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ABSTRACT

Queries asked on web search engines often target structatad
such as commercial products, movie showtimes, or airlihedc
ules. However, surfacing relevant results from such daashighly
challenging problem, due to the unstructured languageeofvitb
queries, and the imposing scalability and speed requiresmain
web search. In this paper, we discover latent structurecasem
tics in web queries and produ&ructured Annotationfor them.
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movie showtime listings (e.g., “indiana jones 4 near bd3taair-
lines schedules (e.g., “flights from boston to new york”g anly

a few examples of queries that are better served using ifafttom
from structured data, rather than textual content. Usemastes
like the ones above are forcing major search engines likegl@po
Yahoo, Bing and Amazon to look more seriously into web scale
search over structured data. However, enabling such furality
poses the following important challenges:

We consider an annotation as a mapping of a query to a table of Web speed:Web users have become accustomed to lightning fast

structured data and attributes of this table. Given a cidiecf
structured tables, we present a fast and scalable taggiolgamism
for obtaining all possible annotations of a query over thabées.
However, we observe that for a given query only few are sémsib
for the user needs. We thus propose a principled probabiisor-
ing mechanism, using a generative model, for assessingkgie |
hood of a structured annotation, and we define a dynamictbies
for filtering out misinterpreted query annotations. Outht@ques
are completely unsupervised, obviating the need for contiy-
ual labeling effort. We evaluated our techniques using wesald
queries and data and present promising experimental sesult

Categories and Subject Descriptors:H.3.3 Information Stor-
age and Retrieva]: Information Search and Retrieval
General Terms: Algorithms, Performance, Experimentation
Keywords: keyword search, structured data, web

1. INTRODUCTION

Search engines are evolving from textual information egti
systems to highly sophisticated answering ecosystenisingilin-
formation from multiple diverse sources. One such valuablece
of information is structured data, abstracted as relatitaides or
XML files, and readily available in publicly accessible degpos-
itories or proprietary databases. Driving the web searchuéen
are the user needs. With increasing frequency users isfresu
that target information that does not reside in web pages¢du
be found in structured data sources. Queries about pro@eicts
“50 inch LG lcd tv”, “orange fendi handbag”, “white tiger biid),
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responses. Studies have shown that even sub-second delays i
turning search results cause dissatisfaction to web ussslting
in query abandonment and loss of revenue for search engines.

Web scale:Users issue over 100 million web queries per day. Ad-
ditionally, there is an abundance of structured data [Zealy avail-
able within search engines’ ecosystems from sources lé&ltrg,
data feeds, business deals or proprietary information. cbnebi-
nation of the two makes an efficient end-to-end solution nierat.

Free-text queries: Web users targeting structured data express
queries in unstructured free-form text without knowledfisahema

or available databases. To produce meaningful resultsy dey-
words should be mapped to structure.

For example, consider the query “50 inch LG lcd tv” and assume
that there exists a table with information on TVs. One wayan-h
dle such a query would be to treat each product as a bag of words
and apply standard information retrieval techniques. Heneas-
sume that LG doesot make 50 inch lcd tvs — there is a 46 inch
and a 55 inch Icd tv model. Simple keyword search would netrie
nothing. On the other hand, consider a structured querytdhgets
the table “TVs” and specifies the attributBgagonal = “50 inch”,
Brand=“LG", TV Type= “lcd tv". Now, the retrieval and ranking
system can handle this query with a range predicat®iagonal
and a fast selection on the other attributes. This is not &erme
example; most web queries targeting structured data haviéasi
characteristics, incorporating latent structured infation. Their
evaluation would greatly benefit from structured mappirga &x-
pose these latent semantics.

Intent disambiguation: Web queries targeting structured data use
the same language as all web queries. This fact violatesrthe u
derlying closed world assumption of systems that handlevkey
queries over structured data, rendering our problem sagmifiy
harder. Web users seek information in the open world andissu
queries oblivious to the existence of structured data smyrlet
alone their schema and their arrangement. A mechanism ithat d
rectly maps keywords to structure can lead to misinterficgta of

the user’s intent for a large class of queries. There are tbgsiple
types of misinterpretations: between web versus strudtdeta,
and between individual structured tables.

For example, consider the query “white tiger” and assumeethe



is a table available containing Shoes and one containingk8800
For “white tiger”, a potential mapping can Bable= “Shoes” and
attributesColor = “white” and Shoe Line= “tiger”, after the pop-
ular Asics Tiger line. A different potential mapping can Teble

= “Books” and Title = “white tiger”, after the popular book. Al-
though both mappings are possible, it seems that the bookris m
applicable in this scenario. On the flip side, itis also gpitssible
the user was asking information that is not contained in ollec-
tion of available structured data, for example about “whiger”,
the animal. Hence, although multiple structured mappiragshe
feasible, it is important to determine which one is more pible
among them and which ones are at all meaningful. Such informa
tion can greatly benefit overall result quality.

A possible way of addressing all the above challenges woeild b
to send every query to every database and use known tecknique
from the domain of keyword search over databases or grapghs, e
[12, 18, 15, 10, 19, 14, 11], to retrieve relevant informatiélow-
ever, it is not clear that such approaches are designed wiehan
the web speed and scale requirements of this problem spaate. W
queries are in the order of hundreds of millions per day witty 0
a small fraction really applicable to each particular talReuting
every query to every database can be grossly inefficienteNfor
portantly, the final results surfaced to the web user wolillcheted
to be processed via a meta-rank-aggregation phase thairesnb
the retrieved information from the multiple databases amigt ce-
turns the single or few most relevant. The design of suchrathon
phase is not obvious and almost certainly would require samaé
ysis of the query and its mappings to the structured dateorolo-
sion, we cannot simply apply existing techniques to thisfmm
and address the aforementioned challenges.

Having said that, previous work in this area is not withoutiine
To address the scenario of web queries targeting structlae
a carefully thought-out end-to-end system has to be coreside
Many of the components for such system can be reused from what
already exists. For example, once the problem is decomposed
isolated databases, work on structured ranking can bedel§e
take advantage of such observations in proposing a solution

1.1 Our Approach

In this paper, we exploit latent structured semantics in guedries
to create mappings to structured data tables and attribitezall
such mappingsstructured Annotations For example an annota-
tion for the query “50 inch LG lcd tv” specifies thable= “TVs”
and the attribute®iagonal = “50 inch”, Brand = “LG", TV Type
=“lcd tv". In producing annotations, we assume that all thhacs
tured data are given to us in the form of tables. We exploit tiva
construct aClosed Structured Modé¢hat summarizes all the table
and attributes values and utilize it to deterministicalipguce all
possible annotations efficiently.

However, as we have already demonstrated with query “white
tiger”, generating all possible annotations is not suffiti&Ve need
to estimate the plausibility of each annotation and deteenthe
one that most likely captures the intent of the user. Funtioee,
we need to account for the fact that the users do not adheheto t
closed world assumption of the structured data: they usedels
that may not be in the closed structured model, and theiriemer
are likely to target information in the open world.

To handle such problems we designed a principled probabilis
tic model that scores each possible structured annotdiioaddi-
tion, it also computes a score for the possibility of the guer-
geting information outside the structured data collectibime latter
score acts as a dynamic threshold mechanism used to expose al
notations that correspond to misinterpretations of the irgent.
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Figure 1: Query Annotator Overview
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Model probabilities are learned in an unsupervised fashiothe
combination of structured data and query logs. Such dateaaity
accessible within a search engine ecosystem.

The result is @Query Annotatoircomponent, shown in Figure 1.
It is worth clarifying that we are not solving the end to endlpr
lem for serving structured data to web queries. That wouttute
other components such as indexing, data retrieval andrrgniiur
Query Annotatorcomponent sits on the frond end of such end-to-
end system. Its output can be utilized to route queries toogpjate
tables and feed annotation scores to a structured datarranke

Our contributions with respect to the challenges of webdear
over structured data are as follows.

1. Web speed: We design an efficient tokenizer and tagger
mechanism producing annotations in milliseconds.

Web scale: We map the problem to a decomposable closed
world summary of the structured data that can be done in
parallel for each structured table.

. Free-text queries: We define the novel notion of a Struc-
tured Annotation capturing structure from free text. Wevgho
how to implement a process producing all annotations given
a closed structured data world.

Intent disambiguation: We describe a scoring mechanism
that sorts annotations based on plausibility. Furthermeee
extend the scoring with a dynamic threshold, derived from
the probability a query was not described by our closed world

The rest of the paper is organized in the following way. We de-
scribe the closed structured world aBttuctured Annotations
Section 2. We discuss the efficient tokenizer and taggeressoc
that deterministically produces all annotations in Sectto We
define a principled probabilistic generative model usedsémring
the annotations in Section 4 and we discuss unsupervise&lmod
parameter learning in Section 5. We performed a thorougkrexp
imental evaluation with very promising results, preserite§ec-
tion 6. We conclude the paper with a discussion of relateckvor
Section 7 and some closing comments in Section 8.

2.

4.

2. STRUCTURED ANNOTATIONS

We start our discussion by defining some basic conceptskén
is defined as a sequence of characters including spacegrieeqr
more words. For example, the bigram “digital camera” may be a
single token. We define th@pen Language Mod€OLM) as the
infinite set of all possible tokens. All keyword web queries de
expressed using tokens fradL. M.

We assume that structured data are organized as a coll@gtion
tables7 = {I1,T»,...,7,}. AtableT is a set of relate@n-

The organization of data into tables is purely conceptudlathogonal to the under-
lying storage layer: the data can be physically stored in XiNds, relational tables,

Tetrieved from remote web services, etc. Our assumptiomaisa mapping between

the storage layer and the “schema” of table collecfiohas been defined.



tities sharing a set ofittributes We denote the attributes of ta-
bleT asT.A = {T.A1,T.As,...,T.A.}. Attributes can be
either categoricalor numerical The domainof a categorical at-
tribute T.A. € T.A., i.e., the set of possible values tHAtA.
can take, is denoted witlh.A..V. We assume that each numeri-
cal attributeT. A,, € T.A,, is associated with a singlenit U of
measurement. Given a set of unitswe defineNum(i/) to be
the set of all tokens that consist of a numerical value foldviby

a unit in{. Hence, thedomainof a numerical attributd". A,, is
Num(7T.A,.U) and thedomainof all numerical attributeq"..4,,

in a table isNum(7". A, .U).

An example of two tables is shown in Figure 2. The first ta-
ble contains TVs and the second Monitors. They both havethre
attributes: Type, Brand and Diagonal. Type and Brand aegoat
ical, whereas Diagonal is numerical. The domain of valuesfio
categorical attributes for both tables#s.A..V = {TV, Samsung,
Sony, LG, Monitor, Dell, HR. The domain for the numerical at-
tributes for both tables Mum(7..A,.U) = Num({inch}). Note
thatNum({inch}) does not include only the values that appear in
the tables of the example, but rather all possible numbédisied
by the unit “inch”. Additionally, note that it is possible &xtend
the domains with synonyms, e.g., by using “in” for “inchesida
“Hewlett Packard” for “HP”. Discovery of synonyms is beyoti
scope of this paper, but existing techniques [21] can bedgesl.

We now give the following definitions.

DEFINITION1 (TYPEDTOKEN). Atyped tokery for tableT
is any value from thedomainof {T".A..V U Num(T.A,.U)}.

DEFINITION 2 (CLOSEDLANGUAGE MODEL). TheClosed
Language ModelCLM of tableT is the set of all duplicate-free
typed tokens for tabl&'.

For the rest of the paper, for simplicity, we often refetyped
tokensas justtokens The closed language modéLM(T") con-
tains the duplicate-free set of all tokens associated vailthetT".
Since for numerical attributes we only store the “units"casated
with Num(/) the representation ¢§LM(7") very compact.

The closed language modeLM(7") for all our structured data
T is defined as the union of the closed language models of all ta-
bles. Furthermore, by definition, if we break a collectiortaifles
T into k sub-collections{71, ..., Tx }, thenCLM(T) can be de-
composed intd CLM(71), ..., CLM(7%)}. In practice, CLM(T)
is used to identify tokens in a query that appear in the tatflesir
collection. So compactness and decomposability are veppiim
tant features that address the web speed and web scalengeslle

TVs Monitors
Type | Brand Diagonal Type Brand Diagonal
TV Samsung| 46 inch Monitor | Samsung| 24 inch
TV Sony 60 inch Monitor | Dell 12 inch
TV LG 26 inch Monitor | HP 32inch

Figure 2: A two-table example

Note that in the example of Figure 2, the annotated token (LG,
TVs.Brand) forCSM(TVs) is different from the annotated token
(LG, Monitors.Brand) folCSM(Monitors), despite the fact that in
both cases the name of the attribute is the same, and the"lok&n
appears in the closed language model of both TVs and Monitors
table. Furthermore, the annotated tokens (50 inch, TVgdial)
and (15 inch, TVs.Diagonal) are part of falSM(TVs), despite
the fact that table TVs does not contain entries with thoseega

The closed structured model for the collectidnis defined as
the union of the structured models for the table§inIn practice,
CSM(T) is used to map all recognized tokefis, ..., t,} from
a query g to tables and attribut¢3y.A4,, ..., T,.A,}. Thisis a
fast lookup process as annotated tokens can be kept in adidsh t
To keep a small memory footprinE;SM(7") can be implemented
using token pointers t6LM (7 ), so the actual values are not repli-
cated. As before witLM, CSM(7) is decomposable to smaller
collections of tables. Fast lookup, small memory footpaintl de-
composability help with web speed and web scale requiresrafnt
our approach.

We are now ready to proceed with the definition &tauctured
Annotation But first, we introduce an auxiliary notion that simpli-
fies the definition. For a query, we define segmentationf ¢, as
the set of token&' = {t1, ..., ti } for which there is a permutation
m, such thaly = t.(1), ..., tz (&), i.€., the query is the sequence of
the tokens inG. Intuitively, a segmentation of a query is a sequence
of non-overlapping tokens that cover the entire query.

DEFINITIONS5 (STRUCTUREDANNOTATION). A structured an-
notationS, of queryq over a table collectiofy, is a triple (T, AT,
FT), whereT denotes a table iff, AT C CSM(T) is a set of
annotated tokens, an#7 C OLM is a set of words such that
{AT t, FT} is a segmentation af.

A structured annotatioh S, = (T, AT, FT) of queryq is a
mapping of the user-issued keyword query to a structureal tdat
ble T, a subset of its attributed7. A, and a set ofree tokensF 7T
of words from the open language model. Intuitively, it capends
to an interpretation of the query as a request for some enfitbom
tableT. The set of annotated token&] expresses the characteris-

The closed language model defines the set of tokens that-are astics of 7"'s entities requested, as paits, 7" A;) of a table attribute

sociated with a collection of tables, but it does not assignse-
manticsto these tokens. To this end, we define the notion of an
annotated tokeandclosed structured model

DEFINITION 3 (ANNOTATED TOKEN). Anannotated tokefor
atableT is a pair AT = (¢,T.A) of atokent € CLM(T') and an
attribute A in tableT’, such that € T.A.V.

For an annotated tokeAT = (¢,T.A), we useAT.t to refer to
underlying tokert. Similarly, we useAT.T and AT'. A to refer to
the underlying tablg” and attributeA. Intuitively, theannotated

token AT assigns structured semantics to a token. In the example

of Figure 2, the annotated token (LG, TVs.Brand) denotesthea
token “LG” is a possible value for the attribute TVs.Brand.

DEFINITION4 (CLOSEDSTRUCTUREDMODEL). TheClosed
Structured Modebf tableT’, CSM(T") C CLM(T') x T'A, is the
set of all annotated tokens for talile

T.A, and a specific attribute value. The set of free token&7T is
the portion of the query that cannot be associated with aitatit
of tableT. Annotated and free tokens together cover all the words
in the query, defining complete segmentatiory of
One could argue that it is possible for a query to target more
than one table and the definition of a structured annotataesd
not cover this case. For example, query “chinese restauiant
san francisco” could refer to a table of Restaurants and bhe-o
cations. We could extend our model and annotation defirgtton
support multiple tables, but for simplicity we choose totwsince
the single-table problem is already a complex one. Instwads-
sume that such tables have been joined into one materialieed
Now, consider the keyword quegy="50 inch LG Icd”. Assume
that we have a collectiofi” of three tables over TVs, Monitors,

2For convenience we will often use the terarotation annotated quergndstruc-
tured queryto refer to a structured annotation. The terms are synongraaod used
interchangeably throughout the paper.



(LG, TVs.Brand)
(LG,MonitorsBrand)

(50 inch, TVs.Diagonal)
(50 inch, Monitors.Diagonal)

Monitors Refrigerators
\ N

TVs
Diagonal Bra‘nd Screen

Diagonal Brand Screen Width Brand Free

1 |
Fomt]lid [ed oAl
(@ (b) (©)

(tv, TVsType)

Figure 3: Examples of annotations and annotation generatio.

and Refrigerators, and there are three possible possibtgations
(T, AT, FT) of ¢ (shown in Figure 3(a-c)):

(@) S1 = (TVs, {(50inch, TVs.Diagonal (LG, TVs.Brand,
(Icd, TVs.Screejt, {})

(b) S2 = (Monitors, {(50 inch, Monitors.DiagongJ
(LG, Monitors.Brand}, (Icd, Monitors.Screen {})

(c) Ss = (Refrigerators, {(50 inch, Refrigerators.Widjh
(LG, Refrigerators.Brand, {lcd})

The example above highlights the challenges discussedadn Se
tion 1. The first challenge is how to efficiently derive all pbs
ble annotations. As the size and heterogeneity of the wyidgrl
structured data collection increases, so does the numipasstble
structured annotations per query. For instance, there eantliti-
ple product categories manufactured by “LG” or have antatte
measured in “inches”. This would result in an even higher bem
of structured annotations for the example query="50 inch LG
Icd”. Hence, efficient generation of all structured anriotat of a
query is a highly challenging problem.

PROBLEM1 (ANNOTATION GENERATION). Given a keyword
queryg, generate the set of adtructured annotation$, = Si, ..., Sk
of queryg.

Second, it should be clear from our previous example that al-
though many structured annotations are possible, only dfan
if any, areplausibleinterpretations of the keyword query. For in-
stance, annotatiofi; (Figure 3(a)) is a perfectly sensible interpre-
tation ofg. This is not true for annotationS; and Ss. Sz maps
theentirekeyword query to table Monitors, but it is highly unlikely
that a user would request Monitors with such charactesistie.,
(50 inch, Monitors.DiagongJ as users are aware that no such large
monitors exist (yet?). Annotatiofs maps the query to table Re-
frigerators. A request for Refrigerators made by LG and atkVid
of 50 inches is sensible, but it is extremely unlikely thatswkord
query expressing this request would include free tokeri';'\etiich
is irrelevant to Refrigerators. Note that the existenceed tokens
does not necessarily make an annotation implausible. Fanple,
for the query “50 inch IcdscreenLG”, the free token “screen” in-
creases the plausibility of the annotation that maps theyqoehe
table TVs. Such subtleties demand a robust scoring mechanis
capable of eliminating implausible annotations and digtishing
between the (potentially many) plausible ones.

PROBLEM?2 (ANNOTATION SCORING). Given a set of can-
didate annotationss, = S4,..., Sk for a queryq, define a score
f(S;) for each annotationS;, and determine th@lausibleones
satisfyingf (S;) > 04, wheref, is a query-specific threshold.

We address the Annotation Generation problem in Sectiond, a
the Annotation Scoring problem in Sections 4 and 5.

3. PRODUCING ANNOTATIONS

The process by which we map a web querp Structured An-
notationsinvolves two functions: a tokenizéT'OK and an tagger
fTAG. The tokenizer maps quekyto a set of annotated tokens
AT, C CSM(T) from the set of all possible annotated tokens in

Algorithm 1 Tokenizer

Input: A queryq represented as an array of word$, . . ., length(q)]
Output: An array. AT, such that for each positiohof ¢, AT [7] is the
list of annotated tokens beginning:af list of free tokensF 7.

for i =1...length(q) do
Compute the set of annotated tokeA§ || starting at positioni of
the query.
Add word g([i] to the list of free tokensF7.

return Array of annotated tokend 7™ and free tokens 7.

the closed structured model of the dataset. The tagger nwssu
the queryg and the set of annotated tokeAg, and produces a set
of structured annotations,.

Tokenizer: The tokenizer procedure is shown in Algorithm 1. The
tokenizer consumes one query and produces all possibleaado
tokens. For example, consider the query “50 inch LG lcd twd an
suppose we use the tokenizer over the dataset in Figure 8.tfbe
output of the tokenizer will bETOK (¢) ={(50 inch, TVs.Diagonal),
(50 inch, Monitors.Diagonal), (LG, Monitors. Brand), (LGYs.Brand),
(tv, TVs.Type)} (Figure 3(d)). The token “lcd” will be leftn+
mapped, since it does not belong to the language mobal (7).

In order to impose minimal computational overhead when-pars
ing queries, the tokenizer utilizes a highly efficient andnpact
string dictionary, implemented as a Ternary Search Tre@)TH.
The main-memory TST is a specialized key-value dictionaith w
well understood performance benefits. For a collectiontdét],
the Ternary Search Tree is loaded with the duplicate fregegabf
categorical attributes and list of units of numerical tites. So
semantically TST storeg..A..V U T. A, U.

For numbers, a regular expressions matching algorithmed us
to scan the keyword query and make a note of all potential neme
expressions. Subsequently, terms adjacent to a numbeycaked-
up in the ternary search tree in order to determine whettey th
correspond to a relevannit of measurement, e.g., “inch”, “GB”,
etc. If that is the case, the number along with the unit-teren a
grouped together to form a typed token.

For every parsed typed tokenthe TST stores pointers to all the
attributes, over all tables and attributes in the collectiat contain
this token as a value. We thus obtain the set of all annotatezhs
AT that involve tokent. The tokenizer maps the quegyto the
closed structured mod€lSM(7T) of the collection. Furthermore,
it also outputs a free token for every word in the query. Ties
we have thafTOK(q) = {AT 4, FT ¢}, Where AT, is the set of
all possible annotated tokens grover all tables, andF 7, is the
set of words iy, as free tokens.

Tagger: We will now describe how the tagger works. For that we
need to first define the notion ofaximal annotation

DEFINITION 6. Given a queryy, and the set of all possible an-
notationsS, of queryg, annotationS, = (T, AT, FT) € Sq is
maximal if there exists no annotatioff, = (1", AT", FT') € S,
such thatl' = T" and AT ¢ AT and FT D FT'.

ThetaggerfTAG is a function that takes as input the set of an-
notated and free tokensA7 4, F T4} of queryq and outputs the
set of all maximal annotatiofS'OK ({AT ¢, FT4}) = S;. The
procedure of the tagger is shown in Algorithms 2 and 3. The-alg
rithm first partitions the annotated tokens per table, dgmsimg
the problem to smaller subproblems. Then, for each tablerit ¢
structs the candidate annotations by scanning the queny fieé
to right, each time appending an annotated or free tokeretertd
on an existing annotation, and then recursing on the renmaum-
covered query. This process produces all valid annotatiafis



Algorithm 2 Tagger

Input: An array. A7, such that for each positianof ¢, A7 7] is the list
of annotated tokens beginningf list of free tokens? 7.
Output: A set of structured annotatiods

Partition the lists of annotated tokens per table.

for eachtableT do
L = ComputeAnnotations(AT r,FT,0)
Eliminate non-maximal annotations froth
S=8SUL

return S

Algorithm 3 ComputeAnnotation

Input:  An array AT, such that4 7 [7] is the list of annotated tokens; A
list of free tokensFT; A position k in the array AT .

Output: A set of structured annotatior$ using annotated and free to-
kens fromAT 5], FT[j] for j > k.

if & > length(AT) then
return
Initialize S = 0
for each annotated or free tokeAF'T € (AT [k] U FTk]) do
k' = k + length(AFT.t)
L = ComputeAnnotation( AT, FT,k")
for each annotationS'in £ do

S ={AFT,S}
S=8US
return S

perform a final step to remove the non-maximal annotatiotss T
can be done efficiently in a single pass: each annotationsnieed
be checked against the “current” set of maximal annotatiassn
skyline computations. It is not hard to show that this preossl
produce all possible maximal annotations.

LEMMA 1. The tagger produces all possible maximal annota-
tionsS; of a queryg over a closed structured modeSM( 7).

As a walk through example consider the query “50 inch LG lcd
tv”, over the data in Figure 2. The input to the tagger is the se
of all annotated tokensl7, computed by the tokenizer (together
with the words of the query as free tokens). This set is degiot
Figure 3(d). A subset of possible annotationsdas:

S1 = (TVs,{(50 inch,TVs.Diagonal,{LG, Icd, tv})

Sa = (TVs,{(50 inch,TVs.Diagonal)l{G, TVs.Brand}, {lcd, tv})

S = (TVs,{(50 inch,TVs.Diagonal)I[(G, TVs.Brand),tv, TVs.Type}, {lcd})
S = (Monitors{(50 inch,Monitors.Diagona}) {LG, Icd, tv})

S5 = (Monitors{(50 inch,Monitors.Diagonal)[{(G, Monitors.Brand},

{Icd, tv})

Out of these annotation$;; and.Ss are maximal, and they are
returned by the tagger function. Note that the token “lccilisays
in the free token set, while “tv” is a free token only for Mamis.

4. SCORING ANNOTATIONS

For each keyword queny, the tagger produces the list of all pos-
sible structured annotatiod, = {S1, ..., Sk} of queryq. This set
can be large, since query tokens can match the attributeidsrof
multiple tables. However, it is usually quite unlikely thihe query
was actually intended for all these tables. For examplesiden
the query “LG 30 inch screen”. Intuitively, the query mosly
targets TVs or Monitors, however a structured annotatidh bvei
generated for all tables that contain any product of LG (DV&yp
ers, cell phones, cameras, etc.), as well as all tables withuges
measured in inches.

It is thus clear that there is a need for computingcare for
the annotations generated by the tagger that captures fiaiy"|

an annotation is. This is the responsibility of the scorercfion,
which given the set of all annotatior;, it outputs for each an-
notationS; € S, the probability P(S;) of a user requesting the
information captured by the annotation. For example, inigely
that query “LG 30 inch screen”, targets a DVD player, sincestod
the times people do not query for the dimensions of a DVD playe
and DVD players do not have a screen. It is also highly unfikel
that the query refers to a camera or a cell phone, since gthou
these devices have a screen, its size is significantly smalle

We model this intuition using generative probabilistic model
Our model assumes that users “generate” an annot&tio@and
the resulting keyword query) as a two step process. Firdh wi
probability P(T'..A;), they decide on the tablE and the subset of
its attributesT"..A; that they want to query, e.g., the product type
and the attributes of the product. Since the user may aldodec
free tokens in the query, we extend the set of attributesaif &ble
T with an additional attributd”. f that emits free tokens, and which
may be included in the set of attribut@s4;. For clarity, we use
T.A; to denote a subset of attributes taken over this extended set
of attributes, whilel"..A; to denote the subset of attributes from the
tableT. Note that similar to every other attribute of talfle the
free-token attributd". f can be repeated multiple times, depending
on the number of free tokens added to the query.

In the second step, given their previous choice of attrigfitel,,
users select specific annotated and free tokens with pridpabi
P({AT:, FT:}T.A;). Combining the two steps, we have:

P(S)) = P({AT:, FT:}|T.A;)P(T.A;) €))

For the “LG 30 inch screen” example, I8t = ( TVs, {(LG,
TVs.Brand), (30 inch, TVs.Diagonal)},{screenpe an annotation
over the table TVs. Here the set of selected attributé§¥s.Brand,
TVs.Diagonal, TVsf}. We thus have:

P(S;) = P({LG, 30inch}{screen}{(Brand, Diagonal, f))
-P(TVs.Brand, T'Vs.Diagonal, TVs. f)

In order to facilitate the evaluation of Equation 1 we makeeo
simplifying but reasonable assumptions. First, that the gean-
notated A7 ; and freeF T, tokens are independent, conditional on
the set of attribute®..4; selected by the user, that is:

PHAT:, FTHT.A;) = P(AT|T.A) P(FT:|T.As)

Second, we assume that the free tokéfig; do not depend on
the exact attribute$'..4; selected by the user, but only on the ta-
ble T that the user decided to query. That B(FT;|T.A;) =
P(FT;|T). For example, the fact that the user decided to add the
free token “screen” to the query depends only on the factgheat
decided to query the table TVs, and not on the specific ateréoof
the TVs table that she decided to query.

Lastly, we also assume that the annotated tokdfs selected
by a user do not depend on her decision to add a free token to the
query, but instead only on the attribut€s4; of the table that she
queried. ThatisP(AT;|T.A;) = P(AT|T.A;). In our running
example, this means that the fact that the user queried édsrdmd
“LG", and the diagonal value “30 inches”, does not dependhen t
decision to add a free token to the query.

Putting everything together, we can rewrite Equation 1 &s fo
lows:

P(S;) = P(ATH|T.A)P(FT:|T)P(T.A;) 2

Given the annotation se$, = {Si,..., Sk} of queryg, the
scorer function uses Equation 2 to compute the probabifigach
annotation. In Section 5 we describe how given an annotafjon
we obtain estimates for the probabilities involved in Edprat.
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Figure 4: The scorer component.

The probabilities allow us to discriminate between less iauode
likely annotations. However, this implicitly assumes tiat op-
erate under a closed world hypothesis, where all of our gseri
are targeting some table in the structured data collecfiorThis
assumption is incompatible with our problem setting whesersi
issue queries through a web search engine text-box and @se th
likely to compose web queries using an open language model ta
geting information outsid§™. For example, the query “green ap-
ple” is a fully annotated query, where token “green” cormyys to
a Color, and “apple” to a Brand. However, it seems more likieat
this query refers to the fruit, than any of the products of kppVe
thus need to account for the case that the query we are aimgotat
is a regular web query not targeting the structured datacdin.

Our generative model can easily incorporate this possikiiti
a consistent manner. We define the open-language “tableV
which is meant to capture open-world queries. ThEM table
has only the free-token attribu@LM. f and generates all possible
free-text queries. We populate the table using a genericqueby
log. LetF T, denote the free-token representation of a qgeiyve
generate an additional annotatiSarn = (OLM, {F7,}), and
we evaluate it together with all the other annotationsjn Thus
the set of annotations becom&s = {Si, ..., Sk, Sk+1}, where
Sk+1 = Sorwm, and we have:

P(SoLm) = P(FT4OLM)P(OLM) (©)]

The Sorm annotation serves as a “control” against which all
candidate structure annotations need to measured. Thalplibp

P(FT4OLM) andP(OLM) in Equation 3 for the open language
annotationSorn. In order to guarantee highly efficient annotation
scoring, these estimates need to be pre-computed offwiiniée to
guarantee scoring precision, the estimates need also beasec

5.1 Estimating token-generation probabilities

Generating Annotated Tokens.

We need to compute the conditional probabiliRy A7;|T..4;),
that is, the probability that the queryon tableT and attributes
T.A; contains a specific combination of values for the attributes
A reasonable estimate of the conditional probability icdfl by
the fraction of table entries that actually contain the galthat ap-
pear in the annotated query. LA ;.V denote the set of attribute
values associated with annotated tokegt¥s;. Also, letT' (AT ;.V)
denote the set of entries i where the attributes ifi..A; take the
combination of valuesA7 ;.. We have:

T(AT;.V

For example, consider the query “50 inch LG Icd”, and the &mno
tionS = (TVs, {(LG,TVs.Brand),(50 inch, TVs.Diagonal)},{lcd}:
We haveTl'. A = {Brand, Diagonal} andA7.V = {LG, 50inch}.
The setT'(AT.V) is the set of all televisions in the TVs table of
brand LG with diagonal size 50 inch, afit{ A7|7T".A) is the frac-
tion of the entries in the TVs table that take these values.

Essentially, our implicit assumption behind this estimatthat
attribute values appearing in annotated queries and aftigbval-
ues in tables follow the same distributidfor example, if a signif-
icant number of entries in the TVs table contains brand LG, ith
due to the fact that LG is popular among customers. On the othe
hand, only a tiny fraction of products are of the relativebsoure
and, hence, infrequently queried brand “August”.

Similarly, we can expect few queries for “100 inch” TVs and
more for “50 inch” TVs. That is, large TVs represent a niched a
this is also reflected in the composition of table TVs. Aduitlly,
we can expect practically no queries for “200 inch” TVs, aspe
are aware that no such large screens exist (yet?). On thetathd,
even if there are no TVs of size 33 inches in the database,\6sit T

P(Sowm) acts as an adaptive threshold which can be used to filter ¢ gjze 32 inches and 34 inches do exist, this is an indicatian

outimplausibleannotations, whose probability is not high enough
compared toP(SowLm). More specifically, for somé@ > 0, we

say that a structured annotatiéf is plausibleif P(I;((i’id)

In other words, an annotation, which corresponds to anprega-
tion of the query as a request which can be satisfied using-stru
tured data, is considered plausible if itrreore probablethan the
open-language annotation, which captures the absencevafrae

for structured data. On the other hand, implausible anicoimare

33 may be a reasonable size to appear in a query.

Of course, there is no need to actually issue the query ower ou
data tables and retrieve its results in order to determineitional
probability P(AT|T..A). Appropriate, lightweight statistics can
be maintained and used, and the vast literaturéistogram con-
struction[13] andselectivity estimatiofi20] can be leveraged for
this purpose. In this work, we assume by default indeperelbae
tween the different attributes. ¥.A = {T"A,,...,T.A.} are the

less probablethan the open-language annotation, which suggests attributes that appear in the annotation of the query, .4fd =

that they correspond to misinterpretations of the keywarerg

The value off is used to control the strictness of the plausibility
condition. The scorer outputs only the set of plausiblecstmed
annotations (Figure 4(a)). Notice that multiple plausiaieota-
tions are both possible and desirable. Certain queriesaueatly
ambiguous, in which case it is sensible to output more than on
plausible annotations. For example, the query “LG 30 inchest’
can be targeting either TVs or Monitors.

5. LEARNING THE GENERATIVE MODEL

In order to fully specify the generative model described ét-S
tion 4 and summarized in Figure 4(b), we need to describe bow t
obtain estimates for the probabilitig® AT ;|T..A;), P(FT:|T),
andP(T.A;) in Equation 2 for every annotatics in S, as well as

{(T"A10,T. A1), ..., (T.Aa.v, T.A,)} are the annotated tokens,
then we have:

P(AT|T.A) = H P(T.A;0|T.A;)

j=1

For the estimation oP (7. A,.v|T.A;), for categorical attributes,
we maintain the fraction of table entries matching each doma
value. For numerical attributes, a histogram is built iadtevhich
is used as an estimate of the probability density functicthefal-
ues for this attribute. In that case, the probability of a etioal at-
tribute valuev is computed as the fraction of entities with values in
range[(1 —e)v, (1+€)v] (we sete = 0.05 in our implementation).
The resulting data structures storing these statisticexremely
compact and amenable to efficient querying.



In the computation oP (A7T|T..A), we can leverage information
we have about synonyms or common misspellings of attribaite v
ues. Computation of the fraction of entries in taffléhat contain
a specific valuey for attribute A, is done by counting how many
timesv appears in the tabl& for attribute A. Suppose that our
guery contains value’, which we know to be a synonym of value
v, with some confidencg. The closed world language model fBr
will be extended to include’ with the added information that this
maps to valuey with confidencep. Then, estimating the probabil-
ity of value v’ can be done by counting the number of times value
v appears, and weight this count by the valug.of he full discus-
sion on finding, modeling and implementing synonym handigng
beyond the scope of our paper.

Finally, we note that although in general we assume indepen-
dence between attributes, multi-attribute statisticsused when-
ever their absence could severely distort the selectistymates
derived. Such an example are attributes Brand and Mode-14n
Model-Line value is completely dependent on the correspaond
Brand value. Assuming independence between these twoldaési
would greatly underestimate the probability of relevantiggairs.

Generating Free Tokens.
We distinguish between two types of free tokens: the freenek

Note that free tokens are important for disambiguating ribenit of
the user. For example, for the query “LG 30 inch computerestre
there are two possible annotations, one for the Monitorie tamd
one for the TV table, each one selecting the attributes Beant
Diagonal. The terms “computer” and “screen” are free tokdns
this case the selected attributes should not give a cleéerpree
of one table over the other, but the free term “computer” ghou
assign more probability to the Monitors table, over the Tafsle,
since it is related to Monitors, and not to TVs.

Given that we are dealing with web queries, it is likely theerts
may also use as free tokens words that are generic to welegueri
even for queries that target a very specific table in the sirad
data. Therefore, when computing the probability that a wael
pears as a free token in an annotation we should also takagato
count the likelihood of a word to appear in a generic web query
For this purpose, we use the unigram open language ntobal
described in Section 4 as tiackgroundprobability of a free to-
ken w in FT,, and we interpolate the conditional probabilities
P(w|UMr) and P(w|OLM). Putting everything together:

P(w|T) = AP(w|[UMz) + pP(w|OLM) , A+ p=1 (4)

The ratio between\/u controls the confidence we place to the

in 7T, that are generated as part of the open language model annoynigram model, versus the possibility that the free tokense
tation SorLm that generates free-text web queries, and free tokens fom the background distribution. Given the importance poign-

in 7T, that are generated as part of an annotafipfor a tableT’
in the collectionT .

For the first type of free tokens, we compute the conditional
probability P(FT 4/OLM) using a simple unigram model con-
structed from a collection of generic web queries. The agsiom
is that that each free token (word in this case) is drawn iadep
dently. Therefore, we have that:

P(FT,OLM)= ] P(w|OLM)
weFTq

Obviously, the unigram model is not very sophisticated and i
bound to offer less than perfect estimates. However, ré¢hatl
the OLM table is introduced to act as a “control” against which
all candidate structured annotations need to “competeddition
to each other, to determine which ones are plausible anowsat
of the query under consideration. An annotati®nis plausible if
P(S;) > 0P(SoLm); the remaining annotations are rejected. A
rejected annotatior$; is less likely to have generated the query

tially deleterious effect of free tokens on the probabiéibd plausi-
bility of an annotation, we would like to exert additionaintml on
how free tokens affect the overall probability of an anriotat In
order to do so, we introduce a tuning parameéter ¢ < 1, which
can be used to additionally “penalize” the presence of fo&erts
in an annotation. To this end, we compute:

P(w|T) = ¢p(AP(w|UMz) + 2P (w|OLM))

Intuitively, we can viewg as the effect of a process that outputs
free tokens with probability zero (or asymptotically cldeezero),
which is activated with probability — ¢. We set the ratio\ /1. and
penalty parametes in our experimental evaluation in Section 6.

5.2 Estimating Template Probabilities

We now focus on estimating the probability of a query targeti
particular tables and attributes, i.e., estim&{d"..4;) for an anno-

¢, than a process that generates queries by drawing words inde tation ;. A parallel challenge is the estimation 5{OLM), i.e.,

pendently at random, according to their relative frequenityis
reasonable to argue that such an interpretation of the quésy
implausible and should be rejected.

For the second type of free tokens, we compute the conditiona
probability P(F7;|T), for some annotatio; over tablel", using
again a unigram moddlM that is specific to the tabl&, and
contains all unigrams that can be associated with tablEor con-
struction ofUM 7, we utilize the names and valuesaif attributes
of tableT'. Such words are highly relevant to talifeand therefore
have a higher chance of being included as free tokens in am ann
tated query targeted at tablé Further extensions of the unigram
model are possible, by including other information relatethble
T, e.g., crawling related information from the web, or addieg
lated queries via toolbar or query log analysis. This disimrsis
beyond the scope of this paper.

Using the unigram modé/M we now have:

P(FTiT) = [] P@wlm)= ][] Pw/UMr)

weFT; weFT;

the probability of a query being generated by the open laggua
model, since this is considered as an additional type ofétakith

a single attribute that generates free tokens. We will reféable
and attribute combinations astribute templates

The most reasonable source of information for estimatiegeh
probabilities is web query log data, i.e., user-issued wedrigs
that have been already witnessed. Kkbe a such collection of
witnessed web queries. Based on our assumptions, thesesjuer
are the output of Q| “runs” of the generative process depicted in
Figure 4(b). The unknown parameters of a probabilistic geene
tive process are typically computed usimgximum likelihood es-
timation, that is, estimating attribute template probability value
P(T.A;) andP(OLM) that maximize the likelihood of generative
process giving birth to query collectiad.

Consider a keyword query € Q and its annotations§,. The
query can either be the formulation of a request for stractatata
captured by an annotatiaf;, € S,, or free-text query described
by the Sorm annotation. Since these possibilities are disjoint, the
probability of the generative processes outputting qudsy



P(q)= ) P(Si)+ P(Sorm) =
S;€8,
S PUAT, FTHTA)P(T.A;) + P(FT,|OLM) P(OLM)
S,€8,

A more general way of expressing(q) is by assuming that all
tables in the database and all possible combinations dbutts
from these tables could give birth to querand, hence, contribute
to probability P(¢q). The combinations that do not appear in an-
notation setS, will have zero contribution. Formally, léf; be a
table, and lefP; denote the set of all all possible combinations of
attributes ofT;, including the free token emitting attribufg. f.
Then, for a table collectiofi” of size|7 |, we can write:

|71

P(q) = Z Z 0lgijTij + BgTo

i=1 .Aj €eP;

whereagi; = P({ATij, FTi;}|Ti.A;), By = P(FT4OLM),
m; = P(T;.A;) andw, = P(OLM). Note that for annotations
Si; & Sq, we haveag;; = 0. For a given query, the parameters
aqij and g, can be computed as described in Section 5.1. The pa-
rametersr;; andr, correspond to the unknown attribute template
probabilities we need to estimate.

Therefore, the log-likelihood of the entire query log canelxe
pressed as follows:

|71

L£(Q) = Z log P(q) = Z log Z Z QqijTij + BaTo

qeQ qeQ i=1 A;€P;
Maximization of £(Q) results in the following problem:

max L£(Q), subject toz Tij + 7o =1

Tij Mo

®)

i

Condition}_, ; mi;+, = 1 follows from the fact that based on our
generative model all queries can be explained either by aatan
tion over the structured data tables, or as free-text gsigeaerated
by the open-wold language model.

This is a large optimization problem with millions of varleb.
Fortunately, objective functiod(m;;, 7,|Q) is concave. This fol-
lows from the fact that the logarithms of linear functions apn-
cave, and the composition of concave functions remainsas@nc
Therefore, any optimization algorithm will converge to alugl
maximum. A simple, efficient optimization algorithm is thegec-
tation-Maximization (EM) algorithm [3].

LEMMA 2. The constrained optimization problem described by
equations 5 can be solved using the Expectation-Maxinoiz ati-
gorithm. For every query keyword quegyand variabler;;, we
introduce auxiliary variablesy,;; and §,. The algorithm’s itera-
tions are provided by the following formulas:

Vo = qij i) (X m QakmThm + BaTh)

e E-Step:
P 5¢tz+1 = Bqﬁé/ (ka aqkmﬁzm + /Bqﬁé)
t+1 t+1
° M-Step: Trij - Zq ’tij /|Q|

Tt =30,0q" /12l

The proof is omitted due to space constraints. For a relatsaf,p
see [3]. The EM algorithm’s iterations are extremely lighight
and progressively improve the estimates for variablgs,.

More intuitively, the algorithm works as follows. The E-gte
uses the current estimatesmof;, 7, to compute for each query

probabilities P(S;;), Si; € Sq and P(SoLm). Note that for a
given query we only consider annotations in Sgt The appear-
ance of each query is “attributed” among annotationS;; € S,
andSorm proportionally to their probabilities, i.ey,:; stands for
the “fraction” of queryq resulting from annotatiot¥;; involving
tableT; and attributesl’;.4;. The M-step then estimates; =
P(T;.A;) as the sum of query “fractions” associated with tabje
and attribute seTi.ftj, over the total number of queries @.

6. EXPERIMENTAL EVALUATION

We implemented our proposed Query Annotator solution using
C# as a component of [22]. We performed a large-scale exparim
tal evaluation utilizing real data to validate our ability success-
fully address the challenges discussed in Section 1.

The structured data collectioh used was comprised of 1176
structured tables available to us from the Bing search engin
total, there were around 30 million structured data tuptesipying
approximately 400GB on disk when stored in a database. The sa
structured data are publicly available via an XML API.

The tables used represent a wide spectrum of entities, fuch a
Shoes, Video Games, Home Appliances, Televisions, anddDigi
Cameras. We also used tables with “secondary” complementar
entities, such as Camera Lenses or Camera Accessoriesatleat h
high vocabulary overlap with “primary” entities in table dital
Cameras. This way we stress-test result quality on anootathat
are semantically different but have very high token overlap

Besides the structured data collection, we also used logebf
queries posed on the Bing search engine. For our detaildd qua
ity experiments we used a log comprised of 38M distinct qeseri
aggregated over a period of 5 months.

6.1 Algorithms

The annotation generation component presented in Secti®n 3
guaranteed to produce all maximal annotations. Therefa@nly
test its performance as part of our scalability tests prteskin Sec-
tion 6.5. We compare the annotation scoring mechanism sigain
greedy alternative. Both algorithms score the same setruftan
tions, output by the annotation generation component (@e8).

Annotator SAQ: The SAQ annotator (Structured Annotator of
Queries) stands for the full solution introduced in this kvofwo
sets of parameters affectingp@'s behavior were identified. The
first, is thethresholdparametef) used to determine the set of plau-
sible structured annotations, satisfyi@% > 6 (Section 4).
Higher threshold values render the scorer more conseeviatiout-
putting annotations, hence, usually resulting in highercision.
The second are the language model parameters: thexgtithat
balances our confidence to the unigram table language meaatel,
sus the background open language model, and the penaltypara
eter¢. We fix A/ = 10 which we found to be a ratio that works
well in practice, and captures our intuition for the confickenve
have to the table language model. We consider two variatibns
SAQ based on the value @f SAQ-MED (medium-tolerance) using
¢ = 0.1, and :\Q-L ow (low-tolerance) using = 0.01.

Annotator IG-X : TheIntelligent Greedy(IG-X) scores annota-
tions.S; based on the number of annotated tokpa3 ;| that they
contain, i.e., Scotes;) = | AT;|. The Intelligent Greedy annota-
tor captures the intuition that higher scores should begassi to
annotations that interpret structurally a larger part efdhery. Be-
sides scoring, the annotator needs to deploy a thresheldaicri-

3see http://shopping.msn.com/xml/v1l/getresults.agpx?televisions for for a table
of TVs and http://shopping.msn.com/xml/v1/getspecscaspmid=1202956773 for
an example of TV attributes.



terion for eliminating meaningless annotations and idging the
plausible ones. The set of plausible annotations detedbgehe
Intelligent Greedy annotator are those satisfying iy ;| < X,
(i) |AT5| > 2 and (i) P(AT;|T.A;) > 0. Condition (i) puts an
upper boundX on the number of free tokens a plausible annotation
should contain: an annotation with more th&rfree tokens cannot
be plausible. Note that the annotator completely ignoresitfinity
of the free tokens to the annotated tokens and only reasses loa
their number. Condition (ii) demands a minimum of two antexda
tokens, in order to eliminate spurious annotations. Rmathndi-
tion (iii) requires that the attribute-value combinatialentified by
an annotation has a non-zero probability of occurring. Efiis-
inates combinations of attribute values that have zeroginidiby
according to the multi-attribute statistics we maintaia¢®on 5.1).

6.2 Scoring Quality

We quantify annotation scoring quality using precision asd
call. This requires obtaining labels for a set of queriestand cor-
responding annotations. Since manual labeling could notdlés-
tically done on the entire structure data and query cobesti we
focused on 7 tables: Digital Cameras, Camcorders, HardeBriv
Digital Camera Lenses, Digital Camera Accessories, Mosiand
TVs. The particular tables were selected because of thgtirfop-
ularity, and also the challenge that they pose to the arorstdtue
to the high overlap of their corresponding closed languagdets
(CLM). For example, tables TVs and Monitors or Digital Cameras
and Digital Camera Lenses have very similar attributes ahaeg.

The ground truth query set, denotéd consists of 50K queries
explicitly targeting the 7 tables. The queries were idesdifus-
ing relevant click log information over the structured datel the
query-table pair validity was manually verified. We thendiser
tagging process to produce all possible maximal annotsitéord
labeled manually the correct ones, if any.

We now discuss the metrics used for measuring the effective-

ness of our algorithms. An annotator can output multiplaipla
sible structured annotations per keyword query. We ddiine
TP(q) < 1 as the fraction of correct plausible structured anno-
tations over the total number of plausible structured aatimis
identified by an annotator. We also define a keyword quegoas
eredby an annotator, if the annotator outputs at least one gikasi
annotation. Let also C@®) denote the set of queries covered by
an annotator. Then, we define:

quQ TP(q) quQ TP(q)
|Cov(Q)] QI

Figure 5 presents the Precision vs Recall plot feaQSVED,
SAQ-Low and the IG-X algorithms. Thresholtlvalues for 2Q
were in the range of.001 < 6 < 1000. Each point in the plot
corresponds to a differefitvalue. The 38Q-based annotators and
1G-0 achieve very high precision, witha® being a little better. To
some extent this is to be expected, given that these arentléa
queries, with every single query pre-classified to targetdtnuc-
tured data collection. Therefore, an annotator is less/likemisin-
terpret open-world queries as a request for structured Hettice,
however, that the recall of thea®-based annotators is significantly
higher than that of IG-0. The IG-X annotators achieve sinméa
call for X > 0, but the precision degrades significantly. Note also,
that increasing the allowable free tokens from 1 to 5 doegivet
gains in recall, but causes a large drop in precision. ThEspected
since targeted queries are unlikely to contain many freertsek

Precision= , Recall=

Since the query data set is focused only on the tables we con-

sider, we decided to stress-test our approach even funireset
thresholdd = 0, effectively removing the adaptable threshold sep-
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Figure 5: Precision and Recall using Targeted Queries

arating plausible and implausible annotations, and censétionly

the most probable annotationA& MED precision was measured
at 78% and recall at 69% far = 0, versus precision 95% and re-
call 40% for@ = 1. This highlights the following points. First,
even queries targeting the structured data collection age érrors
and the adaptive threshold based on the open-language cael
help precision dramatically. Note that errors in this caappgen

by misinterpreting queries amongst tables or the attrwithin a
table, as there are no generic web queries in this labeledsat
Second, there is room for improving recall significantly. degy is
often not annotated due to issues with stemming, spellkihgor
missing synonyms. For example, we do not annotate token “can
non” when it is used instead of “canon”, or “hp” when used in-
stead of “hewlett-packard”. An extended structured datizction
using techniques as in [6, 8] can result in significantly ioved
recall, but the study of such techniques is out of scope fisrgh-
per. Finally, we measured that in approximately 19% of thelled
queries, not a single token relevant to the considered &trlbutes
was used in the query. This means there was no possible ngappin
from the open language used in web queries to the closed world
described by the available structured data.

6.3 Handling General Web Queries

Having established that the proposed solution performkiwal
controlled environment where queries are known to targesthuc-
tured data collection, we now investigate its quality onegahweb
queries. We use the full log of 38M queries, representatfva@no
everyday web search engine workload. These queries vatyira lo
context and are easy to misinterpret, essentially stetgiy the
annotator’s ability to supress false positives.

We consider the same annotator variantsQSMED, SAQ-L ow
and IG-X. For each query, the algorithms output a set of plaus
ble annotations. For each alternative, a uniform randonpsaof
covered queries was retrieved and the annotations wereaiiyanu
labeled by 3 judges. A different sample for each alternatras
used; 450 queries for each of the@variations and 150 queries
for each of the 1G variations. In total, 1350 queries weredhghly
hand-labeled. Again, to minimize the labeling effort, wéyaron-
sider structured data from the same 7 tables mentioneaearli

The plausible structured annotations associated with gaety
were labeled aforrect or Incorrect based on whether an anno-
tation was judged to represent a highly likely interpretatdf the
query over our collection of tabléE. We measure precision as:

# of correct plausible annotations in the sample

Precision= - - -
# of plausible annotations in the sample

It is not meaningful to compute recall on the entire query set
of 38 million. The vast majority of the web queries are gehera
purpose queries and do not target the structured data totiec
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Figure 6: Precision and Coverage using General Web Queries

To compensate, we measureaverage defined as the number of
covered queries, as a proxy relative recall

Figure 6 presents the annotation precision-coveragefpladjf-
ferent threshold values.A® uses threshold values ranginglin<
0 < 1000. Many interesting trends emerge from Figure 6. With re-
spect to 3Q-MED and S\Q-L ow, the annotation precision achieved
is extremely high, ranging from 0.73 to 0.89 fon&MED and
0.86 to 0.97 for 8Q-Low. Expectedly, 8Q-Low's precision is
higher than 8Q-MED, as \Q-MED is more tolerant towards the
presence of free tokens in a structured annotation. As skscl)
free tokens have the potential to completely distort therpreta-
tion of the remainder of the query. Hence, by being more &oler
SAQ-MED misinterprets queries that contain free tokens more fre-
quently than 8Q-Low. Additionally, the effect of the threshold
on precision is pronounced for both variations: a higheeghold
results value results in higher precision.

The annotation precision of 1G-1 and 1G-5 is extremely low,
demonstrating the challenge that free tokens introducérenealue
of treating them appropriately. Even a single free token-{l&an
have a deleterious effect on precision. However, even |&Hich
only outputs annotations witkerofree tokens, offers lower preci-
sion than the 8Q variations. The IG-0 algorithm, by not reasoning
in a probabilistic manner, makes a variety of mistakes, tbhstim-
portant of which to erroneously identify latent structusesnantics
in open-world queries. The “white tiger” example mentiorSiec-
tion 1 falls in this category. To verify this claim, we colted and
labeled a sample of 150 additional structured annotativetstere
output by 1G-0, but rejected by A®-MED with § = 1. SAQ’s
decision was correct approximately 90% of the time.

With respect to coverage, as expected, the more consexvativ
variations of 3.Q, which demonstrated higher precision, have lower
coverage values.&-MEeD offers higher coverage tharm8-L ow,
while increased threshold values result in reduced coeerbigte
also the very poor coverage of IG-0A&, by allowingand prop-
erly handling free tokens, increases substantially theiame, with-
out sacrificing precision.

6.4 Understanding Annotation Pitfalls

We performed micro benchmarks using the hand-labeled @ata d
scribed in Section 6.3 to better understand why the anrotaiks
well and why not. We looked at the effect of annotation lengte
tokens and structured data overlap.

Number of Free Tokens Figures 7(a) and 8(a) depict the frac-
tion of correct and incorrect plausible structured annotst with
respect to the number of free tokens, for configurationg-& ow
(with & = 1) and 1G-5 respectively. For instance, the second bar
of 7(a) shows that 35% dll plausible annotations contain 1 free
token: 24% were correct, and 11% were incorrect. Figuresaf(t
8(b) normalize these fractions for each number of free teké&or
instance, the second bar of Figure 7(b) signifies that of thes
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Figure 7: SAQ-L ow: Free tokens and precision.

B Correct M Incorrect W Correct HIncorrect

100%

§
2 80%
025 - 87
= 60% |- = B§
-3

2
= 40%
| | ]

£ 20%
5 20%
z

Fraction of Annotations

0%

4 5 b 0 1 2 3 4 5
) # of Free Tokens

1 2 3
# of Free Tokens

Figure 8: 1G-5: Free tokens and precision.

tured annotations with 1 free token output by@EL ow, approxi-
mately 69% were correct and 31% were incorrect.

The bulk of the structured annotations output lQSL ow (Fig-
ure 7) contain either none or one free token. As the numbeeef f
tokens increases, it becomes less likely that a candidatetsted
annotation is correct. &-Low penalizes large number of free
tokens and only outputs structured annotations if it is clamfi of
their correctness. On the other hand, for 1G-5 (Figure 8yattman
50% of structured annotations contain at least 2 free tok@ysis-
ing the appropriate probabilistic reasoning and dynanmiesthold,
SAQ-Low achieves higher precision even against 1G-0 (zero free
tokens) or 1G-1 (zero or one free tokens). As we can see S
handles the entire gamut of free-token presence gracefully

Overall Annotation Length: Figures 9 and 10 present the frac-
tion and normalized fraction of correct and incorrect sticed an-
notations outputted, with respect to annotatiength The length
of an annotation is defined as number of the annotated and free
tokens. Note that Figure 10 presents results for 1G-0 ratimeam
1G-5. Having established the effect of free tokens with G2
wanted a comparison that focuses more on annotated tokewg, s
chose 1G-0 that outputs zero free tokens.

An interesting observation in Figure 9(a) is that althouglp 8. ow
has not been constrained like 1G-0 to output structured t@tioos
containing at least 2 annotated tokens, only a tiny fractibits
output annotations contain a single annotated token. tively, it
is extremely hard taonfidentlyinterpret a token, corresponding
to a single attribute value, as a structured query. Mostylikee
keyword query is an open-world query that was misinterjkete

The bulk of mistakes by 1G-0 happen for two-token annotation
As the number of tokens increases, it becomes increasingly u
likely that all 3 or 4 annotated tokens from the same tableapg
in the same query by chance. Finally, note how different ike d
tribution of structured annotations is with respect to tegth of
SAQ-Low (Figure 9(a)) and 1G-0 (Figure 10(a)). By allowing free
tokens in a structured annotationA@ can successfully and cor-
rectly annotate longer queries, hence achieving muchrioettall
without sacrificing precision.

Types of Free Tokens in Incorrect Annotations Free tokens
can completely invalidate the interpretation of a keyworbny
captured by the corresponding structured annotation. r&idad
depicts a categorization of the free tokens present in jllkeuan-
notations output by & and labeled agcorrect The goal of the
experiment is to understand the source of the errors in qamoagh.

We distinguish four categories of free toke(i$:Open-world al-
tering tokens This includes free tokens such as “review”, “drivers”
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that invalidate the intent behind a structured annotatiahtake us
outside the closed world(ii) Closed-world altering tokensThis
includes relevant tokens that are not annotated due to ipieben
structured data and eventually lead to misinterpretatiBosexam-
ple, token “slr” is not annotated in the query “nikon 35 mnf aind
as a result the annotation for Camera Lenses receives adogh. s
(i) Incomplete closed-worldrhis includes tokens that would have
been annotated if synonyms and spell checking were enabted.
example, query “panasonic video camera” gets misintezdrét
“video” is a free token. If “video camera” was given as a syyran
of “camcorder” this would not be the caq@:) Open-world tokens
This contains mostly stop-words like “with”, “for”, etc.

The majority of errors are in category (i). We note that adarg
fraction of these errors could be corrected by a small amotint
supervised effort, to identify common open-world altertogens.
We observe also that the number of errors in categoriesn() &)
is lower for SAQ-Low than S\Q-MED, since (a) 8Q-Low is
more stringent in filtering annotations and (b) it down-weggthe
effect of free tokens and is thus hurt less by not detectingisyms.

Overlap on Structured Data: High vocabulary overlap between
tables introduces a potential source of error. Table 1 ptesa
“confusion matrix” for \Q-Low. Every plausible annotation in
the sample is associated with two tables: the actual tatgeteed by
the corresponding keyword query (“row” table) and the tahbt
the structured annotation suggests as targeted (“coluatté). Ta-
ble 1 displays the row-normalized fraction of plausible@ations
output for each actual-predicted table pair. For instafare4% of
the queries relevant to table Camcorders, the plausibletsted
annotation identified table Digital Cameras instead. We nioat
most of the mass is on the diagonal, indicating that 8orrectly
determines the table and avoids class confusion. The higges
occurs on camera accessories, where failure to understasdof
kens (e.g., “batteries” in query “nikon d40 camera battgjiean
result in producing high score annotations for the Cametale t

6.5 Efficiency of Annotation Process
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Figure 11: Free tokens in incorrect annotations.

Incomplete
Close World

Predicted
Actuall
Cameras
Camcorders
Lenses
Accessories
OLM

” Cameras| Camcorders| Lenses‘ Accessories| OLM |

4%
0%
94%
13% 3% 3% 81%
7% 2% 0% 1%

Table 1: Confusion matrix for SAQ-L ow.
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observe a linear increase of annotation latency with regpethe
number of tables. This can be attributed to the number ofstred
annotations generated and considered by $icreasing at worst
case linearly with the number of tables.

The experiment was executed on a single server and the closed

structured model for all 1176 tables required 10GB of memtiry
is worth noting that our solution is decomposable, ensuhig
parallelism. Therefore, besides low latency that is cidoiaweb
search, a production system can afford to use multiple mashb
achieve high query throughput. For example, based on achaten
1ms per query, 3 machines would suffice for handling a hypisthe
cal web search-engine workload of 250M queries per day.
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Figure 12: SAQ: On-line efficiency.
7. RELATED WORK

A problem related to generating plausible structured aatiwts,
referred to asveb query taggingwas introduced in [17]. Its goal
is to assign each query term to a specified category, rougite-c
sponding to a table attribute. A Conditional Random FielRE}
is used to capture dependencies between query words artifyiden
the most likely joint assignment of words to “categories”uey
tagging can be viewed as a simplification of the query aniootat
problem considered in this work. One major difference i¢ tha
[17] structured data are not organized into tables.Thigrapsion

We performed an experiment to measure the total time redjuire severely restricts the allowed applicability of the sautito mul-
by SaQ to generate and score annotations for the queries of our tiple domains, as there is no mechanism to disambiguateeleatw

full web log. The number of tables was varied in order to quan-

tify the effect of increasing table collection size on aration ef-
ficiency. The experimental results are depicted in Figure T2
figure presents the mean time required to annotate a quesyoXap
imately 1 millisecondis needed to annotate a keyword query in the
presence of 1176 structured data tables. Evidently, thiiaoll
overhead to general search-engine query processing isaouitay
even in the presence of a large structured data collectianaléd

arbitrary combinations of attributes. Second, the polilmf not
attributing a word to any specific category is not considerEuis
assumption is incompatible with the general web settingalfy,
training of the CRF is performed insemi-supervisethshion and
hence the focus of [17] is on automatically generating aiiiting
training data for learning the CRF parameters. Having $&it the
scale of the web demands an unsupervised solution; anyfbésg
will encounter issues when applied to diverse structuredados.



Keyword search on relational [12, 18, 15], semi-structi [
19] and graph data [14, 11] (Keyword Search Over Structursd D
abbreviated as KSOSD) has been an extremely active regepich
Its goal is the efficient retrieval of relevant databaseaspXML
sub-trees or subgraphs in response to keyword queries. rdbe p
lem is challenging since the relevant pieces of informatieaded

to assemble answers are assumed to be scattered acrasmaélat

tables, graph nodes, etc. Essentially, KSOSD techniquew al
users to formulate complicated join queries against a databsing

keywords. The tuples returned are ranked based on the fidista
in the database of the fragments joined to produce a tuptkthen

textual similarity of the fragments to query terms.

The assumptions, requirements and end-goal of KSOSD are rad

ically different from the web query annotation problem tivatcon-
sider. Most importantly, KSOSD solutions implicitly asserthat

users are aware of the presence and nature of the underlgtag d

collection, although perhaps not its exact schema, andtltiest
explicitly intent to query it. Hence, the focus is on the asbly,
retrieval and ranking of relevant results (tuples). On tbetaary,
web users are oblivious to the existence of the underlying ctal-
lection and their queries might even be irrelevant to it. réfare,
the focus of the query annotation process is on discovestent
structure in web queries and identifying plausible usesnnt This
information can subsequently be utilized for the benefittaics
tured data retrieval and KSOSD techniques. For a thoroughegu
of the KSOSD literature and additional references see [7].

Some additional work in the context KSOSD, that is close o ou

work appears in [5, 9]. This work identifies that while a keydio
query can be translated into multiple SQL queries, not altstired
queries are equally likely. A Bayesian network is used tosend
rank the queries, based on the data populating the dataBase.
lar ideas for XML databases are presented in [16]. This mé&dion
is subsequently used in ranking query results. All threbriepies

consider theelativelikelihood of each alternative structured query,

without considering their plausibility. In other wordsgethtent of

the user to query the underlying data is taken for grantegli&ix

treatment of free tokens in a keyword query and the sucdasséu
of query log data further distinguishes our approach frogretfore-

mentioned line of work.

The focus of [23] is on pre-processing a keyword query inorde

to derive “high scoring” segmentations of it. A segmentati® a
grouping of nearby semantically related words. Howeverga-h
scoring query segmentation is a poorer construct than etstad
annotation. Finally, [4] study the problem of queryifay tables
present in a corpus of relational tables, extracted fromHRBIL

representation of web pages. The precise problem addrestes

retrieval of the topk tables present in the corpus, which is different

from the more elaborate one considered in this work.

8. CONCLUSIONS

Fetching and utilizing results from structured data sosiinge-
sponse to web queries presents unique and formidable ohealie
with respect to both result quality and efficiency. Towarddrass-
ing such problems we defined the novel notionStfuctured An-
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