, for anyk ∈ U .
We will prove that for allt ≥ 0, every authorityi ∈ U contains at
most(d − 1)t/dt units of mass of non-seed color. Fort = 0 the
claim is trivially true. Assume that it is true at timet. At the itera-
tion t + 1, the hubj receives the mass of the authorityp, such that
f t(j) = p. By the inductive hypothesis, every authority contains
at most(d − 1)t/dt units of mass of non-seed color; therefore,
after this first step of the iteration every hubj contains at most
(d− 1)t/dt units of mass of non-seed color.

Consider now some authorityi ∈ U . Authority i receives the
mass ofdi ≤ d − 1 hubs. Since every hub contains at most(d −
1)t/dt units of mass of non-seed color it follows that at the end
of iterationt + 1 authorityi contains at most(d − 1)t+1/dt units
of mass of non-seed color. At the normalization step, the mass
at every authority is scaled by a factor1/d. Thus, at the end of
iterationt + 1, authorityi contains at most(d− 1)t+1/dt+1 units
of mass of non-seed color.

Therefore, the total mass of non-seed color in the graph at time
t is at mostµt = |A|(d − 1)t/dt, where|A| is the number of
authorities. Thus, ast →∞, µt → 0.

Corollary 2 follows immediately from Lemma 3.

COROLLARY 2. The configurationlimt→∞ xt of theAUX sys-
tem is independent of the initialization vectoru.

Let 0 denote the vector of all zeros. We now prove the following
lemma.

LEMMA 4. The systemAUX(a0,0) converges for any configu-
ration a0.

PROOF. We will prove that the weights of all authorities in the
system are non-decreasing functions of time. Since the weights are
upper bounded it follows that they will converge.

For every seed nodes ∈ S, xt
s = at+t0

s , that is, the weight of
the seed nodes in theAUX system at timet is the same with the
weight of the seed nodes in theMAX system at timet + t0. From
Lemma 1 we know that for theMAX algorithm, the weights of all
seed nodes are non-decreasing functions of time. Therefore,xt

s is
a non-decreasing function of time, for alls ∈ S.

We will now prove that for every authorityi ∈ U , xt
i ≥ xt−1

i for
all t ≥ 1, using induction on time. Fort = 1, x1

i ≥ 0, so the claim
is trivially true. Assume that it is true at timet. Consider now the
differencext+1

i − xt
i. We break up the hubs inB(i) into two sets.

The setV contains the hubsj ∈ B(i) such thatf t(j) = f t−1(j);
that is, the hubs whose mapping does not change at timet. The set
W contains the hubsj ∈ B(i) such thatf t(j) 6= f t−1(j), that is,
the hubs whose mapping changes at timet.

We have thatxt+1
i − xt

i = S1 + S2, where

S1 =
∑
j∈V

(
xt (

f t(j)
)− xt−1 (

f t−1(j)
))

S2 =
∑
j∈W

(
xt (

f t(j)
)− xt−1 (

f t−1(j)
))

.

For everyj ∈ V , there existsp ∈ A such thatf t(j) = f t−1(j) =
p. By the inductive hypothesis we have thatxt

p−xt−1
p ≥ 0. There-

fore, S1 ≥ 0. For everyj ∈ W , there existp, q ∈ A such that
f t(j) = p, andf t−1(j) = q. Since at timet the mapping of
the hubj switches fromq to p, it follows that xt

p > xt
q, and

xt−1
p ≤ xt−1

q (or xt
p ≥ xt

q, andxt−1
p < xt−1

q depending on the
way that we break the ties). By the induction hypothesis we have
that xt

q ≥ xt−1
q . Therefore,xt

p − xt−1
q ≥ xt

p − xt
q ≥ 0. Thus,

S2 ≥ 0, andxt+1
i − xt

i ≥ 0. Sincext+1
i − xt

i = (xt+1
i − xt

i)/d,
it follows thatxt+1

i ≥ xt
i.

The following theorem follows directly from Lemmas 3 and 4.

THEOREM 1. TheMAX algorithm converges for any initial con-
figuration. The stationary configuration ofMAX is determined by
the stationary weights of the seed nodes.

PROOF. For any initial configurationa0 the systemAUX(a0,0)
converges. From Corollary 2 the limiting behavior ofAUX is inde-
pendent of the initial configuration of the non-seed nodes. There-
fore, for any vectoru, theAUX(a0, u) system will converge, and it
will converge to the same vector asAUX(a0,0). Whenu = at0

U ,
the systemAUX(a0, at0

U) is equivalent to theMAX (a0) algorithm.
Therefore, theMAX algorithm converges for any initial configura-
tion. From Corollary 2 it follows that the stationary configuration
depends only on the weights of the seed nodes at timet0.

We are particularly interested in theuniforminitial configuration,
when all nodes are initialized to the same weight. Since the con-
figuration is a unit vector in theL∞ norm all nodes are initialized
to weight 1. In this case from Lemma 1, we know that the weight
of the seed nodes will immediately converge to 1. In the case of
the uniform initial configuration we also have a very clear charac-
terization of therate of convergenceof the algorithm. In this case,
the seed nodes converge immediately to weight 1. Given an accu-
racy constantδ, the MAX algorithm converges when the mass of
the non-seed color becomes less thanδ. Let d′ denote the second-
highest in-degree in the graph. As we saw in Lemma 3, aftert

iterations, the mass of non-seed color is equal toµt ≤ |A|(d′/d)t.
We have that|A|(d′/d)t ≤ δ, if t ≥ log(|A|/δ)

log(d/d′) . Thus, the rate
of convergence depends upon the size of the graph, and the ratio
between the highest, and second-highest in-degree in the graph.

5.2 The stationary configuration
In this section we give a characterization of the way theMAX

algorithm assigns the weights to the authorities. We first introduce
the auxiliary graphGA. Assume that the algorithm has converged,
and letai denote the stationary weight of nodei. DefineH(i) =
{j ∈ H : f(j) = i} to be the set of hubs that are mapped to
authority i. Recall that the authority graphGa is an undirected
graph, where we place an edge between two authorities if they share
a hub. We now derive thedirected weightedgraphGA = (A, EA)
on the authority nodesA, from the authority graphGa as follows.
Let i andj be two nodes inA, such that there exists an edge(i, j)
in the graphGa, andai 6= aj . Let B(i, j) = B(i) ∩ B(j) denote
the set of hubs that point to both authoritiesi andj. Without loss of
generality assume thatai > aj . If H(i)∩B(i, j) 6= ∅, that is, there
exists at least one hub inB(i, j) that is mapped to the authorityi,
then we place a directed edge fromi to j. The weightc(i, j) of the
edge(i, j) is equal to the size of the setH(i) ∩ B(i, j), that is, it
is equal to the number of hubs inB(i, j) that are mapped toi. The
intuition of the directed edge(i, j) is that there arec(i, j) hubs that
propagate the weight of nodei to nodej. The graphGA captures
the flow of authority weight between authorities.

Now, letN(i) denote the set of nodes inGA that point to nodei.
Also, letci =

∑
j∈N(i) c(j, i), denote the total weight of the edges

that point toi in the graphGA. This is the number of hubs in the
graphG that point toi, but are mapped to some node with weight
greater thani. The remainingdi − ci hubs (if any) are mapped to
nodei, or to some node with weight equal to the weight ofi. We
setbi = di − ci. The numberbi is also equal to the size of the set
H(i), the set of hubs that are mapped to nodei, when all ties are
broken in favor of nodei.

An example of the graphsG, Ga, andGA is shown in Figure 5.
Every edge{i, j} in the graphGa is tagged with the number of
hubsB(i) ∩ B(j) that point to bothi andj nodes. The numbers
next to the nodes of graphGA are the stationary weights, and the
weights on the edges are thec(i, j) values. Note that there is no
edge between nodesx andy in the graphGA. Although they share
a hub, this hub is mapped to nodes.

The following proposition gives a recursive formula for weight
ai, given the weights of the nodes inN(i).

PROPOSITION 1. The weight of nodei satisfies the equation

ai =
∑

j∈N(i)

c(j, i)aj/d + biai/d . (2)

PROOF. Recall that for every nodei, ai =
∑

j∈B(i) a (f(j)) /d.
From the hubs inB(i), bi of them are mapped to nodei, or to some
node with weight equal toai. These hubs recycle the weight of
nodei, and they contribute weightbiai/d to the weight of nodei.
The remaining hubs bring in the weight of some other authority.
For everyj ∈ N(i), there arec(j, i) hubs inB(i) that are mapped
to nodej. These hubs propagate the weightaj of nodej to nodei.
Thus, they collectively contribute weightc(j, i)aj/d to the weight
of nodei. Therefore, we obtain equation 2.

By definition, the graphGA is a DAG. Therefore, there must
exist some nodes, such that no node inGA points to them. We
define asource nodein the graphGA to be a nodex, such that

u

v

1/3 2/3

1/6
z

s

u

v

z

y

x

s

z
0

s 1

xyxy 0v

u

(c) GraphGA(b) GraphGa(a) GraphG

1
1

1
1

21
1

1

1

2

Figure 5: Graphs G, Ga, and GA.

N(x) = ∅ (i.e., there is no node inGA that points tox), andax >
0. Lemma 2 guarantees that at least one such node exists. In the
example of Figure 5(c), there is only one source node, the seed
nodes. Nodesv andu have no incoming edges, but they are not
source nodes, since they have zero weight. We now prove that the
set of source nodes is identical to the set of the seed nodes.

LEMMA 5. A node is a source node of the graphGA if and only
if it is a seed node in the graphG.

PROOF. Letx be a source node of the graphGA. SinceN(x) =
∅, it follows that alldx hubs that point tox are mapped tox, or to
some node with weight equal toax. Thereforebx = dx. We have
thatax = axdx/d. Sinceax > 0, it follows thatdx = d.

Let s be a seed node. Assume thats is not a source node in the
graphGA. Then, eitheras = 0, or N(s) 6= ∅. We have assumed
that the initial configuration is a fair configuration, that is, the initial
configuration assigns to every component of the graphGa non-zero
weight. If Cs is the component in the graphGa that contains node
s, then at least one node inCs was initialized to non-zero weight.
Therefore, there exists some point in timets such that theats

s > 0.
From Lemma 1 we know that the weight of every seed node is a
non-decreasing function of time, therefore,at

s ≥ ats
s for all t ≥ ts.

Therefore,as > 0.
Assume thatN(s) 6= ∅. We have that

as =
∑

i∈N(s)

c(i, s)ai/d + bsas/d .

For everyi ∈ N(s) we have thatai > as. Therefore, it follows
that

as =
∑

i∈N(s)

c(i, s)ai/d+bsas/d > csas/d+bsas/d = asd/d = as ,

thus reaching a contradiction.

We now turn our attention to the non-seed nodes of the graph.
For the following, we say that nodei is connectedto a seed node
in the graphGa if there exists a path in the graphGa from a seed
node to nodei. We say that nodei is reachablefrom a seed node
in the graphGA if there exists a directed path in the graphGA

from a seed node to the nodei. We will often say that a node is
reachable to indicate that it is reachable from a seed node in the
graphGA. In the example of Figure 5, nodesx, y, z are connected
to, and reachable from the seed nodes, while nodesu andv are
neither connected to, nor reachable from seed nodes.

LEMMA 6. A nodei is reachable from a seed node in the graph
GA if and only ifai > 0.

PROOF. We will prove that every reachable node has positive
weight using induction on the length of the shortest path from a
seed node to nodei in the graphGA. Let radiusA(s, i) be the
length of the shortest path from seed nodes to nodei in the graph
GA. LetradiusA(i) = mins∈S radiusA(s, i) be the shortest path
from any seed node to nodei in the graphGA. For every node
i with radiusA(i) = 0, that is, the seed nodes themselves, the
lemma is trivially true. Assume that it is true for every nodei with
radiusA(i) ≤ `. Every nodej with radiusA(j) = ` + 1 must be
connected to a nodei with radiusA(i) = `. From Proposition 1
we have thataj ≥ c(i, j)ai/d > 0.

Assume now that nodei ∈ U is not reachable from a seed node.
If N(i) = ∅, then it must be thatai = 0. Otherwise, nodei is a
source node. From Lemma 5 this is not possible, since nodei is
not a seed node. Assume now thatN(i) 6= ∅, that is, there exists
some node in the graphGA that points to nodei. Then starting
from nodei we can follow edges backwards in the graphGA to
other non-reachable nodes. Since the graphGA contains no cycles,
we will eventually find a nodej that is not reachable, and has no
incoming edges. Sincej is not a seed node, we have thataj = 0,
andaj > ai ≥ 0, thus reaching a contradiction. Therefore, there
cannot be any node pointing to nodei, andai = 0.

LEMMA 7. A node is reachable from a seed node in the graph
GA if and only if it is connected to a seed node in the graphGa.

PROOF. Obviously, by definition of the graphsGa andGA, if
a node is not connected to a seed node, then it is not reachable
from a seed node. We will now prove that every nodei, that is
connected to a seed node in the graphGa, it is also reachable from
a seed node in the graphGA, using induction on the length of the
shortest path from a seed node to nodei in the graphGa. Let
radiusa(s, i) be the length of the shortest path from seed nodes
to i in the graphGa. Let radiusa(i) = mins∈S radiusa(s, i) be
the shortest path from any seed node to nodei in the graphGa.
For every nodei such thatradiusa(i) = 0, that is, the seed nodes
themselves, the lemma is trivially true. Assume that it is true for
every nodei with radiusa(i) = `. Now consider some nodej with
radiusa(j) = ` + 1. Since nodej is connected to a seed node in
the graphGa, there exists a nodei with radiusa(i) = ` such that
the edge(i, j) belongs to graphGa. This implies that there exits
at least one hubh that points to bothi andj. Let f(h) = k be
the mapping of this hub. Nodek is not necessarily nodei or j, and
it is not necessarily the case thatradiusa(k) ≤ `. However, we
know that hubh points to bothi andk, and thatak ≥ ai. By the
inductive hypothesis, nodei is reachable, soai > 0. Thus,ak > 0.

Consider now the nodesj andk. If aj ≥ ak, thenaj > 0,
therefore, nodej is reachable. Otherwise, for the pair(k, j) we
have that: [a] there exists an edge(k, j) in the graphGa (since the
nodesj andk share the hubh); [b] B(k, j)∩H(k) 6= ∅ (since the

hubh is mapped tok); [c] ak > aj . Therefore, there must exist
a directed edge(k, j) in the graphGA. Sinceak > 0, Lemma 6
guarantees that nodek is reachable from a seed node inGA. Thus,
nodej is also reachable.

For some nodei, and some seed nodes, we definedist(s, i) to
be the distance of the longest path inGA from s to i. We define the
distance of nodei, dist(i) = maxs∈S dist(s, i), to be the maxi-
mum distance from a seed node toi, over all seed nodes. We note
that the distance is well defined, since the graphGA is a DAG. We
now summarize the results of this section in the following theorem.

THEOREM 2. Given a graphG, let C1, C2, . . . Ck be the con-
nected components of the graphGa. For every componentCi,
1 ≤ i ≤ k, if componentCi does not contain a seed node, then
ax = 0, for all x in Ci. If componentCi contains a seed node,
then every nodex in Ci is reachable from a seed node inCi, and
ax > 0. Given the weights of the seed nodes, we can recursively
compute the weight of a reachable (in the graphGA) nodex at
distancè > 0, using the equation

ax =
1

d− bx

∑

j∈N(x)

c(j, x)aj ,

where for allj ∈ N(i), dist(j) < `.

PROOF. Let Ci denote thei-th component of the graphGa. Ob-
viously, if a node is not connected to a seed node in graphGa, it
cannot be reachable from a seed node in the graphGA. Therefore,
if componentCi does not contain a seed node, then, from Lemma 6,
for everyx in Ci, ax = 0. Assume now that the componentCi

contains a seed node. Lemma 7 guarantees that every nodex in Ci

becomes reachable from a seed node in the graphGA. The weight
of nodex ∈ Ci can be computed recursively using Proposition 1.
We have that

ax =
∑

j∈N(x)

c(j, x)aj/d + bxax/d .

Therefore,

ax =
1

d− bx

∑

j∈N(x)

c(j, x)aj .

If nodex is at distancè, then all nodesj ∈ N(x) havedist(j) <
`. Therefore, starting from the seed nodes, we can iteratively com-
pute the weights of all nodes at increasing distances.

Theorem 2 is in agreement with our findings in the Section 5.1,
where we observed that the stationary configuration depends solely
on the stationary weights of the seed nodes. Note that Theorem 2
does not provide a constructive way of assigning weights to the
nodes, since the graphGA depends on the stationary configuration.
However, it provides a useful insight in the mechanics of the algo-
rithm, and in the way the weight is propagated from the seed nodes
to the remaining authorities. All weight emanates from the seed
nodes, and it floods the rest of the nodes, propagated in the graph
GA. As the distance from the seed nodes increases, the weight
decreases exponentially by a scaling factord. However, well con-
nected nodes, and nodes with high in-degree in the graphG, rein-
force their own weight. For nodei, there arebi hubs that recycle
the weight of nodei. Thus, high in-degree can increase the weight
of a node, even if it is far from a seed node.

The uniform initial configuration case: In the case of the uniform
initial configuration we know that the seed nodes will converge im-
mediately to weight 1. Therefore, theMAX algorithm will rank the
seed nodes first. The rest of the nodes receive less weight than the
seed nodes.

The arbitrary initial configuration case: If we knew the station-
ary weights of the seed nodes then we would be able to compute
the weights of the rest of the nodes recursively, using the formula
in Theorem 2. However, the weights of the seeds depend on the ini-
tial configuration. Lemma 2 guarantees that at least one seed will
receive weight 1. In the case that the graph contains a single seed
node (a case we encounter often in our experiments) theMAX al-
gorithm converges to the same configuration as in the uniform case.
One would hope that all seeds converge to weight 1, for all initial
configurations, in which case the stationary configuration would be
unique. However, this is not the case. One can construct simple ex-
amples of graphs that consist of multiple disconnected components,
where, depending on the weight assigned to each component, the
algorithm converges to different configurations. A natural question
is whether we can prove a similar result if we consider anauthority
connectedgraph, that is, a graphG, such that the authority graph
Ga is connected. We now present a counter example, where we
show that for an authority connected graphG, there exists an ini-
tial configuration such that one of the seed nodes converges to a
weight less than 1. Furthermore, there exist non-seed nodes that
have weight greater than the weight of that seed node.

PROPOSITION 2. The MAX algorithm does not always con-
verge to the same weight vector for all initial configurations, even
when restricted on authority connected graphs.

PROOF. Consider the graphG in Figure 6(a). The large red and
white nodes are the authorities, while the small black nodes are
the hubs. The shaded (red) nodes are the seed nodes of the graph
G. There are four seeds in the graph, each with in-degree 3. Fig-
ure 6(b) shows the corresponding graphGa. The initial configura-
tion assigns weight 1 to all seed nodes, except for the central seed,
which receives zero weight. The non-seed nodes are also initialized
to zero weight. The initial weights for each node are shown next to
vertices of the graph in Figure 6(a).

When the algorithm converges, we obtain graphGA shown in
Figure 6(c). The numbers next to the nodes in the graph are the
stationary weights of the nodes. The weights on the edges are equal
to thec(i, j) values. Obviously, the algorithm does not converge to
the same stationary configuration as when initialized to the uniform
configuration, since the central seed node receives weight less than
1. Also, in this example there exist non-seed nodes that receive
weight greater than the weight of the central seed node.

6. EXPERIMENTAL EVALUATION
In this section we study the performance of theMAX algorithm

for Web search queries, and for finding related pages.

6.1 Web Search queries
We experiment on thirty four different queries. The data sets

were constructed in the fashion described by Kleinberg [15]. We
start with a Root Set of 200 pages that are returned by a search en-
gine. In our experiments we use the Google search engine. Then,
for each page in the Root Set, we include all the pages that are
pointed to by this page, and the first 50 pages (in the order re-
turned by the Google search engine) that point to this page. Given
this Base Set of web pages, we construct the underlying hyperlink
graph. We removenavigational links, that is, links between the
same domain.

We compare theMAX algorithm against theHITS, PAGERANK ,
AT(k), andNORM(p) algorithms, as well as theINDEGREEheuris-
tic where all nodes are ranked according to their in-degree in the hy-
perlink graphG. For theNORM(p) family, we setp = 2 and we de-
note this algorithm asNORM. For theAT(k) family of algorithms,

1 0 0 0 0 0 1

0

1

0

1

1

1 1 1
2

11
2

1

1

2

1/41/2

1/4

1/4

1/2

1

1

1/4 1/2

1

1

1

1

1

1 1

(a) GraphG (b) GraphGB (c) GraphGA

Figure 6: An example with a non-uniform initial configuration for authority connected graphs

given a graphG, we compute the distribution of the out-degrees in
the graph and we experiment withk being the median, and the av-
erage out-degree, where median and average are taken over all the
hub nodes. We denote these algorithms asAT-MED andAT-AVG

respectively. For thePAGERANK algorithm, we set the jump prob-
ability to ε = 0.2, a value that has been previously considered by
Brin and Page [6]. A detailed comparison ofMAX with other LAR
algorithms can be found at [20]. Results are presented at the Web
pages http://www.cs.toronto.edu/∼tsap/experiments/thesis, and
http://www.cs.toronto.edu/∼tsap/experiments/journal .

For HITS and its variants (NORM, AT(k), MAX) we initialize all
weights to 1, that is, to the uniform configuration. This is a natural
initialization that assumes no a-priori knowledge, thus, assigning
equal initial weight to all nodes. We note that in our experiments
for almost all queries the authority graphGa contains a giant com-
ponent, which contains a single seed node. Thus, with respect to the
HITS andMAX algorithms anyfair initial configuration produces
the same output as the uniform initialization.

The measure that we will use for the evaluation of the quality
rankings isprecision over the top-10. We define thehigh relevance
ratio as the fraction of documents in the top 10 positions of the
ranking that are highly relevant to the query. We also define the
relevance ratioas the fraction of documents within the top-10 po-
sitions that are relevant, or highly relevant to the query. Similar
quality measures are used in the TREC conferences for evaluating
Web search algorithms.3

In order to determine the relevance of the results, we performed
a user study. The study was performed on-line. In the starting page
of the study, the set of queries was displayed and the users had the
option to select any query they felt they were capable of evaluat-
ing. Then, they were presented with a set of results that belong to
union of the top-10 results of the different algorithms. The pages
were presented in a random order, and the users did not know which
algorithm introduced each result. They were asked to rate the re-
sults as “Highly relevant”, “Relevant”, “Non-Relevant”, or “Don’t
Know”, if they could not assess the relevance of the result.

The evaluations of each user define a relevance and a high rele-
vance ratio for each algorithm. We take the average of these ratios
over all users and over all queries. The average ratios are shown
in Table 1. TheMAX algorithm emerges as the clear best among
the algorithms we consider. The second best options are theINDE-
GREEandAT-MED algorithms, followed by theAT-AVG algorithm.
At the low end, thePAGERANK , NORM andHITS algorithms ex-

3For TREC relevance and high relevance is usually predefined by
a set of experts.

algorithm avg HR ratio avg R ratio
HITS 22% 45%
PAGERANK 24% 46%
INDEGREE 35% 58%
MAX 38% 64%
AT-MED 34% 60%
AT-AVG 28% 51%
NORM 24% 44%

Table 1: Web Search: Average Performance Ratios

hibit the worst performance.
The performance of theMAX algorithm is strongly affected by

the quality of the seed node, as well as the quality of the nodes
with the highest in-degree, and the nodes that are most heavily co-
cited with the seed node. We actually observed that in most cases,
the top-10 nodes returned byMAX are a subset of the ten nodes
with the highest in-degree, and the ten nodes that are most co-cited
with the seed node. The ratios ofMAX indicate that the seed node
is usually relevant to the query. This observation agrees with the
performance ratios of theINDEGREEalgorithm. TheINDEGREE

algorithm achieves the second best high relevance ratio, and the
third best relevance ratio and it outperforms more sophisticated al-
gorithms likeHITS andPAGERANK . This is rather surprising given
the simplicity of theINDEGREEalgorithm. We should note though
that exactly due to its simplicity, theINDEGREE algorithm is the
one that is most affected by the choice of the search engine that it
is used for generating the Base Set of Web pages. Therefore, the
performance of theINDEGREEalgorithm reflects, in part, the qual-
ity of the Google search engine, which uses, to some extent, link
analysis techniques.

For theAT-MED, AT-AVG andNORM algorithms, close exami-
nation of the results reveals that they usually have the same ratios
as either theHITS or theMAX algorithm. In most cases, the top-10
results of these algorithms are a subset of the union of the top-10
results ofHITS and MAX . Thus the average performance ratios
of AT-MED, AT-AVG andNORM take values between the ratios of
MAX andHITS.

The poor performance of theHITS and thePAGERANK algo-
rithms can be attributed to type ofcommunitiesthat the algorithms
tend to promote in the top positions of the rankings. For theHITS

algorithm it is well known [15, 16, 5, 10] that it tends to promote
the mostTightly Knit Communityof hubs and authorities in the
graph. ThePAGERANK algorithm tends to favor isolated nodes
with high in-degree that form two link cycles with one or more

nodes [4]. In both cases, we observed that the communities that
HITS andPAGERANK tend to favor are usually not relevant to the
query, which accounts for the topic drift of the two algorithms.

The influence of the various communities on the ranking of the
MAX algorithm is primarily exerted through the seed node. The
community that contains the seed node, and the co-citation of the
seed node with the remaining nodes in the community determine
the focus of theMAX algorithm. For example, Table 4 (Appendix A)
shows the top-10 results for the query “movies”. The seed node is
the Internet Movie Database4 (IMDB), and the algorithm converges
to a set of movie databases and movie reviews sites. In this case,
the MAX algorithm manages to distill the relevant pages from the
community to which it converges. On the other hand, in the case of
the “affirmative action” query (Table 5, Appendix A) the seed node
is a copyright page from the University of Pennsylvania, and as a
result theMAX algorithm outputs a community of university home
pages.

It is also interesting to observe the behavior ofMAX on the query
“abortion”. Table 6 (Appendix A) shows the top-10 results of the
algorithm. The seed node in the graph is the “NARAL Pro-Choice”
home page. We observed that there is only light co-citation between
the pro-choice and pro-life communities, so one would expect that
the algorithm would converge to pro-choice pages. However, the
MAX algorithm mixes pages from both communities. The third
page in the ranking ofMAX is the “National Right To Life” (NRTL)
home page, and there are two more in the fifth and seventh positions
of the ranking. After examination of the data, we observed that the
NRTL page has the second highest in-degree in the graph. Fur-
thermore, its in-degree (189) is very close to that of the seed node
(192), and it belongs to a tightly interconnected community. In this
case, the NRTL page acts as asecondaryseed node for the algo-
rithm, pulling pages from the pro-life community to the top-10. As
a result, the algorithm mixes pages from both communities.

Similar mixing behavior for theMAX algorithm is observed for
the cases where the graph contains two seeds (“randomized algo-
rithms” query – Table 7, Appendix A), or that the seed node be-
longs to two different communities (“basketball” query). More re-
sults can be found at the Web pages that contain the results for all
queries.

6.2 Related pages queries
The property of theMAX algorithm to diffuse the weight from

the seed node to the remainder of the graph has the effect that the
pages that are ranked highly are usually “related” to the seed node.
Therefore, if we could set the seed node to some selected page, then
we could use theMAX algorithm to find pagesrelatedto that page.
Finding pages related to a query Web page is a standard feature of
most modern search engines. This is an active research area with a
growing literature [15, 8, 13]. The current techniques use content
analysis, link analysis, or a combination of both. We propose the
use of theMAX algorithm as a tool for discovering Web pages,
related to a query Web page.

The idea of using link analysis algorithms for finding related
pages was fist suggested by Kleinberg [15], and it was later ex-
tended by Dean and Henzinger [8]. In this section, we use the ter-
minology of Dean and Henzinger [8]. First, we note that we need a
different algorithm for constructing the hyperlink graph that will be
given as input to the LAR algorithm. Given a query pageq, Dean
and Henzinger propose to construct a “vicinity graph” aroundq as
follows. LetB denote a step that follows a link backwards, and let
F denote a step that follows a link forward. Starting from the query

4http://www.imdb.com

algorithm avg HR ratio avg R ratio
HITS 41% 68%
PAGERANK 25% 44%
INDEGREE 40% 62%
MAX 49% 76%
COCITATION 49% 76%
GOOGLE 52% 72%

Table 2: Related Pages: Average Performance Ratios

algorithm avg HR ratio avg R ratio avg grade
HITS 23% 56% 2.2
PAGERANK 34% 68% 2.2
INDEGREE 33% 66% 3.0
MAX 36% 66% 2.9
COCITATION 31% 59% 2.7
GOOGLE 18% 41% 1.4

Table 3: Homepages: Average Performance Ratios

pageq, collect a set of pages that can be reached by followingB,
F , BF , andFB paths. The vicinity graph is the underlying hyper-
link graph of this set of pages. The authors then propose to run the
HITS algorithm, or other heuristics for discovering related pages.

We propose theMAX algorithm as a novel alternative for discov-
ering related pages. In order for the algorithm to work, the query
pageq must be the seed of the algorithm. The rest of the nodes
will then be ranked according to their relation toq, where relation
is defined naturally by theMAX algorithm. However, it may not
always be the case that the pageq is the seed of the vicinity graph.
In these cases, we engineer the graph, so as to make sure that the
pageq has the highest in-degree. We go through the nodes of the
graph and find the node with the highest in-degreed. We then add
enough extra “dummy” nodes in the graph, that point only to node
q, so that the in-degree ofq becomes greater thand. Thus the page
q becomes the seed node for the Base Set. TheMAX algorithm will
assign maximum weight 1 to pageq. Following the discussion in
Section 5.2, the weight will be diffused from the seed node to the
remaining nodes of the graph, through the hubs. The amount of
weight that reaches nodei will be used as a measure of its related-
ness to the seed node.

Other thanMAX , we also experiment with theHITS, INDEGREE,
and PAGERANK algorithms. We also consider theCOCITATION

heuristic (also considered by Dean and Henzinger [8]) which is de-
fined as follows. Given the query pageq, for each pagep in the
vicinity graph compute the number of hubs that point to bothq and
p. Then, rank the pages according to the number of hubs that they
have in common with the query page. Furthermore, we also per-
formed a comparison with the actual Google search engine.

We experimented with 20 different queries, and we collected
user feedback in a similar fashion as for the Web Search queries.
Table 2 reports the average high relevance and relevance ratios.
The GOOGLE search engine achieves the best high relevance ra-
tio, while theMAX andCOCITATION algorithms tie in the second
position. The results indicate that co-citation plays a significant
role when handling queries for related pages. TheMAX andCOC-
ITATION algorithms outperform theGOOGLE search engine when
considering the relevance ratio. This was rather surprising, given
the fact that Google is a complete search engine that uses a combi-
nation of link analysis, text analysis, and (possibly) user statistics.
It was also interesting to observe that theHITS algorithm performs
significantly better in this context, and that the simpleINDEGREE

heuristic remains competitive.
We also performed a different experiment, where we used as

query pages the home pages of ten researchers and professors. We
then asked them to evaluate the results, and also to (blindly) rate
the six algorithms with an (integer) grade between 0 (unaccept-
able) and 4 (excellent). Table 3 presents the average relevance and
high relevance ratios, as well as, the average grade for each algo-
rithm. A number of surprising facts emerge from this table. First,
theGOOGLEsearch engine emerges as the worst algorithm with re-
spect to both ratios and grades. ThePAGERANK algorithm, which
had the worst performance in Table 2, exhibits the best relevance
ratio. The best high relevance ratio is achieved by theMAX algo-
rithm. However, the best average grade is given to theINDEGREE

algorithm, followed closely by theMAX andCOCITATION algo-
rithms. We note that for these queries we usually had to add to the
graph a large number of dummy nodes (on average 42) to make the
query page the seed node of the graph. The special nature of these
queries may explain the discrepancy between the previous results.

7. CONCLUSIONS
In this paper, we considered two families of non-linear dynami-

cal systems and we studied in detail theMAX algorithm, a special
case of both families. We proved that the algorithm converges for
any initial configuration, and we provided a combinatorial descrip-
tion of the stationary weights. We also performed extensive exper-
iments that indicate that the algorithm performs well in practice.

Our work suggests as a possible future research direction the
study of other non-linear systems. For the familiesAT(k) and
NORM(p), for the two extreme values ofp andk, we have a very
good understanding of how the algorithms behave. It is an intrigu-
ing question to understand what happens for the intermediate val-
ues ofp andk. Do the algorithms converge, and are there any other
values ofp andk for which they meet?

8. ACKNOWLEDGEMENTS
I would like to thank Allan Borodin for his continuous guidance

throughout this work; Jon Kleinberg for his advice, support, and
enthusiastic encouragement; Jeff Rosenthal, Ken Sevcik, Renee
Miller, Ken Jackson, and Sam Roweis for useful comments. Many
thanks to the numerous people who contributed to the on-line eval-
uation survey.

9. REFERENCES
[1] D. Achlioptas, A. Fiat, A. Karlin, and F. McSherry. Web

search through hub synthesis. InProceedings of the 42nd
Foundation of Computer Science (FOCS 2001), Las Vegas,
Nevada, 2001.

[2] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral
analysis of data. InProceedings of the 33rd Symposium on
Theory of Computing (STOC 2001), Hersonissos, Crete,
Greece, 2001.

[3] K. Bharat and M. R. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. InResearch
and Development in Information Retrieval, pages 104–111,
1998.

[4] M. Bianchini, M. Gori, and F. Scarselli. Pagerank: A
circuital analysis. InProceedings of the Eleventh
International World Wide Web (WWW) Conference, 2002.

[5] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas.
Finding authorities and hubs from link structures on the
World Wide Web. InProceedings of the 10th International
World Wide Web Conference, Hong Kong, 2001.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. InProceedings of the 7th

International World Wide Web Conference, Brisbane,
Australia, 1998.

[7] D. Cohn and H. Chang. Learning to probabilistically identify
authoritative documents. InProceedings of the 17th
International Conference on Machine Learning, pages
167–174, Stanford University, 2000.

[8] J. Dean and M. R. Henzinger. Finding related pages in the
world wide web. InProceedings of the Eighth International
World-Wide Web Conference (WWW9), 1999.

[9] R. L. Devaney.An Introduction to Chaotic Dynamical
Systems. W. Benjamin, New York, 1986.

[10] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
Clustering in large graphs and matrices. InACM-SIAM
Symposium on Discrete Algorithms (SODA), 1999.

[11] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering
categorical data: An approach based on dynamical systems.
In Proceedings of the 24th Intl. Conference on Very Large
Databases (VLDB), 1998.

[12] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. InProceedings of 9th ACM
Conference on Hypertext and Hypermedia, 1998.

[13] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk.
Similarity search on the Web: Evaluation and scalability
considerations. InProceedings of the 28th International
Conference on Very Large Data Bases (VLDB), 2002.

[14] Thomas Hofmann. Probabilistic latent semantic analysis. In
Proc. of Uncertainty in Artificial Intelligence, UAI’99,
Stockholm, 1999.

[15] J. Kleinberg. Authoritative sources in a hyperlinked
environment. InProceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 668–677, 1998.

[16] R. Lempel and S. Moran. The stochastic approach for
link-structure analysis (SALSA) and the TKC effect. In
Proceedings of the 9th International World Wide Web
Conference, May 2000.

[17] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable algorithms
for link analysis. InProceedings of the 24th International
Conference on Research and Development in Information
Retrieval (SIGIR 2001), New York, 2001.

[18] D. Rafiei and A. Mendelzon. What is this page known for?
Computing web page reputations. InProceedings of the 9th
International World Wide Web Conference, Amsterdam,
Netherlands, 2000.

[19] J. T. Sandefur.Discrete dynamical systems. Oxford:
Clarendon Press, 1990.

[20] P. Tsaparas.Link Analysis Ranking. PhD thesis, University of
Toronto, 2004.

APPENDIX

A. SAMPLE QUERY RESULTS
In this appendix we present the top-10 results of theMAX algo-

rithm for some sample queries. In the tables below, each result is
marked as “Highly Relevant”, “Relevant”, or “Not-Relevant”. Rel-
evant results are the pages for which the “Relevant” and “Highly
Relevant” votes were more than the “Non-Relevant” ones. “Highly
Relevant” are the Relevant pages that have more “Highly Relevant”
than “Relevant” votes. Highly Relevant documents are marked
with boldface, Relevant documents with italics, while Non-Relevant
documents are in regular font.

MAX

1. (1.000)The Internet Movie Database (IMDb).
URL:www.imdb.com

2. (0.296) Signs on DVD
www.signs.movies.com

3. (0.253) Google
www.google.com

4. (0.219)Hollywood.com - Your entertainment
URL:www.hollywood.com

5. (0.211)Empty title field
URL:www.film.com

6. (0.174) Get Wild - GetWild - getwild.com
www.getwild.com

7. (0.161)All Movie Guide
URL:www.allmovie.com

8. (0.159)Movie Review Query Engine
URL:www.mrqe.com

9. (0.159)ROTTEN TOMATOES: Movie Reviews
URL:www.rottentomatoes.com

10. (0.142)Greatest Films
URL:www.filmsite.org

Table 4: Top-10 results of theMAX algorithm for the query
“movies”

MAX

1. (1.000) Copyright Information
www.psu.edu/copyright.html

2. (0.447)PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice

3. (0.314) Welcome to Penn State’s Home on the
www.psu.edu

4. (0.010) University of Illinois
www.uiuc.edu

5. (0.009) Purdue University-West Lafayette, I
www.purdue.edu

6. (0.008) UC Berkeley home page
www.berkeley.edu

7. (0.008) University of Michigan
www.umich.edu

8. (0.008) The University of Arizona
www.arizona.edu

9. (0.008) The University of Iowa Homepage
www.uiowa.edu

10. (0.008) Penn: University of Pennsylvania
www.upenn.edu

Table 5: Top-10 results of theMAX algorithm for the query
“affirmative action”

MAX

1. (1.000)prochoiceamerica.org : NARAL Pro-Ch
URL:www.naral.org

2. (0.946)Planned Parenthood Federation of Am
URL:www.plannedparenthood.org

3. (0.918)National Right to Life
URL:www.nrlc.org

4. (0.819)NAF - The Voice of Abortion Provide
URL:www.prochoice.org

5. (0.676)Priests for Life Index
URL:www.priestsforlife.org

6. (0.624)Pregnancy Centers Online
URL:www.pregnancycenters.org

7. (0.602)ProLifeInfo.org
URL:www.prolifeinfo.org

8. (0.557)Abortion Clinics OnLine
URL:www.gynpages.com

9. (0.551)After Abortion: Information on the
URL:www.afterabortion.org

10. (0.533)FEMINIST MAJORITY FOUNDATION ONLINE
URL:www.feminist.org

Table 6: Top-10 results of theMAX algorithm for the query
“abortion”

MAX

1. (1.000)Algorithms Courses on the WWW
URL:www.cs.pitt.edu/ kirk/algorith

2. (1.000)Computational Geometry, Algorithms
URL:www.cs.uu.nl/geobook

3. (0.270) Directory of Computational Geometry
www.geom.umn.edu/software/cgli

4. (0.258) LEDA moved to Algorithmic Solutions
www.mpi-sb.mpg.de/LEDA/leda.ht

5. (0.257)ANALYSIS of ALGORITHMS HOME PAGE
URL:pauillac.inria.fr/algo/AofA

6. (0.237) IEEE Computer Society
computer.org

7. (0.205)Center for Discrete Mathematics and
URL:dimacs.rutgers.edu

8. (0.183)MFCS’98 home page
URL:www.fi.muni.cz/mfcs98

9. (0.182) Computer Science Papers NEC Researc
citeseer.nj.nec.com/cs

10. (0.178) Welcome to Springer, springer-verla
www.springer.de

Table 7: Top-10 results of theMAX algorithm for the query
“randomized algorithms”

