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Abstract. In this work, we introduce and discuss Quaternion Genera-
tive Adversarial Networks, a variant of generative adversarial networks
that uses quaternion-valued inputs, weights and intermediate network
representations. Quaternionic representation has the advantage of treat-
ing cross-channel information carried by multichannel signals (e.g. color
images) holistically, while quaternionic convolution has been shown to
be less resource-demanding. Standard convolutional and deconvolutional
layers are replaced by their quaternionic variants, in both generator and
discriminator nets, while activations and loss functions are adapted ac-
cordingly. We have succesfully tested the model on the task of detecting
byzantine inscriptions in the wild, where the proposed model is on par
with a vanilla conditional generative adversarial network, but is signifi-
cantly less expensive in terms of model size (requires 4× less parameters).

Keywords: Quaternions · Generative Adversarial Networks · Byzantine
inscriptions · Text detection

1 Introduction

Digitization and online accessibility in cultural institutions such as museums,
libraries and archives can achieve much greater visibility to the public when
the digitized content is organized in meaningful entities. For example, text in
natural images generally conveys rich semantic information about the scene and
the enclosed objects, which might be of great use in real scenarios where the
digitized raw image information is not directly exploitable for searching and
browsing.

One of the most prominent trends in content-based image retrieval applica-
tions is to discriminate which part of the image includes useful information, as
opposed to background objects, occlusion and task-irrelevant parts [20]. Such
tasks may concern image analysis, understanding, indexing or classification of
objects according to some inherent property. In the particular case of text un-
derstanding applications, the main goal is to retrieve regions that contain solely
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textual cues, either as holistic region information or as textual parts at line,
word or even character level.

Text detection is a challenging task due to the variety of text appearance,
the unconstrained locations of text within the natural image, degradations of
text components over hundreds of years, as well as the complexity of each scene.
To address these challenges, standard convolutional neural networks (CNNs)
have been the main attraction over the last five years for text detection [8,
23]. However, the effectiveness of CNNs is usually limited by the homogeneity
of the dataset images used for training as well as the particular loss function
that is to be minimized for the specific task at hand. Generative Adversarial
Networks (GANs) [5] offer a more flexible framework that can in effect learn the
appropriate loss function to satisfy the task at hand. GANs setup an adversarial
learning paradigm where the game dynamics of two players-networks lead to a
model that, in its convolutional variant is the state of the art in numerous vision
tasks today.

Fig. 1. Sample images of our inscription dataset.

With the current work, we discuss a novel neural network variant that brings
together the concepts of GANs with that of Quaternionic convolution and de-
convolution, and build a model that can effectively perform text detection in
a context where the content of interest is “donor” inscriptions found in byzan-
tine monuments [9, 21] (see Fig. 1,2). Quaternions are a form of non-real num-
bers that can be understood as 4-dimensional generalizations of complex num-
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bers, with one real part and three independent imaginary parts. The use of
non-real numbers as neuron and parameter values has been proposed as far as
1991, with an adaptation of backpropagation for complex numbers [10]. Similar
developments for quaternions have followed suit [14]. The more recently pro-
posed quaternion convolutional neural networks (QCNNs) [18, 26] a special form
of convolution that makes use of quaternion product rules, effectively treating
multichannel information holistically. Furthermore, QCNNs have been shown
to be much more economical (i.e. less resource-demanding) networks than their
non-quaternionic counterparts, with four times smaller parameter set size [17,
18]. Motivated by the promising properties of quaternionic neural networks, we
propose using quaternionic operations with adversarial networks. In particular,
the contribution of this work concerns the introduction of quaternionic convo-
lution to the conditional convolutional generative adversarial paradigm, where
we replace the encoder-decoder architecture with quaternionic layer versions,
and otherwise adapt network architecture where necessary. In order to setup
our numerical and qualitative experiments, we test the proposed model for in-
scription localization in the wild. In terms of numerical results, we conclude that
the proposed model attains comparable evaluation scores to its non-quaternionic
counterpart, while being less resource demanding.

The remainder of this paper is structured in the following manner. In section
2, we review related work. In section 3, we present the basics of quaternion
algebra, and in section 4, we move to quaternionic convolution and its use with
convolutional neural networks. In section 5, we discuss the proposed model and
we present the dataset, task and numerical experiments employed in section 6.
Finally, with section 7, we close the paper and discuss future work.

2 Related work

The automatic detection of text can be categorized into two main families. The
first direction includes identifying text of scanned document images whereas the
second contains text captured by natural images (indoor or outdoor images with
text of more complex shapes, cuneiform tablet images or inscriptions) which is
further subject to various geometric distortions, illumination and environmental
conditions. The latter category is also known as text detection in the wild or scene
text detection [19]. In the first category, text detection in printed documents is
usually tackled by OCR techniques [25], while in handwritten document images,
the problem is formulated as a keyword search in a segmentation free scenario
[4].

In the text detection-in-the-wild paradigm, conditions such as wide variety
of colors and fonts, orientations and languages are present. Moreover, scene el-
ements might have similar appearance to text components, and finally, images
may be distorted with blurriness, or contain degradations due to low camera
resolution during digitization process, capturing angle and partial occlusions.
Under such adverse situations deep learning based methods have shown great
effectiveness in detecting text. Recent deep approaches for text detection in the
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Fig. 2. Example ground-truth annotation for selected samples from our inscription
dataset.
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wild, inspired by object detection frameworks, can be categorized into bounding-
box regression based, segmentation-based and hybrid approaches.

Bounding-box regression based methods for text detection [11] regard text as
an object and aim to predict the candidate bounding boxes directly. Segmentation-
based methods in [24] enforce text detection as a semantic segmentation task,
aiming to classify text regions at pixel level and then obtain bounding boxes
containing text during post-processing. Hybrid methods [12] rely on a segmen-
tation step to predict score maps of text which in turn yield text bounding-boxes
as a result of regression. Similarly to [24], our method localizes text in a holistic
manner, by performing text detection as a semantic segmentation problem to
produce global pixel-wise prediction maps.

While CNNs are at the top of the dominant problem-solvers in image recog-
nition tasks, such as the text detection in the wild case explored in this work,
traditional real-valued CNNs encode local relations of the input features from
R,G,B channels of each pixel along with structural relations composed by groups
of pixels, independently. On the contrary, our proposed quaternionic conditional
adversarial network treats text detection as a semantic segmentation task, per-
forming at input RGB channels holistically with the use of quaternions, so as
to obtain a binary output of white text pixels. To our knowledge, GANs have
not been used yet for text detection in the wild [19]. Moreover, the quaterionic
representation of the conditional variant of the generative adversarial networks
is a first attempt to discriminate a text region by its non-text counterpart with
less computational load.

Recent works on quaternion CNNs [18, 26] indicate that the lower number
of parameters required for the multidimensional representation of a single pixel
in R,G,B channels leads to better image classification results than traditional
CNNs. The authors claim that the performance boost is also due to the specific
quaternion algebra. Such a boost is further explored in [16], where instead of a
real-valued dot product, a vector product operation allows quaternion CNNs to
capture internal latent relations by sharing quaternion weights during the prod-
uct operation, and in turn by creating relations within the product’s elements.

3 Elements of Quaternions

Quaternions, introduced in the mid-19th century, form an algebraic structure
known as a skew-field, that is characterized by all the properties of a field except
that of multiplication commutativity. We denote the quaternion skew-field as H.
Quaternions are four-dimensional, in the sense of H being isomorphic to R4, and
each q ∈ H can be written as:

q = a+ bi + cj + dk, (1)

where a, b, c, d ∈ R and i, j,k are independent imaginary units. Hence, analogous
to the representation of complex numbers, which bear one real and one imag-
inary part, quaternions have one real and three independent imaginary parts.
Alternatively, quaternions can be represented as the sum of a scalar (their real
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part) and a three-dimensional vector (their imaginary part). Formally we can
write:

q = S(q) + V (q), (2)

where S(q) = a and V (q) = bi+cj+dk. Further generalizing the related i2 = −1
formula for complex numbers, for quaternions we have:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i,ki = −ik = j. (3)

Quaternion conjugacy is defined as:

q̄ = a− bi− cj − dk, (4)

while quaternion magnitude is defined as:

|q| =
√
qq̄ =

√
q̄q =

√
a2 + b2 + c2 + d2. (5)

As a consequence of the properties of a skew-field and eq. (3), we have the
following multiplication rule for quaternions:

pq =(apaq − bpbq − cpcq − dpdq)+ (6)

(apbq + bpaq + cpdq − dpcq)i+ (7)

(apcq − bpdq + cpaq + dpbq)j+ (8)

(apdq + bpcq − cpbq + dpaq)k, (9)

where p = ap + bpi + cpj + dpk and q = aq + bqi + cqj + dqk. Following the
notation of eq. (2), we can write the above rule also as:

pq = S(p)S(q)− V (p) · V (q) + S(p)V (q) + S(q)V (p) + V (p)× V (q), (10)

where · and × denote the dot and cross product respectively. Interestingly, note
that when p, q are pure (i.e., they have zero respective real parts), the quaternion
product boils down to a cross product. The above formulae are also referred to
as a Hamilton product [17] in the literature.

4 Quaternionic Convolutional Neural Networks

Quaternionic Convolutional Neural Networks have been recently introduced as
variants of the widely used Convolutional Neural Networks that have quater-
nionic model parameters, inputs, activations, pre-activations and outputs. This
creates issues with a number of network components and concepts, including the
definition of convolution, whether standard activation functions are usable and
how back-propagation is handled. In theory, multiple proposals for a convolution
operation could be considered [2]. Two quaternionic extensions of convolution
have been succesfully employed in two recent works [18, 26]. In all cases, a quater-
nionic kernel g ∈ HK×K acts on an input feature map f ∈ HM×N to generate



Quaternion GANs for Inscription Detection in Byzantine Monuments 7

the output map g ∈ HM+K−1×N+K−1. The two extensions differ in the choice
of elementary operation used in each case.

In [26], a convolution extension that is based on the equation used to ap-
ply quaternionic rotation is employed (i.e. w → qwq̄, where q is a pure unit
quaternion). In particular, they define quaternionic convolution g = f ∗ w as:

gkk′ =

K∑
l=1

K∑
l′=1

s−1
ll′ wll′f(k+l)(k′+l′)w̄ll′ , (11)

where f = [fij ] denotes the input feature map, w = [wij ] is the convolution
kernel, and sll′ = |wll′ |.

In [18], which is the convolution version that we test in this work, convolution
is more simply defined as:

gkk′ =

K∑
l=1

K∑
l′=1

wll′f(k+l)(k′+l′), (12)

where the definition is analogous to standard convolution, with the difference
that elements are quaternionic and the kernel multiplies the signal from the left
on each summation term. Strided convolution, deconvolution and padding are
also defined analogously to real-valued convolution.

Concerning activation functions, the most straightforward option is to use
standard activations that are used in real-valued networks (e.g. sigmoid, ReLU,
etc.) and use them on each quaternion real and imaginary part separately, as
if they were separate real channels. This type of activations are referred to in
the literature as split-activation functions. In this work, we use split-activation
versions of leaky Rectified linear unit (ReLU) and the sigmoid function.

5 Proposed model

The proposed model is made up of the well-known pair of the generator and
discriminator networks that are used in standard GANs. The vanilla (non-
conditional) GAN objective function [13] is, in its original form as follows:

LGAN = Ex logD(x) + Ez log(1−D(G(z))), (13)

where G(·) and D(·) denote the generator and discriminator network respec-
tively. x are samples of the training set, while z denotes random noise that is
used as input to the generator. For the discriminator, the aim is to maximize
this function, while for the generator the aim is to minimize it. These competing
terms result in a two-player game, of which we require to obtain a parameter set
that would correspond to a Nash equilibrium.

We employ a supervised variant that is referred to as a conditional GAN
(cGAN) architecture, made popular with the pix2pix model [7]. Formally, the
objective function is written as:

LcGAN = Ex[logD(y)] + Ex[log(1−D(G(x)))]] + λEx,y[‖y −G(x)‖1] (14)
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where we can comment on a number of differences comparing with the standard
GAN formula of eq. (13). In particular, no random noise variable z exists, and
on the contrary the generator takes as input a sample x to produce a target y.
In that sense, the cGAN is supervised; a cGAN learns a mapping from input
x to target y. Also, a second L1 regularizing term is employed, penalizing the
difference of the produced G(x) to the desired target y. A regularizing term λ
controls trade-off of the two terms.

In this work, x is a quaternion-valued image, formally x ∈ HH×W , where H
and W are image height and width in pixels. In particular x is assumed to be a
dataset image, and estimate G(x) is a detection heatmap that ranges in [0, 1]. A
pixel value of G(x) that is close to 1 means a high probability that this pixel is
part of a text inscription, and vice-versa. Ground truth target y is binary, with
values in {0, 1} (see Fig. 2). In order to form each quaternion-valued input x,
we assign each of its three colour channels (Red, Green, Blue) to each of the
quaternion imaginary axes. Hence, we assign Red → i, Green → j, Blue → k.
The real part is left to be equal to zero, or in other words all values of x are pure
quaternions.

The generator is constructed as a U-net-like model [22] with two symmet-
ric groups of layers, arranged to an encoder and a decoder part. The encoder is
composed of strided quaternionic convolutional layers that produce quaternionic
feature maps of progressively lower resolution in comparison to the original in-
put image size. The decoder mirrors the encoder layers, by using a quaternionic
deconvolutional layer for each forward convolution layer of the encoder, and up-
sampling feature maps progressively to the original resolution. Furthermore, U-
net-like skip connections connect corresponding encoder - decoder layers. We use
4 quaternionic convolutional layers for the encoder, and 4 quaternionic deconvo-
lutional layers for the decoder. Dropout layers top layers 5 and 6. Convolutions
are strided with stride=2, kernel sizes=4 × 4, and output number of channels
equal to 16, 32, 64, 64 for layers 1 to 4 respectively. Deconvolutional layers share
the same characteristics, mirroring the encoder architecture, with added skip
connections. All layers, except the final layer, are topped by split-activation
leaky ReLU functions with parameter = 0.2. These act on each quaternionic
pixel value x as:

lReLUq(x) = lReLUr(xa) + lReLUr(xb)i + lReLUr(xc)j + lReLUr(xd)k (15)

where lReLUr is the well-known real-valued leaky ReLU function and we assume
x = xa + xbi + xcj + xdk. The generator implements a mapping HH×W →
[0, 1]H×W , from a quaternion-valued image to a real image. All intermediate
layers map quaternion-valued feature maps again to quaternion-valued feature
maps, save for the final activation. We define the final activation simply as the
sum:

qsum(x) = xa + xb + xc + xd. (16)

which ensures a real-valued output.
The discriminator is constructed as a cascade of strided quaternionic convo-

lutions, with strides and size identical to those used for the generator encoder. It
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implements a mapping HH×W → [0, 1], where the output represents the degree
in which the network believes that the input is fake or genuine. Inputs to the
discriminator are constructed as concatenations of color inscription images to
the estimated target. In particular, we map Detection estimate → real part,
Red → i, Green → j, Blue → k. As the output is real while the input is
quaternionic, in the final layer we use the activation of eq. (16), before applying
a sigmoid function on top of it. The discriminator is made up of 6 quaternionic
convolutional layers. Output number of channels equal to 16, 32, 64, 64, 128, 1
respectively for the 6 convolutional layers.

Note also that the setup of the generator and discirminator is such that inputs
and outputs can be of variable size. Indeed, the generator is a fully convolutional
network, with parameters and layers that are independent of input and feature
map size. The discriminator leads to feature maps that are reduced to a single
probability value, again regardless of the input image and annotation dimensions.

6 Experimental results

6.1 Dataset

The dataset is comprised of a total of 67 images containing inscriptions written in
Greek, and found in Byzantine churches and monasteries in the region of Epirus,
located in Northwestern Greece [9, 21]. Our inscriptions are donor’s inscriptions,
typically made up of a few lines of text and containing information about who
donated funds and other resources required to build the monument where the
inscription is located. The photographed images were captured with a Samsung
GT-I9505 and a Nikon Coolpix L810 camera. All images were then resized so as
their width was at most 1024 pixels, keeping their aspect ratio fixed. We have
chosen to partition the set to a training and test set according to a 80%/20%
rule, which resulted to training and test sets of 55 and 12 images respectively.

6.2 Experiments

Concerning training, we have used the Adam optimizer with parameters β1 =
0.5, β2 = 0.999. No data augmentation is used. The trade-off parameter λ was
set to 10 and base learning rates were set to 10−4 for the discriminator and
5×10−4 for the generator. Furthermore, a learning rate scheduling strategy was
used, where learning rate is divided by 10 for both networks if test binary cross-
entropy deteriorates continuously for 2 consecutive epochs. Batch size was set
to 1, as our model was setup to accept inputs of variant size.

We have used two evaluation measures: a) binary cross-entropy (BCE) of the
test images and b) Intersection over Union (IoU). Test BCE is applied in an
analogous manner to the corresponding loss component discussed in section 5,
and effectively tests for correct per-pixel binary classification. The IoU measure is
applied after computing a binarized version of the estimate detection map, with
a threshold of 0.5 (Pascal VOC challenge [3]). Subsequently, IoU is computed
between this binarized estimate and the ground truth.
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Fig. 3. Generator loss, Discriminator loss, Test BCE loss and IoU score plots for all
models tested in this work. From top row to bottom, we show results for QGAN-
standard, VGAN-standard, QGAN-large, VGAN-large. Left column shows Generator
and Discriminator loss (red and blue respectively, lower is better for both), and right
column shows test BCE and IoU (black and green respectively. Lower BCE is better,
higher IoU is better). Generator and Discriminator losses are smoothed with a 100-
point uniform convolution kernel and plotted per iteration, test BCE and IoU are
plotted per epoch. IoU score is shown multiplied 10× for better visualization.

In figure 3, we show plots for the generator and discriminator loss calculated
per training iteration, and test BCE loss and IoU calculated as an average over
test images and at the end of each epoch. QGAN and VGAN are compared,
as well as two considered model sizes. Standard size corresponds to the model
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described previously in section 5. Large size corresponds to QGAN and VGAN
models that have double the number of channels per convolutional or deconvo-
lutional layer.

Original image Epoch=1 Epoch=2 Epoch=5 Epoch=100 Epoch=150 Ground truth

Fig. 4. Sample results of proposed model on test images.

We show results for test images as a function of current epoch training in
figure 4.

We compare each Quaternionic GAN model with its vanilla (non- quater-
nionic) counterpart, by considering a network with the same amount of neurons.
For each quaternionic neuron of the QGAN, we need to create four neurons
for the corresponding VGAN, due to the isomorphism between H and <4. As
shown before [17], computation of the quaternionic (Hamilton) product and con-
sequently quaternionic convolution requires considerably less storage. Judging
from the results shown in fig. 3 and table 1, we can conclude that in all cases
performance of the proposed QGAN is comparable with its corresponding non-
quaternionic model, and definitely with scores on the same order of magnitude.
IoU scores seems somewhat worse, though BCE results are more inconclusive,
with QGAN faring slightly better than VGAN with respect to the “Standard”
model size. What is definitely noteworthy though, is that QGAN is a consid-
erably less expensive network (in table 2 we show the number of total network
parameters for each version of the QGANs and VGANs considered). The number
of weights, translated in practice in required storage, is only 25% of the non-
quaternionic versions. This means that the proposed QGAN can achieve similar
results with the standard GAN, using four times less parameters.
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Table 1. Numerical results for two variants of the proposed model (QGAN) versus its
non-quaternionic counterpart with the same number of neurons (VGAN). Test BCE
figures (lower is better) are shown and corresponding IoU scores in parenthesis (higher
is better).

Model / Network type Standard Large

Quaternionic GAN 6.54(45.4%) 6.91(44.9%)

Vanilla GAN 7.4(51.9%) 6.45(52.0%)

Table 2. Comparative table of model sizes, measured in numbers of trainable weights.
Number of quaternionic and real weights are shown respectively. In parenthesis, the
number of equivalent real weights is shown, in order to ease storage size requirements
comparison for the two variants.

Model / Network type Standard Large

Quaternionic GAN 381, 426 (1, 525, 704) 1, 516, 514 (6, 066, 056)

Vanilla GAN 6, 053, 826 24, 166, 274

7 Conclusion and Future work

We have presented a new variant of Generative Adversarial Networks that uses
quaternion-valued neurons and weights, as well as suitable quaternionic variants
of convolutional and deconvolutional layers. The proposed model is a condi-
tional GAN, with the generator accepting a color input image and outputing a
detection heatmap. We have applied the new model on the task of inscription
detection, where we have used a set of byzantine monument text inscriptions as
our targets. Quaternion-valued networks such as the proposed one can inherently
deal with representing color intercorrelation. The inscriptions themselves are not
characterized by color variance; however, the elements that are not part of the
inscription very often do (murals, paintings). The proposed network showed that
it can be as effective as a real-valued GAN, while being much less expensive in
terms of model size. This can be a very important factor, especially in use cases
where the resource budget is very constrained (e.g. neural networks running on
mobile phones, etc.).

As future work, we plan to conduct more extensive sets of experiments, test-
ing multiple architectures as well as other GAN variants, or experiment with
spatially-constrained adjustments to the loss function [15]. Alternative features
may also be considered, such as QFT-based cues [6]. Extensive augmentation
is another technique that we can plan to explore, especially using perspective
transforms to simulate alternate viewpoints, or experimenting with learning-
based augmentation [1].
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