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ABSTRACT

We present a new keypoint detection method that generalizes
Harris corners for multispectral images by considering the in-
put as a quaternionic matrix. Standard keypoint detectors run
on scalar-valued inputs, neglecting input multimodality and
potentially missing highly distinctive features. The proposed
detector uses information from all channel inputs by defining
a quaternionic autocorrelation matrix that possesses quater-
nionic eigenvectors and real eigenvalues, for the computa-
tion of which channel cross-correlations are also taken into
account. We have tested the proposed detector on a variety
of multispectral images (color, near-infrared), where we have
validated its usefulness.

Index Terms— Quaternions, Keypoint detection, Multi-
spectral images

1. INTRODUCTION

Keypoint or feature detection is a process that is used as a
first step in a multitude of problems in computer vision and
image processing [1]. It finds uses in various applications, in-
cluding panorama stitching, object detection, image retrieval,
photogrammetry and 3D reconstruction [2, 3]. Since the first
keypoint detectors around the early 1980s and the introduc-
tion of major milestones such as the Harris and SIFT algo-
rithms, today the trend on keypoint detection and description
is centered around learning and deep learning-based methods
[4, 5, 6]. Success of learning-based methods in creating key-
point detectors has not been as spectacular as in other fields
in vision or even keypoint description [4], and state-of-the-art
methods that are based on keypoint detection (e.g. 3D recon-
struction) still make use of standard, “hand-crafted” methods
[2, 7]. The recent state-of-the-art Key.Net detector makes use
of both hand-crafted and learned filters [4].

While hand-crafted detectors are still relevant today, the
vast majority of either older or more recent detectors relies
on estimating a feature response metric based on first and
second-order gradients of a single input channel (e.g. struc-
ture tensors / autocorrelation for Harris, Difference of Gaus-
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sians for SIFT, etc.). If the input comprises more than one
channel, a significant amount of information, including chan-
nel cross-correlation, must simply be neglected. Multispec-
tral inputs include color images as the simplest case, com-
prising 3 channels. A paradigm that is becoming increasingly
more relevant is the availability of extra channels correspond-
ing to non-visible band sensors such as Depth sensors, Near
Infrared [8] or thermography imaging [9] among other cases
[10]. Decreasing sensor hardware costs have contributed to
this trend, with imaging inputs to digital image processing
pipelines comprising up to 4 channels being much less rare
than a decade ago.

With this work, we propose a keypoint detection scheme
that can handle multispectral inputs by using a quaternion im-
age representation and defining a corresponding quaternionic
structure tensor and cornerness function, generalizing the
classical Harris keypoint detection algorithm. Quaternions
are mathematical entities that can be seen as 4-dimensional
generalizations of complex numbers [11, 12, 13]. Hence,
the imaged multispectral cues can be treated each as a single
entity per pixel. The multimodal natural of the input, includ-
ing cross-channel correlations can consequently be taken into
account in a natural manner. In [8], a multi-band extension
of the autocorrelation matrix had been proposed, that cannot
take into account cross-channel correlations, as it is defined
as the sum of autocorrelation over all bands separately. Fur-
thermore, the eigenstructure of the proposed quaternionic
autocorrelation matrix preserves information over all chan-
nels. Experimental results on color and multispectral images
(color + infrared) validate the usefulness of the proposed
detector.

In the remainder of the paper, we examine preliminaries
on quaternionic analysis in section 2, define the proposed
Quaternionic Harris (QuatHarris) detector in section 3, and
discuss eigenstructure computation of the defined quater-
nionic autocorrelation in section 4. We showcase numerical
and qualitative experiments in section 5 and close the paper
with a short discussion in section 6.

2. PRELIMINARIES ON QUATERNIONS

Quaternions are mathematical objects that form a skew-field
H, i.e. quaternion addition and multiplication are defined



with all the properties of a field, except that of multiplica-
tion commutativity. Quaternions q ∈ H share the basic form:
q = a+bi+cj+dk, where a, b, c, d ∈ R and i, j,k are inde-
pendent imaginary units, and in general pq 6= qp for p, q ∈ H.
Real and complex numbers can be regarded as quaternions
with b, c, d = 0 or c, d = 0 respectively. By definition it
holds that i2 = j2 = k2 = ijk = −1, and consequently
ij = −ji = k, jk = −kj = i,ki = −ik = j. The length
or magnitude of a quaternion is defined as |q| =

√
qq̄ =√

q̄q =
√
a2 + b2 + c2 + d2, where q̄ is the conjugate of q,

defined as q̄ = a − bi − cj − dk. The property µ2 = −1
holds if and only if µ is a unit pure (i.e. with zero real part)
quaternion [12, 11]; hence, since there is an infinite number of
unit pure quaternions, µ2 = −1 possesses an infinite number
of solutions, in contrast to complex algebra.

A useful representation of quaternions is through the
Caley-Dickson form [12, 14], where a quaternion may be
represented in a unique way as a complex number with com-
plex real and imaginary parts in particular q = A + Bj with
A = a + bi, B = c + di. An analogous operation can be
performed for quaternion matrices, which can be written as
tuples of complex matrices [11, 15]. Indeed, for any quater-
nionic matrix A, there exist unique quaternionic matrices
A1, A2 such that A1 + A2j [11]. Furthermore, the following
function can be defined, mapping any n × n quaternionic
matrix to a 2n× 2n complex matrix:

χA =

[
A1 A2

−Ā2 Ā1

]
(1)

Matrix χA is called the adjoint of A. The mapping χ to
the adjoint bears interesting properties [11], from which fol-
lows that it can be used to compute eigenvalues and eigen-
vectors of quaternionic matrices. Note that eigenvalues are
discerned between left and right ones for quaternionic matri-
ces, as Ax = λx is a different problem than Ax = xλ [11],
while right eigenvalues are in general infinite in number.

3. PROPOSED DETECTOR

Similar to the motivation behind with the classical Harris key-
point detector (or the older Moraveć detector), we aim to find
image points where the following quantity is maximized for
small displacements ∆x:

E(x) =
∑

xn∈N(x)

g(xn)|I(xn)− I(xn + ∆x)|2 (2)

where N(x) represents a set that contains points in a neigh-
bourhood around x and including itself, and I(x) represents
image intensity at point x. Intensity for each point x is consid-
ered quaternionic, i.e. I(x) ∈ H∀x, so up to 4 channels can be
taken into account by assigning each channel to one of the real
or imaginary components. If the number of channels is less
than 4, the corresponding quaternionic component is set to

zero for all image points. The weight function g(xn) ∈ R+ is
used to weigh summation terms that correspond to points xn
according to their distance to point x. By taking the first term
of the quaternion-valued Taylor expansion [16] and |x|2 = xx̄
for x ∈ H [11], eq. 2 is written as

E(x) =
∑

xn∈N(x)

g(xn)∆xT∇I(xn)∆xT∇I(xn)

=
∑

xn∈N(x)

g(xn)∆xT∇I(xn)∇I(xn)T∆x

= ∆xT [
∑

xn∈N(x)

g(xn)∇I(xn)∇I(xn)H ] ∆x (3)

where H denotes the conjugate transpose. From the above
formula, the terms under summation result to the 2 × 2
quaternion-valued matrix:

Aq =
∑

xn∈N(x)

g(xn)∇I(xn)∇I(xn)H (4)

It is straightforward that Aq is Hermitian. Consequently, the
right eigenvalues of Aq are real [11], exactly two and are also
left eigenvalues, since λx = xλ when λ ∈ R 1. A corner-
ness measure c(Aq) with a parameter k can then be defined
in order to classify candidate points as keypoints as done in
the standard Harris algorithm [3], with c(Aq) = (λ1λ2) −
κ(λ1+λ2)2. Interestingly, note that the off-diagonal elements
of each rank-one component of Aq are of the form cIxIy or
its conjugate. These elements are in turn a function of factors
combining information from different channels, thus express-
ing channel cross-correlation in Aq .

Fig. 1. From left to right: Original image, image degraded
with LUN=70% and WGN σ2 = 10, result of Harris detector
on image degraded with LUN=99% and WGN σ2 = 1, result
of proposed QuatHarris detector on the same image.

4. EIGENSTRUCTURE OF QUATERNIONIC
AUTOCORRELATION

Concerning computation of the eigenstructure of Aq , we first
consider its diagonalisation as UHAqU = Λ, where Λ is a
real diagonal matrix with the two eigenvalues in its diagonal
and U a quaternion unitary matrix [11]. We can proceed by

1This is a consequence of theorem 5.4 and corollary 6.2 in [11].



Fig. 2. Comparison of detector accuracy (higher values are
better). Tests were run on degraded versions of the image in
Fig. 1. The horizontal axis corresponds to increasing levels of
LUN degradation. WGN levels are σ2 = 1 and 10 on the
left and right plots respectively.

taking the adjoint of both sides: χHU χAq
χU = χΛ, where we

have used χAB = χAχB and χUH = χHU [11]. It now suf-
fices to diagonalize the complex 4× 4 matrix χAq (also Her-
mitian [11]). With a similar argument as for the Quaternionic
Singular Value Decomposition (QSVD) [15], eigenvalues will
be obtained in two pairs of repeating values, and eigenvectors
are found as vn = cn′ − dn′j for n = 1, 2 and n′ = 2n − 1,
where wk = [ ck dk ]T is the kth column of χU after indices
are reordered by eigenvalue magnitude.

5. EXPERIMENTS

In this section, we present a set of experiments where we test
the proposed quaternionic detector on various color and mul-
tispectral inputs. In all cases, k = 0.04 was used as the pa-
rameter of the cornerness function for all Harris variants, in-
cluding the proposed one, and a multiscale-affine implemen-
tation was employed [2].

Proof of concept. In the first proof-of-concept experiment,
we compare QuatHarris against the standard Harris detector.
Unlike Harris, which must run over a single modality regard-
less of the number of input modalities, the proposed QuatHar-
ris can exploit information from all modalities jointly. To
this end, we ran the two detectors on degraded versions of
the image shown in Figure 1 2. We have applied two types
of degradations on the input: Luminance Uniformity Noise
(LUN) and White Gaussian Noise (WGN). With what we call
LUN noise in this paper, we suppress information on the lu-
minance (L) channel of the input up to a certain amount spec-
ified by the noise parameter, expressed in terms of a percent-
age (α ∈ [0, 1]). In particular, assuming an undegraded input
I(x, y), we define Ichroma(x, y) as a version of I where the
luminance channel is set to a fixed value for all pixels (50, i.e.
average luminosity), hence only chrominance information is
preserved. The image degraded with level α LUN is then
defined as: ILUNα (x, y) = (1− α)I(x, y) + αIchroma(x, y).
Hence, LUN intensity increases asα tends to 1. We have mea-
sured keypoint detection accuracy by counting the number of

2Digitized version of the painting “Boy with Knapsack - Color Masses in
the Fourth Dimension” by K.Malevich (1915).

keypoint estimates that were located around square vertices
(since these are the only corners of the image). By examin-
ing the qualitative result in Fig. 1, we can observe that the
standard Harris detector fails to find meaningul keypoints, as
it works on luminance information. Note that we could ex-
pect a similar result for any hand-crafted keypoint detector
that is working on single-channel gradient information (e.g.
SIFT, SURF, etc.). On the contrary, keypoints are concen-
trated around actual corners with the proposed detector. Nu-
merical results over detections on differing degradation pa-
rameters can be examined in Figure 2, where QuatHarris is
again shown to outperform Harris.

Visualization of quaternionic eigenvectors: We have seen
that both eigenvalues of Aq are real, as it is by construc-
tion Hermitian (sec. 2); however, both of its eigenvectors
are in general quaternionic. In Figure 3 we show visualiza-
tions of its eigenvectors. We take unit-norm eigenvectors
v = [v1v2]T ; note however that this does not mean that the
quaternionic components v1, v2 ∈ H of the eigenvector are
also unit-norm. Hence we visualize each eigenvector com-
ponent as two images, one that contains its magnitude, and
one that contains information about its angle. For this latter,
we normalize each eigenvector component to unity and use
its Euler angle representation to map it onto <3 [17] and
subsequently as a color image. Note that, as is the case with
complex Hermitian matrices, quaternionic eigenvectors of
Hermitian matrices are orthogonal to one another as well.

Image matching: We then use the proposed keypoint de-
tector to find matches over tuples of frames of a color video.
The video used for the test has been shot with a DJI M200
Unmanned Aerial Vehicle (UAV) on the premises of the Cen-
tre of Research and Technology (CERTH) in Thessaloniki,
Greece (Fig. 4). A total of 23 tuples of frames (each at a res-
olution of 500 × 375 pixels) were given as input to a match-
ing pipeline consisting of the following steps: Detection of
K keypoints on each frame QuatHarris and description with
SIFT, and matching them with RANSAC. As all input images
are consecutive frames of the same time series, we can expect
a high number of keypoint matches. As a check to test robust-
ness of the QuatHarris cornerness measure, we have extracted
only a low number of keypoints, starting fromK = 50. In Ta-
ble 1, we can view a numerical comparison between the pro-
posed QuatHarris detector and the Multispectral Harris detec-
tor [8]. We show the cumulative total number of matches, i.e.
over all 23 tuples, as well as the number of tuples where the
one method or the other has scored more matches than the
other. (Note that for a number of tuples a RANSAC match
could not be established, hence the average is less than 3 in
K = 50). A slight advantage for lower K values for the pro-
posed QuatHarris method may be observed. This could be
attributed to the fact that while both detectors take all chan-
nels into account, only the QuatHarris cornerness measure
also uses cross-channel correlation information, resulting in
slightly more distinctive keypoints. This advantage becomes



Fig. 3. Visualization of quaternionic autocorrelation eigenvectors. Each eigenvector is comprised of two quaternionic compo-
nents. On each column, from left to right: Original image, magnitude/angle of the 1st component of the major eigenvector,
magnitude/angle of the 2nd component of the major eigenvector, magnitude/angle of the 1st component of the minor eigenvec-
tor, magnitude/angle of the 2nd component of the minor eigenvector. In the last row, input is a 4-dimensional image comprised
of the RGB component of the input image of the row above and the input shown on the current row as the NIR channel.

Fig. 4. Samples of the CERTH dataset.

less pronounced asK increases and RANSAC attains a larger
pool of candidate matches.

Table 1. Comparison between QuatHarris and Multispectral
Harris. The number of CERTH dataset tuples where one de-
tector outperforms the other is reported.

Method / #kpoints 50 100 150 200 250

QuatHarris 2 9 7 6 7
Multispectral 1 4 3 7 9

Object detection: Finally, we have tested QuatHarris in
the context of object detection. The test was run on a multi-
spectral image and template of the database introduced in [18]
(see Fig. 5). The image is comprised of 4 channels, namely
the RGB channels plus a Near Infrared (NIR) channel. NIR is
known to bear information that is complementary to the chan-
nels corresponding to the visible spectrum [18, 8], hence in-
cluding it will in principle lead to better, more distinctive key-
points. We have extracted 500 keypoints for the template and
target image, for which we have computed SIFT descriptors.
While this figure may seem high, a correspondence can be

established with QuatHarris keypoints, but not so with stan-
dard Harris keypoints. As Harris cannot take advantage of all
available channels, its cornerness response is led to prioritize
less distinctive keypoints.

Fig. 5. Matching a template for object detection. Informa-
tion from all four channels (RGB+NIR, shown at top left and
bottom respectively) is taken into account.

6. CONCLUSION AND FUTURE WORK

We have presented an extension of the Harris detector that
can take advantage of the content and cross-correlations of
multiple-channel inputs, unlike standard hand-crafted detec-
tors. As future work, we plan to work on coupling with a
quaternionic analysis-based descriptor, examining uses with
a learning-based scheme (e.g. HardNet [5]) or researching
extensions to more complex algebras such as octonions [19].
The potential of using quaternionic eigenvectors as a basis for
a better detector or an image cue will also be researched, as
well as other application perspectives [20, 21, 22].
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