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Abstract—In this work, we present a novel approach for
the extraction of deep features from a Convolutional Neural
Network (CNN), designed for the task of Keyword Spotting
(KWS). The main novelty of our work concerns the generation
of a compact descriptor able to simulate the existence/absence
of unigrams or bigrams. This is accomplished using a binary,
attribute-based representation of a word string together with
an appropriate training procedure. Deep features are extracted
from the output of the last convolutional layer and are
organized into zones in order to incorporate spatial information
of the detected attributes. In addition, a novel optimization
scheme is proposed which relies on a very effective initial-
ization of the network generating the compact descriptors.
Experiments conducted on the IAM dataset prove the efficiency
of the novel compact descriptor since the proposed system’s
performance in on par with the state-of-the-art.

I. INTRODUCTION AND RELATED WORK

Word or keyword spotting (KWS) is defined as the

problem of searching for a specific textual query in a corpus

of digitized documents [1]. The query can be chosen by

the user either in the form of a cropped image containing

an instance of the word to be searched, or in the form

of a text string. These two spotting scenarios are usually

referred to as query-by-example (QbS) and query-by-string

(QbS) keyword spotting. QbE keyword spotting can hence

be viewed as a special form of content-based image retrieval

(CBIR), where the query is an image containing a digitized

word instance (“word image”). While most KWS systems

implement either one of the QbE or QbS scenarios, recently

there have been proposed systems implementing both QbE

and QbS under the same underlying model. This is the case

for example in [2], where available training word images and

text strings are used to learn a projection onto a common,

latent subspace characterizing both word image and word

string instances. The learned projection parameters are used

to project the user query and the database word instances

on the latent subspace. As projections are defined for either

images or text strings, QbE and QbS are performed simply

as nearest neighbor searches on the latent subspace. The

same model can also be used for word recognition under a

similar consideration.

Another taxonomy of KWS systems is based on the exact

type of the elements that are to be retrieved, as well as

the level of image segmentation that is assumed before the

application of the KWS system per se. Hence, depending on

whether a word-level or line-level segmentation is assumed,

different KWS systems have been proposed (e.g. [3], [4]).

Segmentation-free systems are also possible, where docu-

ment pages are provided with no assumed segmentation on

any level, hence casting KWS as a special form of object

detection [5].

Supervised learning-based methods are a definite trend

in the KWS state-of-the-art. In particular, convolutional

networks [6] and recurrent neural networks [7] are prominent

neural network architectures, used successfully for the KWS

task.

In this paper, we propose a KWS system that is based on a

new deep, compact word descriptor, that is computed using

a set of appropriately trained neural networks. The proposed

descriptor is also compact, in the sense that word instances

can be represented as low-dimensional vectors following our

technique; this result can be very advantageous in a large-

scale KWS setting, where large document collections need

to be efficiently indexed and subsequently searched.

Existing approaches either assume lexicon classes (each

unique word corresponds to a different class) or an embed-

ding of the spatial distribution of the existing characters

(e.g. [6], [8]). The most popular string embedding is the

Pyramidal Histogram of Characters (PHOC), which encodes

the spatial information of the characters by using a pyramidal

strategy [2]. The recent PHOCNet model [6] uses this

attribute-based PHOC representation as a target to a CNN,

which transforms images to a string embedding space and

therefore both QbE and QbS scenarios are enabled.

In contrast to the aforementioned approaches, for which

each word is represented by a discriminative target class,

we assume that our target contains only the existence or not

of unigrams and bigrams, resulting to a simple attribute-

based representation. This approach cannot discriminate

different words at target level, since many words contain

the same characters, e.g. “dog” and “god”. To address

this, the spatial information of each character should be
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added to the generated descriptor. The word descriptor is

therefore extracted from the convolutional output of the final

convolutional layer, which can be viewed as an intuitive

discriminative feature map (note that conceptually related

maps, though following quite different considerations, were

recently presented in [9] extending convnet classifiers and

in [10] extending Generative Adversarial Nets (GANs)).

Specifically, the word descriptor is the concatenation of

the max-pooled outputs after applying a zoning scheme on

the convolutional output, i.e. splitting of the output into

horizontal segments.

Following the aforementioned feature extraction proce-

dure, the generated descriptor is dependent to the number

of filters of the last convolutional layer, which is typically

large; this shortcoming is addressed by the use of a compact

descriptor. To the end of computing the proposed compact

descriptor, we present a method that entails a novel, two-

stage optimization scheme. According to the proposed opti-

mization scheme, two separate neural network architectures

are defined. This couple of neural networks, dubbed here

the extended and compact network are trained sequentially,

in the sense of using the former network’s output as a pre-

training initialization for the latter. We demonstrate that this

scheme leads to superior results compared to obtaining deep

features separately from either of the two networks.

Another contribution of this work, is a novel training

strategy, which relies on the application of the fully con-

nected layers on parts of the convolutional output and on

the combination of different responses into a single output

(the attribute-based target). The idea behind this approach

is to train a model that can accurately detect unigrams (or

bigrams) independently of the context, i.e. the word image,

as it will explained in detail at the corresponding section.

The rest of the paper is organized as follows: In section

II, the processing pipeline of the proposed method is out-

lined, focusing mainly on the description of the model’s

components as well as on the analysis of the proposed

optimization scheme. In section III we evaluate the proposed

algorithm with keyword spotting trials on the IAM dataset.

We conclude the paper in section IV, where we discuss

the paper contribution together with directions for future

research.

II. PROPOSED NETWORKS AND OPTIMIZATION SCHEME

The proposed keyword spotting method assumes a set

of annotated, word-level segmented images to be available

for training. The case of interest is the QbE paradigm; the

query, as well as the elements to be retrieved are segmented

word images. Concerning the method itself, the backbone of

the proposed processing pipeline is a pair of convolutional

neural networks. These two networks are distinct, yet they

are architecturally similar to a great extent. We shall dub the

two networks, extended network and compact network. The

architecture of both networks follows the template set by

the PHOCNet model [6], [11], where a pyramidal pooling

approach was employed for the flattening layer. However,

the application of the network layers is different from the

typical approach of [11]. One of the main contributions

of this work is to apply the fully connected layers on

multiple max-pooled outputs from the convolutional part,

rather than creating a unique, fixed-size, feature vector from

the flattening operation and fed it to the fully connected

part. This different approach is adopted in order to simulate

the existence or absence of characters, which is the target

of our network. Contrary to the proposed approach, the

concatenation of pyramidal pooling outputs, a procedure

which is followed by [6], [11], contains spatial information

being propagated to the fully connected part.

The final word image descriptor is evaluated as a function

of convolutional layer activations, following the paradigm of

deep features [12]. In this work, we use a word label that re-

lies on encoding merely the existence of unigrams/bigrams,

without directly taking into account their relative positions

on the word. This is in contrast to what is done by recent

word embeddings ([2], [13], [8]). Given the aforementioned

targets, we expect that the final convolutional layer will

generate features closely related to the existence of the

respective unigrams or bigrams. Concerning the testing pro-

cedure, we integrate the description with a spatial reference

of attributes indirectly, by applying a zoning scheme. The

final, fixed-sized feature vector is generated by a max-

pooling operation over the segmented feature map into

zones. An overview of the base neural network architecture

can be examined in Figure 1.

A. Word labels

According to the PHOCNet architecture, the network

should learn the characters’ representations (i.e. if a specific

character exists in the image) along with their relative

position (e.g. the character is in the first half of the image).

This is imposed by the PHOC embedding, which encodes

characters and their relative position. The PHOC formulation

of relative positions requires filter responses that distinguish

characters as well as their position and therefore a great

number of such (convolutional) filters are required.

One straightforward simplification is to train the network

in order to decide upon the existence or not of the possible

characters. The word label for this approach would be

a binary embedding (denoting the existence or not) of

possible unigrams (lowercase letters and digits: 36 unigrams

in total). An extension to the aforementioned embedding is

to also include all possible bigrams to the word target (36

unigrams + 36 × 36 bigrams). Hence, the length of the

last, sigmoid-activated layer is 36 × 37 = 1337 neurons

long. This representation is expected to be sparse, since

several bigrams do not exist for the English language (or

the selected script language). The reasoning of such an
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Figure 1. Neural network architecture overview. The base architecture, used for both employed neural networks in this work (“compact” and “extended”)
follows the template of a convolutional neural network comprising three componenents: a convolutional backbone (left), a pooling layer (center) and a
fully-connected head (right). The pooling layer, applied on the last convolutional layer, is used as a deep feature extractor.

alternative representation is that usually isolated characters

differ visually when written alongside specific characters.

Both representations are useful for training filters that

correspond to specific characters (or couples of characters).

However, they cannot constitute a descriptor that could be

used for effective word comparison, which would in turn

be necessary for a KWS system. This holds especially

when taking into account a description comprising only

unigram attributes with no spatial reference. To this end,

we use the response of the final convolutional layer as a

deep feature. This will ideally encode non-spatial, character

attribute information. Concerning dealing with encoding

spatial information, we integrate the obtained feature with a

zoning scheme [14].

B. Network Architecture

We adopt a network consisting of three main components,

namely:

• Convolutional Part: 2 convolutional layers → 2 × 2
max-pooling layer → 2 convolutional layers → 2 × 2
max-pooling layer → 9 convolutional layers.

• Pooling/Flattening Part: Use of a Temporal Pyrami-

dal Pooling (TPP) [11] scheme on the convolutional

output, without concatenating the resulting max-pooled

outputs. This is explained in detail in the following

subsections.

• Fully Connected Part: 3 fully connected layers re-

sulting to a vector whose size is equal to the word’s

representation attributes (36 or 1337).

The size of all convolutional filters is set to 3× 3. All non-

pooling layers are topped by ReLU non-linearities, except

for the output layer. The network is topped by sigmoid

activation functions, with each layer variate representing a

word image attribute class.

Each level l of the previous convolutional layer output

is segmented into l horizontal zones. As a result, for nl

levels and a convolutional output of depth d, we get a

set of N =
∑

l=1,...,nl
l = nl(nl + 1)/2 different d-

sized vectors. Compared to the standard Temporal Pyramidal

Pooling (TPP) layer, an important tweak at this point is that

we do not concatenate the N vectors into a single vector.

Instead, each one of the N max-pooled, d-sized outputs is

fed to the fully connected stack of layers separately.

An alternative way to understand the proposed approach

is to view the fully connected stack in our model as a stack

of convolutionalized layers. Each fully connected layer can

then be seen as a deep 1 × 1 trivial convolutional filter,

where the (single) filter weight for each depth value would

correspond to a fully connected synapse weight. In the

proposed architecture, this paradigm is employed with the

additional tweak that the (trivial) convolutional filter weights

are shared among each one the N vectors that are produced

as the output of temporal pooling.

The N vectors that are produced as the output of the

modified TPP layer are fed to the fully connected layer

and N output vectors are generated. On the output layer,

the variates of each of these N sigmoid-activated vectors

correspond to the word attributes previously described in

subsection II-A. Each one of the separate N vectors can

hence be interpreted as an attribute detector and need to be

combined into a single output. The outputs of each zone

segment, after the fully connected part, corresponding to

a specific pyramid level should be combined in order to

produce a valid attribute representation, since each zone

contains a different set of unigrams/bigrams. Therefore, they

can be combined using a union operation of the separate

attribute representations, i.e. an element-wise max operation.

Each pyramid level, after the aforementioned max-pooling,
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should provide a valid attribute representation of the word

and under this assumption we employ an element-wise min

operation over the different attribute representations, which

relates to optimizing the precision of the representations

(in other words, the min operation assists the correction of

true negatives over the pyramid levels). Figure 2 visually

depicts the training strategy, consisting of union/intersection

operations, that we described above.

Fully Connected part 

Convolutional output  
(h × w × d) ( )

Pyramidal Zoning 

Max pooling Max pooling Max pooling Max pooling 

Max Max Max Max 

Min 

Target Output: 

Figure 2. Proposed training strategy, which uses a modified TPP layer and
generates multiple outputs for each image. Convolutional outputs are first
pooled to N feature vectors (top, in this figure N = 4+ 3+ 2+ 1 = 10)
using temporal max pooling. These are transformed to N attribute detector
outputs (bottom), which are then combined with max and min operations
to form a single attribute detector output.

C. Extended and compact network

The two networks, extended and compact, differ in the

layout of exactly one layer, which however makes for a

considerable difference in practice. The layer that differs

is the last convolutional layer, i.e. the layer that is used as

input to the pyramidal pooling layer. As mentioned before,

the word image representation is linear to the depth of the

convolutional output which means that reducing the number

of filters of the last convolutional layer results to compact

image representations. Nevertheless, such reduction may

significantly affect the network performance.

Our goal is to examine if we can accomplish acceptable

performance on the QbE KWS scenario even if we signifi-

cantly reduce the depth of the convolutional output, i.e. the

number of filters. A compact representation is supported

by the idea of learning filters that only detect characters

and not their spatial information, since much less filter

depth is required for this goal. It should be noted that

the compact architecture not only provides compact feature

representations, but also results to a significant reduction of

the inference time.

D. Optimization scheme

An important observation is that the training of the

compact model, assuming random initialization, converges

to suboptimal solutions. This is not surprising, since the

reduced last convolutional layer operates as bottleneck to

the entire architecture and it is highly probable to have a

unique solution with respect to its parameters. Such a unique

solution is difficult to approximate while using a stochastic

gradient approach to simultaneously optimize the whole

set of parameters. Nevertheless it is safe to assume that

the extended and the compact network are closely related

regarding their weights, since the task remains the same.

Compared to the compact network, the extended network

can be trained effectively without a problem from randomly

initialized weights.

Therefore, for training, the networks are used in the

following manner. We use the available word images to

first train the extended network. After the training of the

extended network finishes, we keep all of the convolutional

weights except for those of the last layer, and re-use them

as pretraining weights for the compact network. Note that

this is possible since the two networks share very similar

weights with regard to all convolutional layers, save for the

last one.

In detail, we apply a two-step training procedure, which

ensures a fast convergence of the compact network:

1) Initialization: Use the pre-trained model of the ex-

tended network to initialize the convolutional layers

except the last one, since it has a different number

of filters. Train only the remaining layers/parameters,

i.e. the last convolutional layer and the fully connected

layers, assuming the other convolutional layers fixed.

This approach will converge fast to a valid solution,

which corresponds to a decent performing model.

2) Fine-tuning: Re-train the whole network, using the

initialization of the first step. All convolutional layers

are also trained in this step in order to better adapt to

the problem.

The intuition behind the reason the proposed scheme

works is summarized as follows. The extended network

is easier to optimize, in the sense of reaching lower loss

and higher accuracy figures comparatively fast. At the same

time, the compact network is harder to optimize. Since

the architectural difference between compact and extended

network is the depth of the last convolutional layer, we can
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conclude that this feature forms an apparent optimization

bottleneck. However, having two similar models comes with

the advantage that the weight search space of the two

networks is “similar”. This is said in the sense that the

compact and extended network differ only to a minor percent

of weights, and practically all their convolutional backbone

is identical. In practice, we have validated that the compact

network trains better once a good initialization is used; this

is provided by the (comparatively) easy-to-train extended

network.

III. EXPERIMENTAL RESULTS

We have run keyword spotting trials on the well-known

IAM dataset [15]. The IAM dataset contains a total of

115, 320 words written by 657 different writers. The large

number of comprised words, as well as their diversity in

writing style, make it ideal for training and testing deep

neural networks. We focus on QbE KWS scenario and

therefore images in the testing set that correspond to stop

words or appearing only once are excluded from the query

set but are kept as distractors, as done in [2].

Given the extracted descriptors corresponding to the im-

ages consisting the testing set, the retrieval list is computed

by nearest neighbor search using the cosine distance [11].

As performance metric for a single query we use the

interpolated Average Precision (AP). The performance on

the whole test set is evaluated in terms of mean Average

Precision (MAP) by computing the mean AP value for all

the queries.

Concerning our method, we assumed 5 levels of the

modified TPP layer and 5 zones on the extraction of

the deep descriptor. In Table I, the numerical results for

both the extended and the compact network are presented.

There are three main observations: 1) The attributed-based

output used in this work is not capable of successfully

discriminating words, as expected. On the contrary, the

zoning scheme achieves very good results. 2) Including the

bigram information on the target vector provides a notable

boost in performance. 3) Compact network retains a good

performance, even though it generates 32× smaller descrip-

tors. For the rest of the evaluation section, we consider

unigrams+bigrams representation and the zoning scheme as

the default parameters for our method.

It should be noted that if we train the compact network

with randomly initialized weights, the model seems to get

stuck to a local optima which performs at least 5% lower

compared to using the proposed optimization scheme.

Table II reports the numerical results for the proposed

method compared to several state-of-the-art methods. Both

networks, extended and compact, achieve notable results that

are on par with state-of-the-art results (extended network

outperforms the reported methods). Concerning the compact

descriptor, which is our case of interest, not only it achieves

state-of-the-art results but also it has other merits as well.

Table I
MAP (%) PERFORMANCE COMPARISON OF THE EXTENDED AND THE

COMPACT NETWORK.

Approaches Unigrams Unigrams+Bigrams
Extended
Zoning (5× 512 d) 80.79 84.68
Output 60.43 73.77
Compact
Zoning (5× 16 d) 74.72 81.65
Output 52.06 56.95

First, even though the proposed optimization scheme is a

two-step process, integrating the training of two separate

networks, word descriptor evaluation can be performed

by a simple feed-forward on the compact network only.

Hence, descriptor evaluation is comparably fast. Second, the

resulting word image descriptor is compact, represented by

a 80-dimension vector, which is almost 10 times smaller

than the PHOC representation of [6]. This can be seen as a

considerable advantage, especially in a large-scale spotting

context.

Table II
MAP COMPARISON ON IAM DATASET USING THE EXTENDED AND THE

COMPACT NETWORKS TRAINED ON THE UNIGRAMS+BIGRAMS

ATTRIBUTE REPRESENTATION.

Method MAP(%)

PHOCNet [6] 72.51
Attribute SVM [2] 55.73
Krishnan et al. [16] 84.24
Wilkinson et al. [8] 81.58
Deep PHOCNet features [12] 81.50
PHOCNet-TPP [11] 83.38
Extended Network 84.68
Compact Network 81.65

Finally, the network formulation and training scheme that

we presented enables the detection of characters on the

image, which is not explored on this work in the context

of KWS. However, it is an advantage of our approach and

could provide a cost-effective solution for segmentation-

free OCR on document images. A preliminary visualization

of the aforementioned idea is depicted on Figure 3, where

the fully connected layers are used as convolutional layers

with 1× 1 filters and the initial images is transformed to a

response map of the existing unigrams.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new method for

keyword spotting. Our method is based on producing a

word image descriptor, extracted as a deep feature vector.

The required feature vector is produced as a function of

the layer activations of the employed convolutional network

architecture. One key element of our approach is to train

our model on a representation that encodes the existence or

not of unigrams/ bigrams and support it with an appropriate
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Figure 3. Response output maps of the word image “event”, after the use
of the fully connected part as convolutional with 1 × 1 filters. The only
characters that have high confidence (> 0.8) on the output are the existing
ones, “e”, “v”, “n” and “t”. Only the responses of these unigram filters
are depicted and we can clearly observe the spatial information about each
unigram.

training scheme that learns features independent of the

characters’ positions.

Our goal is to extract compact deep features vectors,

avoiding the high-dimensional representations that are im-

posed from the existing architecture. In order to train a

model that generates compact descriptors efficiently, we

have proposed an optimization scheme that is based on the

interplay of two related networks, dubbed here extended

and compact network. The extended network trains more

easily, but provides a non-compact word image descriptor.

On the other hand, the compact network is harder to train,

but provides a compact descriptor. The end-result of our

method is a compact descriptor, produced as the output of

training the two networks together. Numerical experiments

on the IAM dataset have validated the usefulness of our

method, with results that are on-par with the KWS state of

the art.

One interesting research direction and extension of the

current approach is the application of the trained network as

character detector, an idea that was supported by preliminary

experiments as shown at the experimental section. Such an

approach, along with a decoding process, could provide a

cost-effective solution for handwritten text recognition.
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