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ABSTRACT
In this work, we propose a new keypoint descriptor that is suitable
for multispectral inputs comprising up to 4 channels. Color images
with or without an additional infrared or depth channel are some
of the use-cases that can be handled by the proposed descriptor.
Standard keypoint descriptors employ single-channel input gradi-
ents, thereby discarding potentially useful content. The proposed
descriptor is based on a quaternionic representation of the input
image thereby treating each pixel multispectral value holistically.
Coupled with a suitable multispectral quaternionic detector, we
show that the proposed detector leads to superior experimental
results on a keypoint matching scenario.
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1 INTRODUCTION
Keypoints, also known as features or interest points have been
of interest to the computer vision community for many decades
[15]. Some of the applications on which they are used include
photogrammetry and 3D reconstruction, image retrieval and visual
localization [17, 18]. Perhaps two of the most seminal works in the
field are the Harris and SIFT algorithms, which have in turn led
to numerous adaptations and extensions. ORB and SURF are also
two other very popular algorithms that were proposed after SIFT
[17]. Learning-based keypoint detectors and descriptors have been
recently proposed [12, 16], following the trend of applying deep
learners on most if not all vision problems. However, traditional,
hand-crafted keypoint detection and description algorithms are
still used in numerous practical problems (e.g. 3D reconstruction)
[18, 19].

A feature that is almost ubiquitous in non-learning keypoint de-
tectors and descriptors is that they operate over the first or second-
order gradient of an image that is assumed to comprise only a single
channel. If more than one channels exist, only the grayscale compo-
nent is practically used, leading to effectively neglecting potentially
useful information. The most well-known case of this paradigm are
color images, which are made up of 3 channels. Furthermore, im-
ages that capture different modalities are possible and increasingly
more easily available. Such modalities include Near Infrared images
[9], thermography imaging [22] or depth sensors. These inputs can

be concatenated to, for example an optical sensor input, making
up for a 4-channel input. Note that in most if not all of these cases,
computing a single-channel component as in order to compute
gradients is meaningless or obviously wrong (for example, running
a keypoint descriptor on gradients computed on a weighted sum of
optical and depth channels).

In this work, we propose a novel keypoint descriptor that can
be used with multispectral images that are made up of up to 4
channels. This constraint is due to handling the input as a matrix
of quaternionic values, which are intrinsically 4-dimensional ob-
jects. Combined with a recently proposed keypoint detector for
quaternionic inputs, we show that the proposed detector extends
and improves the well-known SIFT descriptor in a simple manner.
We have run numerical trials on two datasets of color images; the
first dataset has been captured aerially by a drone-mounted camera
in an urban area, and the other dataset is comprised of images of
rock carvings captured at the archaeological site of Vathy in Asty-
palaia, Greece. We have computed numerical results for keypoint
matching precision for both datasets, where the proposed keypoint
detector was shown to be capable of capturing well input chan-
nel cross-correlation, outperforming two more naïve descriptor
variants.

With this work, we propose a keypoint descriptor that is suit-
able for multispectral inputs comprising up to 4 channels. We
use a quaternion image representation, according to which each
pixel value can be treated as a single entity. Quaternions are 4-
dimensional generalizations of complex numbers, with one real and
three imaginary, independent components. Quaternionic analysis
has found numerous applications in multimodal signal processing,
as well as lately in deep learning-based models (for example quater-
nionic convolutional networks [28], or a quaternion adaptation of
capsule networks [27]).

We have structured the remainder of this paper as follows. In
section 2 we have a brief review of related work, with respect to
either quaternionic analysis or multispectral imaging. In sections
4 and 5 we describe the quaternionic interest point detector and
descriptor that we employ in this work. We present numerical
results in section 6 and close with a short discussion of the paper’s
contribution and future work in section 7.

2 RELATEDWORK
Keypoint detection and description in multispectral imaging has
been addressed by a number of previous works [1, 3, 9, 11]. In [9]
and [23], the Harris corner detector is generalized by taking into
account the sum of autocorrelation of matrices per band. A gen-
eralization of the SIFT descriptor is also proposed in [9], where
description is invariant to a 180 degree change in gradient direction.
This has been found to be useful in when combining certain types of
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modalities like infrared, where gradient direction is not uncommon
to be inverse to the one that corresponds to the RGB channels. Sum-
ming autocorrelations per band as done in [9] neglects to take into
account channel cross-correlation; this has been addressed with
the recently proposed Quaternion Harris detector, which treats the
input as a quaternion-valued matrix. As quaternions are intrinsi-
cally 4-dimensional objects, in this manner an image with up to 4
channels may be processed. However, no new descriptor had been
proposed in [11], and keypoint descriptions were handled with the
SIFT descriptor, in practice describing only the luminance channel
and discarding the rest of the information. In the current work, we
extend the detector of [11] by proposing a suitable quaternionic
detector that can effectively handle multispectral content.

3 ELEMENTS OF QUATERNIONS
Quaternions have been introduced in 1843 by the Irish mathemati-
cian W.R. Hamilton. They extend the concept of complex numbers
as sums of one real and one imaginary part, to numbers that have
one real and three independent imaginary parts. In that sense, the
space of quaternions is isomorphic to R4. In particular, any quater-
nion q can be written in a unique way as

q = a + bi + cj + dk, (1)

where a,b, c,d ∈ R and i, j,k are independent imaginary units.
A useful, alternative representation of quaternions is the Cayley-
Dickson form, according to which we write:

q = ζ + ηj, (2)

where the difference with the analogous relation for complex num-
bers is that ζ and η are not necessarily real, so in general ζ =
a + bi,η = c + di . This scheme can easily be generalized to using
any other couple of perpendicular imaginary units µ1, µ2 instead of
i, j. In that, more general case, it is referred to as a symplectic decom-
position [6], which is essentially a change of basis from (1, i, j,k)
to new imaginary units (1, µ1, µ2, µ3). A third way to represent a
quaternion is as a sum of its real and imaginary part:

q = S(q) +V (q), (3)

where S(q) = a and V (q) = bi + cj + dk .
Quaternions form a skew-field which we shall denote here as

H. This means that H has all the properties of a field concern-
ing quaternion addition and multiplication, except for quaternion
multiplication commutativity: in general pq , qp for p,q ∈ H.
Concerning quaternion imaginary units i, j,k , we have:

i2 = j2 = k2 = ijk = −1,

and
ij = −ji = k, jk = −kj = i,ki = −ik = j. (4)

. Conjugacy is defined as

q̄ = a − bi − cj − dk, (5)

and, in a relation analogous to the one for complex numbers, we
have

|q | =
√
qq̄ =

√
q̄q =

√
a2 + b2 + c2 + d2. (6)

Quaternionswith a zero real part (a = 0) are called pure quaternions,
and quaternions with |q | = 1 are called unit quaternions.

Matrix calculus can be extended to matrices with quaternionic
elements, Hm×n . Quaternionic matrices can be written as tuples of
complex matrices [14, 26] following a decomposition akin to the
Caley-Dickson form. For anyA ∈ Hm×n , we can writeA = A1+A2j
where A1,A2 ∈ Cm×n are unique complex matrices [26]. Further-
more, the mapping χA of any quaternionic matrix to a complex
matrix can be defined:

χA =

[
A1 A2

−Ā2 Ā1

]
(7)

Matrix χA is called the adjoint or complex adjoint of A. If for a
complex matrix C there exists a quaternionic matrix Q such that
C = χQ , C is called symplectic [8], and equivalently χ−1

C = Q .
The discussion of eigenvalues and eigenvectors of quaternionic
matrices becomesmore complicated than the real or complexmatrix
case from the very beginning. The first difficulty comes due to the
noncommutativity of quaternion multiplication, which means that
the following problems are distinct in the quaternionic case:{

Ax = λx
Ax = xλ

The two relations are related to left and right eigenvalues respec-
tively, and their respective eigenvectors. Another difficulty is that
the well-known relation det(A − λI ) = 0 is not directly applicable,
as a quaternionic determinant is itself more complicated to use or
even define (see for example Dyson 1972 [5]). It is known that any
square quaternion-valued matrix has exactly n right eigenvalues
that are complex with a non-negative part [26]. If these are real,
we have Ax = xλ = λx and these will be also left eigenvalues. A
fortunate case for quaternionic matrices is for Hermitian matri-
ces, i.e. matrices that are equal to their conjugate transpose with
conjugacy now defined in the quaternionic sense (eq. 5). Formally
then A = AH , where H denotes the conjugate transpose. For such
matrices their right eigenvalues are real (however there may exist
other left eigenvalues that are not right eigenvalues, and necessarily
non-real, see for example [26]) as xHAx = xHxλ and λ must be
real as the ratio of real numbers xHAx ,xHx = | |x | |2 (xHAx is real
as it is equal to its conjugate due to A = AH ). Note that this does
not follow necessarily if we take Ax = λx , which is the formula for
left eigenvalues.

4 QUATERNIONIC DETECTOR
In this section we briefly describe the quaternionic detector that
was recently introduced in [11]. The well-known Harris keypoint
detector was based on the premise of locating points that maximize
an error function when displacement to any direction is taken
into account. This error function measures the difference of values
around the candidate point and a window displaced by some ∆x .
Formally we can write the error as:

E(x) =
∑

xn ∈N (x )

д(xn )|I (xn ) − I (xn + ∆x)|
2, (8)

where N (x) denotes the neighbourhood around candidate point x
and a д(xn ) function plays the role of a weight to penalize values
that are calculated for points far from the candidate keypoint.

In the classical variant of the Harris keypoint detector, I (x) is a
grayscale image and takes values in some subset of R. Assuming
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(a) (b)

Figure 1: Color images used in our experiments. (a) The “CERTH” dataset. (b) The “Astypalaia” dataset. See text for details.

now that we have a multichannel input and each channel corre-
sponds to the real part or one of the quaternionic imaginary parts,
we can consider I (x) as a quaternion-valued function, or equiva-
lently consider I as a quaternionic matrix.

Following the idea that I (x) is considered as a quaternion-valued
function, we can use the quaternion-valued Taylor approximation
of I (x) [4] and continue to write the error of eq. 8 as:

E(x) =
∑

xn ∈N (x )

д(xn )∆x
T ∇I (xn )∆xT ∇I (xn )

=
∑

xn ∈N (x )

д(xn )∆x
T ∇I (xn )∇I (xn )T ∆x

= ∆xT [
∑

xn ∈N (x )

д(xn )∇I (xn )∇I (xn )
H ] ∆x

= ∆xTAq∆x .

In the above relation, matrix Aq is key to continue. We have con-
sidered

Aq =
∑

xn ∈N (x )

д(xn )∇I (xn )∇I (xn )
H , (9)

to which we refer to as quaternionic autocorrelation or simply
autocorrelation matrix. As in the non-quaternionic case, it is easy
to see that this matrix is Hermitian. After computing this matrix,
we can decide whether to characterize the candidate point as a
keypoint by comparing the eigenvalues of Aq , or by taking into
account a cornerness function:

c(Aq ) = (λ1λ2) − κ(λ1 + λ2)
2. (10)

where parameter k is empirically set to a small positive value.
The form of each value in Aq is perhaps notable: The diagonal

terms of each rank-one component of Aq are of the form of |Ix |2

and |Iy |
2, both of which are equal to a real sum of gradient squares

for each image channel separately:

|Ix |
2 = I2

x0 + I
2
x1 + I

2
x2 + I

2
x3, (11)

and likewise for |Iy |. On the contrary, the off-diagonal terms Ix Īy
and its conjugate Iy ¯Ix are quaternionic, with each quaternion vari-
ate computed as a sum of products of quaternion variates that
correspond to different channels. For example, the component of
the term Ix Īy corresponding to the i imaginary unit is found as:

Ix1Iy0 − Ix0Iy1 + Ix3Iy2 − Ix2Iy3, (12)

The other imaginary components comprise terms with different
combinations of channels. Hence, the off-diagonal terms of the
autocorrelation matrix contribute information about image cross-
channel correlation.

We can compute (right) eigenvalues and eigenvectors of auto-
correlation Aq by considering its diagonalization and its complex
adjoint form. We write:

UHAqU = Λ (13)

from which follows that

χHU χAq χU = χΛ, (14)

where we used χAB = χAχB and χU H = χHU [26]. Note that the
4× 4 matrix χAq is also Hermitian (theorem 4.2.6 [26]). Eigenvalues
will be obtained in two pairs of repeating values Eigenvectors are
found as vn = cn′ − dn′ j for n = 1, 2 and n′ = 2n − 1, wherewk =

[ ck dk ]T is the kth column of χU , considering reordered indices
by eigenvalue magnitude. Note that one can still obtain a valid
eigenvector if one uses n′ = 2n instead of 2n − 1; this eigenvector
will be a multiple of the eigenvector previously considered, by a
factor of j multiplied from the right.
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Figure 2: Images comprising four channels that were used in
our experiments. The four channels are the Red-Green-Blue
channels (left column) plus a near-infrared channel (right
column).

5 PROPOSED QUATERNIONIC DESCRIPTOR
The basis of the proposed keypoint descriptor is the SIFT descriptor
[17]. We will first briefly reiterate the basic points for computing
SIFT, then discuss the proposed quaternionic descriptor. In order
to construct the standard SIFT descriptor (here we shall also refer
to it as Vanilla SIFT to distinguish from the other variants we shall
discuss in what follows), first gradient magnitude and orientation
maps are computed over 16×16 neighbourhood around the keypoint.
This region is then divided into a grid of 4 × 4 non-overlapping
cells. For each of these cells, a 8-bin gradient orientation histogram
is computed. After weighting each contribution to the histogram
according to its distance from the keypoint, the cell histograms (a
total of 4 × 4 = 16 histograms) are concatenated to a single vector
of 16 × 8 = 128 values, which constitutes the SIFT descriptor for
the point of interest.

While SIFT has proven to be a remarkably robust descriptor,
our problem with applying it to a multispectral image input is
that now gradients are quaternionic, as are pixel values. As gra-
dients are computed to the horizontal and vertical direction, the
quaternionic gradient would effectively be a 4 + 4 = 8-dimensional
number. We can then safely hypothesize that the 8 bin-histograms
prescribed by vanilla SIFT would be inadequate for partitioning the
space of quaternionic orientations, due to their high dimensionality.
While we could work in the direction of simply adding more bins
to the orientation histogram, we would be faced with a curse-of-
dimensionality problem: As the dimension and bins increase, the
number of data remain the same, which are the keypoint neigh-
bourhood gradients in our case. Consequently, any orientation
histogram constructed in this manner would be of little practical
value.

In order to create a descriptor that would combine the robust-
ness of SIFT, while avoiding to compute a descriptor only on a
single-channel function of the original input, we consider using a
polar representation of image pixel values, and hence by extension
of the whole quaternionic image I . The polar representation of a
quaternion q ∈ H is:

q = |q |eµθ , (15)
with θ ∈ R and µ ∈ H a pure unit quaternion. Values µ and θ are
called the eigenaxis and eigenangle (or eigenphase) of the quater-
nion [2, 6, 13]. The eigenaxis and eigenangle can be computed as
[2]:

µ = V (q)/|V (q)| (16)
and

θ = tan−1(|V (q)|/S(q)) (17)
We can proceed by considering instead of the four quaternionic

channels a,b, c,d , the magnitude, eigenaxis and eigenangle as our
new image per-pixel representation. Out of these values, we keep
themagnitude and eigenangle asmore convenient due to their being
in R, and compute gradients ∇|q | and ∇θ . Over these gradients we
then separately compute SIFT descriptions, that is as if each one
were the gradient information of a grayscale input. We concatenate
the two SIFT descriptors into a single vector of 128×2 = 256 values.
This constitutes the proposed keypoint descriptor, to which we
shall refer to as Quaternion SIFT in the remainder of this paper.

Adding phase information to the keypoint is crucial because it
effectively encodes information about cross-channel correlation.
Considering each channel separately is also suboptimal for the
same reason, as we shall see in the experiments section.

6 EXPERIMENTS
We have run tests on three image collections, to which we shall refer
with the acronyms CERTH, Astypalaia and RGB+NIR respectively.
The first collection (“CERTH”) is comprised of images captured
with an unmanned aerial vehicle (UAV), flown above the premises
of the Centre for Research and Technology, located in Thessaloniki,
Greece. A total of 12 images were shot with a DJI M200 UAV in
Thessaloniki, at a resolution of 500 × 375 pixels. The second collec-
tion (“Astypalaia”) is comprised of 12 color images captured at the
archaeological site located close to the village Vathy at the island
of Astypalaia, Greece. The rock carvings that have been found on
the site are practically invisible to the naked eye and/or without
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Figure 3: Illustration of our experimental setup. From left to right: Original image, Same image with overlaid Quaternion
Harris keypoints (method described in sec. 4, Original image distorted by a random perspective transform (the two last images
correspond to two different random transforms) with keypoints computed and overlaid on the new images. In the experiments
section (results in tables 2, 1), precision is measured as percentage of correctly identified matches between keypoints in the
original and the transformed image, and over 50 different random transformations.

guidance from an expert, making for a challenging detection prob-
lem [24]. All 12 images were captured with a NIKON D700 camera,
at a resolution of 500 × 332 pixels. The images from the first two
sets can be seen in Fig. 1. Regarding the third set (“RGB+NIR”), it is
comprised of 5 images that are each made up of a total of 4 channels.
The first 3 channels correspond to the color, i.e. Red-Green-Blue
channels, while the 4th channel corresponds to the Near Infrared
band. We can examine these images in Fig. 2. One can observe
that the Near Infrared band is not strictly correlated to the visible-
spectrum channels (see for example the intensity of lake pixels in
the NIR band, which in the visible spectrum appears transparent;
also [3] for a discussion of RGB-NIR correlation).

In all tests we have used the quaternionic detector described in
sec. 4 with cornerness function hyperparameter set to k = 0.04, and
a multiscale-affine implementation was used following the imple-
mentation in [18]. The experimental pipeline was set up as follows.
For each dataset image we calculated 50 transformed versions of
the original image. Each transformation was a random perspective
transformation computed by moving 4 control points by random
displacements. This results each time to a transformation T which
we later use to compute ground truth displacements for keypoints.
Next we compute keypoints for the original image as well as on all
transformed images. Subsequently, we compute keypoint descrip-
tors for all instances, using the descriptor proposed in sec. 5. Ideally,
each keypoint x in the original image should have a matching key-
point at positionT (x) in the randomly transformed image; if that is
the case (within a distance threshold of 2 pixels) then we consider a
hit for the given keypoint. Matches were considered by computing
the Euclidean distance between descriptors in R256. An example
showing detected keypoints on the original image and transformed
versions of the original can be observed in fig. 3 1.

1The depicted original image is a digitized version of the painting “Airplane flying” by
K.Malevich (1915).

Numerical precision results for each image of the two sets can be
examined in tables 1, 2 and 3 for the Astypalaia, CERTH and RGB-
NIR datasets respectively. Each row in these tables corresponds to an
image in Fig. 1, where we traverse images from left to right and from
top to bottom (for example, the 5th row on the table corresponds
to the image on the 2nd row, 2nd column). In the last row we
see mean and standard deviation over all images in the dataset.
The proposed detector (Quaternion SIFT) was compared against
two other descriptor variants: Vanilla SIFT and Multiband SIFT. As
described in section 5, in Vanilla SIFTwemap the image to grayscale
then compute the classical SIFT descriptor. In Multiband SIFT, we
compute SIFT for each channel separately, then concatenate the
result to a single vector. Hence Quaternion SIFT, Vanilla SIFT and
Multiband SIFT result to descriptor vectors in R256,R128,R512 2

respectively. In all cases, the proposed Quaternion SIFT outperforms
the other SIFT variants. Interestingly, this is also the case versus
Multiband SIFT, despite this latter being larger than Quaternion
SIFT. We can justify this result due to Multiband SIFT not capturing
channel cross-correlation as effectively as Quaternion SIFT, since
all channels are considered independently. Furthermore, the similar
results of Multiband SIFT to Vanilla SIFT can be explained due
to R-G-B channels being closely correlated to one another, hence
each new channel SIFT does not contribute significantly to the end
result. In the results for the RGB+NIR dataset (Fig. 3), where there
is a fourth component that is only weakly correlated to the visible
spectrum channels [3], we can note that the figures for Multiband
SIFT are on average more than 1.5% points better than Vanilla
SIFT. While this is a small difference in absolute terms, the same
difference on the sets that do not comprise a NIR channel is much
smaller still (0.3% in both Astypalaia and CERTH). This difference
can be attributed to the existence of the extra channel in RGB+NIR.
More importantly, the proposed Quaternion SIFT fares still better

2Or R384 if the image does not comprise a fourth component.
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than the other variants. Compared to Multiband SIFT in particular,
it outperforms it while being much more compact in size.

Table 1: Precision values keypoint matching in the Asty-
palaia dataset. Columns correspond to compared descrip-
tors, rows correspond to different images in the dataset. The
last row showsmean +- st.deviation over all image results in
the set. See text for correspondence of rows with images of
Fig. 1. Higher values are better.

Vanilla SIFT Multiband SIFT Quaternion SIFT (proposed)
28.0 ± 5 28.0 ± 5 34.1 ± 5
31.9 ± 4 32.5 ± 4 38.2 ± 4
32.2 ± 4 32.6 ± 4 39.1 ± 3
38.7 ± 5 38.9 ± 5 43.8 ± 5
31.5 ± 5 31.9 ± 5 35.4 ± 5
28.8 ± 6 29.0 ± 6 32.8 ± 6
30.0 ± 4 30.4 ± 4 36.4 ± 4
28.0 ± 5 28.0 ± 5 34.1 ± 5
31.9 ± 5 32.4 ± 5 37.3 ± 5
30.8 ± 6 31.2 ± 5 33.6 ± 5
33.9 ± 3 34.7 ± 3 38.8 ± 3
33.7 ± 5 34.2 ± 5 37.8 ± 5
31.6 ± 2 31.9 ± 2 36.7 ± 2

Table 2: Precision values keypoint matching in the CERTH
dataset. Columns correspond to compared descriptors, rows
correspond to different images in the dataset. The last row
shows mean +- st.deviation over all image results in the set.
See text for correspondence of rows with images of Fig. 1.
Higher values are better.

Vanilla SIFT Multiband SIFT Quaternion SIFT (proposed)
37.2 ± 4 37.5 ± 4 41.1 ± 4
37.7 ± 5 38.1 ± 5 41.6 ± 4
35.3 ± 4 35.5 ± 4 38.9 ± 5
40.7 ± 4 40.9 ± 4 44.6 ± 4
38.2 ± 5 38.5 ± 5 41.8 ± 5
38.5 ± 4 38.9 ± 4 42.4 ± 4
35.2 ± 5 35.7 ± 5 40.1 ± 5
37.0 ± 4 37.2 ± 4 41.2 ± 4
34.5 ± 5 34.8 ± 5 39.3 ± 5
31.4 ± 3 31.7 ± 3 37.4 ± 3
35.2 ± 4 35.5 ± 4 40.7 ± 3
33.5 ± 3 33.7 ± 3 36.8 ± 3
36.2 ± 2 36.5 ± 2 40.5 ± 2

7 CONCLUSION AND FUTUREWORK
Wehave proposed a keypoint descriptor that is suitable for color and
in general multispectral images that comprise up to four channels.
The descriptor is based on a polar decomposition of each image
quaternionic value, and we have shown that it manages to capture

channel correlation in a more efficient manner than two other
descriptor variants. This new quaternionic keypoint descriptor was
proposed as a complement to the recently proposed quaternionic
keypoint detector [11].

As future work, we plan to perform more extensive results on
multispectral images, including optical+infrared pairs [10, 22] and
Stokes images [7, 20], multi-modal medical imaging [21] or com-
bining with video processing [25]. Also we plan to compare the
proposed Quaternion SIFT descriptor to learning-based detectors
such as Hardnet [16] or the earlier learning-free multispectral SIFT
of [3]. Concerning the use of the proposed descriptor itself, an-
other idea would be to explore potential uses as a pixel-level cue
based on local autocorrelation, or combine with other relatively
unused information such as eigenvector direction of the quater-
nionic autocorrelation. Finally, we could experiment on relaxing
the constraint of having at most four channels, by either extending
our analysis to algebras of higher dimensionality or combining
with dimensionality reduction techniques.
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Table 3: Precision values keypoint matching in the
RGB+NIR dataset. Columns correspond to compared
descriptors, rows correspond to different images in the
dataset. The last row shows mean +- st.deviation over all
image results in the set. Rows correspond with image rows
in Fig. 2. Higher values are better.

Vanilla SIFT Multiband SIFT Quaternion SIFT (proposed)
37.7 ± 3 38.5 ± 4 40.3 ± 4
23.9 ± 5 26.1 ± 5 26.6 ± 5
41.8 ± 4 44.6 ± 4 44.7 ± 4
37.6 ± 5 39.1 ± 5 41.4 ± 4
35.2 ± 4 35.9 ± 4 37.5 ± 4
35.2 ± 6 36.8 ± 6 38.1 ± 6
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