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ABSTRACT

In this paper, we present Wasserstein Inception Distance
(WInD), a novel metric for evaluating performance of Gen-
erative Adversarial Networks (GANs). The proposed metric
extends on the rationale of the previously proposed Fréchet
Inception Distance (FID), in the sense that GAN performance
is quantified in terms of data and model distribution diver-
gence. We extend FID by relaxing the Gaussian hypothesis of
the related inception features and extend it for non-Gaussian,
multimodal distributions. Gaussian Mixture Models (GMMs)
are used to model data and model inception features, and the
Wasserstein distance is employed as a pdf matching metric.
We show that the proposed WInD metric inherits the desirable
features of FID and correlates well with actual GAN perfor-
mance. Furthermore, WInD can correctly evaluate cases were
data and model distribution erroneously would appear as well
peforming using FID. Numerical experiments on synthetic
and real datasets validate our claim.

Index Terms— Generative Adversarial Networks, Fréchet
Inception Distance, Gaussian Mixture Models, Probability
distribution distance, Earth Mover’s distance

1. INTRODUCTION AND RELATED WORK

GANs are powerful generative models that since their intro-
duction in 2014 [1] have found numerous applications in var-
ious learning-related tasks. Training is defined as finding a
Nash equilibrium of an appropriate game, where both players
are neural networks. The generator network aims to be able to
produce data that look as close as possible to the training data,
effectively capturing the true data distribution. The discrim-
inator network on the other hand aims to be able to discern
actual training data from data produced by the generator.

An important factor that makes evaluating and compar-
ing performance of GANSs difficult is that they do not define
or rely on a likelihood term. A data fit cannot be evaluated
numerically in these terms as done for explicit models (e.g.
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Gaussian Mixture Models [2]). Hence, effort has been put
into gauging GAN performance with an objective, quantita-
tive measure. Two proposed measures have proven to be the
most popular in the recent literature: Inception Score (IS) [3]
and Fréchet Inception Distance (FID) [4]. Both of these met-
rics measure GAN performance by means of a pre-trained
classifier, meant to be used as a deep feature extractor. Se-
mantic features are extracted as activations of this network
(the Inception v3 classifier [4], hence the term “Inception”
as part of the acronym of both metrics) and subsequently are
used to model distributions for true and model data. IS is a
metric that numerically attempts to codify variability of class-
conditional labels along with variability of sample data as a
single score. Out of the two metrics, IS has however been
found to behave too poorly for meaningful evaluation [5].
Disadvantages include that optimizing IS was found to lead to
adversarial examples, it is sensitive to small network weight
changes, and does not constitute a proper distance. FID was
found to be more reliable than IS, while pertaining to a num-
ber of disadvantages. FID quantifies performance in terms of
affinity of the data and model distributions. The two distri-
butions are estimated by fitting Gaussian distributions on the
respective Inception feature embeddings of the data. Subse-
quently, a Fréchet distance measures the divergence between
the two distributions, and a lower score means that the syn-
thetic data are closer to the true, original data.

Our contribution is a new metric that follows FID in its
rationale, in particular with respect to gauging performance
in terms of distance of the true and model distributions. How-
ever, in contrast to FID, we drop the assumption that Incep-
tion features are Gaussian-distributed, and model the related
distributions as GMMs. Thus, multimodal distributions can
be better modelled than using simple, unimodal Gaussians.
GMMs are estimated using the Expectation-Maximization al-
gorithm (EM), and distances are computed with the Wasser-
stein (or otherwise known as Earth Mover’s Distance, EMD
[6, 7]) distance, a metric approriate to measure distances be-
tween Finite Mixture Models. With tests on synthetic and real
data (MNIST, CIFAR-10, CelebA, BBBC038v1) we show
that the proposed metric correlates well with perceived affin-
ity of sets of data. Also, we show that it is robust to hyperpa-
rameter choice, as well as it is capable to differentiate between



objectively divergent sets when FID cannot.

The remainder of the paper is structured as follows. In
section 2 we present briefly the related, previously proposed
Fréchet Inception Distance and in the subsequent section 3 we
present the proposed Wasserstein Inception Distance. In sec-
tion 4 we experimentally evaluate and compare the proposed
metric, and close with section 5.

2. FRECHET INCEPTION DISTANCE

GAN numerical evaluation with FID is performed in terms
of computing the distance between two distributions, each of
which are represented in practice by two corresponding fi-
nite datasets: one dataset corresponds to the “real” data on
which the GAN is trained, and the other dataset corresponds
to the data the trained GAN produces. Given the two datasets,
the FID is defined as the Fréchet distance [8] of the distribu-
tions of the Inception features [4] of the two sets. Inception
features are defined as a special type of deep features, i.e.
activations of a particular intermediate layer of a pretrained
neural network. Deep features are known to be effective as
powerful semantic descriptions [9, 10]. Inception features are
extracted by keeping activations of the last pooling layer of
the Inception v3 network pretrained on ImageNet [4]. Hence,
each datum is coded as a vector in 72948, In effect, the data
are assumed to be Gaussian-distributed, of which parameter
estimation is straightforward: Subsequently, first and second
moments for the two distributions are computed: ,, >, and
fig, 2g. their parameters correspond to statistics computed
over sample embeddings from the data distribution (x) and
the model distribution (g). The FID is then computed as the
Fréchet distance over the two distributions, defined as:

dpip(@,9) = |lte — 1yl >+ Tr[Ss + 24— 2(5,2,)2] (1)

Lower scores correspond to better GAN performance, as
lower distance corresponds to higher semantic affinity.

3. PROPOSED MEASURE
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Fig. 1. WInD as a function of training iteration number. As
GAN training progresses, data of better quality are produced;
this is reflected on WInD values, which progressively attain
lower values (hence better quality data).

The FID has been found to correlate well with “human
judgement” [4] of affinity between two datasets, however it is
characterized by a number of shortcomings [11]. In this work,
we follow a rationale similar to the one set by FID to evaluate
GAN performance, in the sense that we also cast the problem
as one of comparing the distribution of the data versus that of
the model. However, we focus in particular on the assump-
tion of the FID that the compared distributions are Gaussian;
we believe that such an assumption is overly simplistic, and
indeed real data are more often more complex than a simple
Gaussian [2], or even any unimodal distribution.

Therefore, we relax the assumption that embeddings from
the data and model distributions are Gaussian-distributed.
A more powerful way to model any generic distribution is
through the use of finite mixture models (FMM) [2]. In con-
trast to the Gaussian, FMMs are multimodal and can hence
model more diverse types of distributions. Perhaps the most
often used case of FMM is the Gaussian Mixture Model
(GMM) [12, 13]. A K-kernel GMM is multimodal, param-
eterized probability density function, defined as a weighted
sum of K Gaussians. Its parameters are K tuples of means
ph, 2, - X and covariances X1, %2, .- XK with one
tuple corresponding to each Gaussian kernel, and a non-
negative scalar controlling each kernel’s weight. Further, the
K weights 7%, w2, .- 7% sum up to unity, Zjil m = 1.
Formally, a GMM is defined as:

K
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Estimating parameters of a GMM can be performed with
the Expectation-Maximization algorithm (EM) [13]. While
EM does not provide a global optimum as in the case of esti-
mating Gaussian parameters, it is well-known to converge to
a local optimum, and each of its updates are defined in closed
form. For the case of application of GMM, the updates always
guarantee that the next estimate adheres to sum-to-unity and
positive-definite constraints for kernel covariance matrices.

After having computed pdf parameters for the data and
model distributions ({7, 11, ¥}, and ({x], ud, 7} )
respectively), the two pdfs are to be compared w.r.t a distance
measure. The Fréchet metric (eq. 1) is unusable in this case,
as it is applicable when the pdfs can be completely defined
w.r.t. to their first two moments, which is not the case for
a FMM. A generalization of the Fréchet metric for GMMs
comes in the form of the Wasserstein distance. The Wasser-
stein distance between two finite mixture models with J and
K kernels respectively, is defined as:

S S R

where f7* denotes the flow from kernel j to kernel k. The
flow f7* for each kernel pair is a non-negative figure that is

; 3)
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Table 1. Numerical results for tests on the BBBC038v1 cell microscopy imaging dataset. BL: Blur, SP: Salt & Pepper, GN:
White Gaussian Noise, SW: Swerl, OC: Occlusion. Proposed WInD distance as a function of comparing with degraded versions

of a cell image distribution. WInD increases as the level of degradation increases.

BL SP GN SW oC
Noise intensity WiInD FID WInD FID WiInD FID WinD FID WInD FID
1 5.08+0.36 | 65 || 9.96 £0.03 | 126 || 19.64 £0.13 | 129 || 9.96 £ 0.03 | 126 || 8.75+0.51 | 84
2 7.23+0.02 | 32 13.2£0.09 | 208 || 12.15£0.06 | 169 || 13.20 = 0.09 | 208 || 10.73 £ 0.04 | 126
3 9.47+£0.08 | 115 || 15.66 £ 0.10 | 287 || 14.22 £0.09 | 225 || 15.66 = 0.10 | 287 || 12.22 £ 0.10 | 168
4 11.954+0.01 | 174 || 18.29 £ 0.01 | 384 || 15.00 £ 0.07 | 252 || 18.29 £ 0.01 | 384 || 13.44 £0.03 | 195
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which covers also the more general case where the distribu-
tions have a non-balanced weight sum. Constraints are lin-
ear, hence flow can be computed using a linear programming
technique. Metrics d’% are defined as ground distances be-
tween kernel j and k individually; we use Fréchet measures
as ground distances, since our mixture model is Gaussian they
can be readily computed in closed form.

4. NUMERICAL EXPERIMENTS

We have run experiments on various synthetic and real
datasets in order to measure quantitatively the suitability of
the proposed distance. In a nutshell, with our experiments we
validate that the proposed WInD metric is indeed suitable as a
measure to gauge GAN performance, it is robust to the choice
of metric hyperparameters, and it is overall a more suitable
metric than FID. In all cases, k-means is used to initialize

15
5.0
25

Wasserstein Inception Distance

2 3 4 5 6 7 8 9 10 1 12 13 14 15
Number of Gmm Components

Fig. 2. Effect of choice of K = number of Gaussian kernels
on WInD. The true data distribution is compared to the distri-
bution of degraded data. WInD magnitude is relatively stable
w.r.t K, and tends towards a constant value as KX increases.

the model parameters for the Gaussian Mixtures, and mixture
covariance invertibility is guaranteed by adding ¢ = 107°1 to
covariance matrices. Unless otherwise specified, diagonal co-
variances are used and the number of kernels is set to K = 5.
Training the GMMs is performed with scikit-learn [14]. As
with FID, for all data we use the Inception v3 network and
the last pooling layer to produce the inception embeddings,
effectively mapping each given image to a vector in 2948,

Proof-of-concept test, use with GAN: We have run a first
set of numerical trials over the BBB(C038v1 dataset, com-
prising 729 cell microscopy images [15]. We have degraded
images from the above datasets using each of the follow-



WInD =4.9 +£0.11 WInD =10.3 £ 0.05
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Fig. 3. Comparing dissimilar distributions (each distribution marked with different colour). FID is erroneously zero for all of

the above examples.

Table 2. Effect of number of EM runs on statistics of pro-
posed metric. WInD magnitude is relatively stable and prac-
tically independent of the specific EM fit.

# of EM runs WInD
1 13.12
2 13.44 +0.03
5 13.30 + 0.15
10 13.30 £ 0.12
20 13.25+0.16

ing noise schemes, at different levels of noise intensity: a)
(Arithmetic-mean) Blur, at convolution windows 3 x 3, 5 x 5,
10 x 10, 15 x 15. b) Salt and Pepper, at levels 0.01, 0.05,
0.2, 0.3. ¢) Additive White Gaussian Noise, at o = 15, 25,
40, 50. d) Swerl deformation, at strength = 4, 8, 14, 24. e)
Occlusion, at occlusion window size = 20, 30, 40, 50. These
datasets are meant to simulate GAN outputs where a GAN
is trained on the original, un-degraded dataset. We would
require from any metric of GAN performance, that degraded
outputs score worse (higher distance) than undegraded output
(Note that this experiment follows the logic of the analogous
experiment presented in [4] to test FID). Results are shown
in Table 1, where the proposed WInD is shown to increase
consistently as degradation levels increase. We have also
used the proposed metric with a real GAN trial on real data
(MNIST, CIFAR-10 datasets [4], Fig. 3). As GAN training
progresses, more realistic samples are produced. This is re-
flected on the reported WInD values, which progressively
decrease, corresponding to better estimated sample quality.

Effect of hyperparameter choice: The proposed WInD
metric, while it assumes a non-Gaussian distribution of incep-
tion features, it introduces the number of mixture kernels as
a hyperparameter. Furthermore, the resulting fit is dependent
on the initial parameters of the EM algorithm [2]. However,
in practice we have observed that the aforementioned param-
eters are largely inconsequential to the metric value. We have
run tests on the BBBC038v1 cell microscopy dataset, and
the CelebA dataset. C'elebA comprises approximately 200k
portrait images in total [16], out of which we have used a ran-

dom subset of 2,500 images. In Fig. 3, we show the effect of
choosing different values for K when evaluating WInD. The
true data distribution is evaluated versus degraded (blurred
with a constant kernel of size 15 x 15) versions of the same
set. In both cases, the value for K does not change the WInD
value dramatically. Furthermore, as K increases, it tends to
stabilize around a fixed value. We must assume that this ef-
fect is related to the GMM fit, and the distribution of data;
in particular, if some big enough K is chosen that effectively
overclusters the data, in terms of a GMM fit and consequently
in terms of Wasserstein distance, any newly added kernel will
not contribute in practice anything to the fit. Hence, WInD
should remain relatively constant. In Fig. 2, for a trial on
the BBBC038v1 set, WInD values are apparently again rel-
atively stable with respect to the number of different EM ini-
tializations/executions employed.

WInD is a better metric than FID: We argue that due to
the Gaussianity assumption that underlies FID, datasets that
can be more or less clearly different in distribution will be
marked as similar or identical with FID, as long as they have
the same or similar first moments. As a metric of GAN per-
formance, this translates to a metric that will tag inapropriate
/ bad quality data samples as realistic. The proposed WInD
metric is not characterized by the same problem, because it
does not assume Gaussian statistics for the inception feature
distributions. An experiment on synthetic data is shown in
Fig. 3, where unlike WInD, FID marks the distributions erro-
neously as similar (with a value of zero). EM covariances are
set to full/non-diagonal. Note that EM kernel number is fixed
to 5 in all cases, which obviously does not correpond to the
true number of clusters. However, WInD is robust to this, and
is correctly computed as a non-zero value.

5. CONCLUSION

We have proposed and tested WInD, a novel metric for the
evaluation of GANs. The metric combines and extends the
rationale of FID and Inception features with a stronger non-
Gaussian modeling of sample and model distributions. Our
results show that the proposed WInD metric is suitable as a
metric of GAN performance, and furthermore that it can be
more suitable than FID.
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