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Abstract

Accurate building thermal output determination is key for the development of energy use optimisation
strategies, including demand response strategies. The analysis of thermal images of buildings presents
the opportunity to estimate energy demand based on the actual as-built buildings, as opposed to the
current assessment procedures used in the industry which are based on design values.

In this work, we present an image processing pipeline for calculating the thermal output of buildings,
by identifying regions of interest given a dual modality (visible spectrum/RGB, infrared) input. The
region of interest is assumed to be a building found approximately at the centre of the image field of
view ('target building'). The visible spectrum/RGB input is first used to determine the position and
outline of the target building in the field of view, and create a pixel-level binary mask with non-zero
mask elements corresponding to the target. Subsequently, the produced mask is used to binarize the
thermal imaging input and produce an intensity matrix containing only values that correspond only to
the building / region of interest. With the proposed method, we are able to take into account only the
thermal output of the region of interest, leaving out other image objects and other elements that act as
'noise' in this context. Once computed, the thermal signature of the target building can be subsequently
used as input to an energy auditing process or as a component of urban energy planning. The proposed
pipeline is evaluated on dual RGB/synthetic thermal image pairs captured on various buildings.

Keywords: Thermal imaging, thermal output determination, object detection, energy demand, 
Demand Response

1. Introduction

Accurate building thermal output determination presents a series of challenges, due to the difficulty in

accounting for differences between the building design values that are used for estimation of energy

consumption, and the actual performance of buildings, which is largely influenced by uncertainties

associated with the quality of building materials, and the quality of the construction and installation

process. Accurate methods for the estimation of energy demand in buildings are a key input for the

optimisation of building energy use, including effective demand response (DR) programs that can be
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leveraged both by smaller energy consumers and energy providers in order to increase the amount of

flexibility in DR. The analysis of thermal images for the estimation of energy demand in buildings has

been  proposed  as  an  alternative  to  the  current  energy  demand  assessment  methods,  such  as  the

Standard  Assessment  Procedure  (SAP)  in  the  UK [1],  however  there  are  still  uncertainty  issues

regarding the proposed methods [2,3,4].

This  research  investigates  how the  use  of  combined  thermal  and  visible-spectrum (RGB)  digital

images can be used to identify the demand response potential of building assets. In this paper, we

propose a method for the identification of potential DR building assets through the application of a

novel image processing pipeline for calculating the thermal output of a region of interest given a dual

modality (visible spectrum/RGB, infrared) input. Our motivation of using a visible-spectrum input to

detect  the  region  of  interest  is  that  the  infrared  input  in  itself  is  not  appropriate  to  be  used  to

semantically differentiate objects; the infrared signature may be useful to determine areas of low or

high thermal output, but in itself is insufficient to delineate a region of interest efficiently.

The proposed image processing pipeline will be used to identify and provide a range of temperature

values for individual building features such as walls,  windows, roofs and HVAC assets.  Using the

proposed image processing pipeline it is possible to isolate features from the building envelope such as

the external  walls  and roof  of  the  building and estimate  their  U values  (i.e.  overall  heat  transfer

coefficient (W/m2K)), as well as the transmission heat losses [2,3]. The estimated transmission heat

losses will be considered as an input to the estimation of energy demand, and will be used to estimate

demand-side improvement potential, which will inform the DR potential estimation process.

Results from the proposed method are expected to provide improved baseline estimation and improved

DR flexibility  estimation to  increase exploitation potential  of  building assets  in  DR programs.  In

particular, the resulting thermal imagery data can be analysed to provide more detailed information

about users/customers behaviour.

2. Experimental

The proposed method involves correctly estimating the thermal signature of a target structure, given a

thermal imaging camera input, along with an aligned visible spectrum / RGB input. In what follows,

thermal  signature  is  understood as  the  per-pixel  statistics  of  the  infrared image input,  though the

discussed pipeline is  applicable to virtually any processing performed over an infrared input.  The

proposed processing pipeline involves the following steps: a) Use the RGB input to localise the region

of interest  /  target  building.  This  step provides  a per-pixel  mask that  is  used to b) determine the

thermal output of the target building, using the IR input. The proposed processing pipeline can be

examined at figure 1. We have performed our experiments at the ‘smart home’ site, situated at Pylaia-

Thessaloniki,  Greece and part  of  the  facilities  of  the  Centre  for  Research and Technology Hellas

(CERTH). We have captured 5 visible-spectrum (i.e. colour) images of the target building taken from
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different poses. As hardware that would include an IR camera aligned with the visible-spectrum was

unavailable, we have taken advantage of an available fixed-position IR camera to create synthetic IR

images  that  are  aligned  pixel-to-pixel  with  the  available  RGB  shots.  Below,  we  discuss  the

aforementioned components in further detail. 

Figure 1: IDEF0 process diagram for the proposed image processing pipeline. The RGB image is used to detect

the Region of Interest (target building). The IR image is then masked accordingly and thermal intensity statistics

are computed over relevant IR pixels. Without the proposed RGB-based detection component, statistics over the

IR image take into account irrelevant pixels, thereby leading to an erroneous thermal signature estimate.

2.1 Region of interest detection

Detection of the region of interest, or in other words localisation of the target building is performed

solely over the visible-spectrum/RGB input. Our motivation in using an assumed RGB input for this

task is that the latter is semantically much richer than the corresponding IR input; detection of an

object is a task related to semantics, as opposed to thermal determination which does not involve

image  understanding  at  all,  but  low-level  processing  of  the  IR  channel.  To  the  end  of  target

localization,  we  have  used  DeepLab  v3+  [5],  a  state-of-the-art  neural  network-based  model  for

semantic image segmentation. Instead of using this model to directly segment the RGB input, we have

used  it  as  a  feature  extractor,  providing  so-called  Deep Features  [6,7].  In  this  work,  we  use  the

activations of the last convolutional layer as our ‘deep’ features. This is performed without any further

training over a pre-trained model1, by a simple feed-forward pass of the network.  We then perform k-

means [8] over the extracted deep features, after having reduced the set of the 256-dimensional deep

features to 8-dimensional vectors with Principal Component Analysis (PCA, [8]). We use 3 clusters for

k-means,  which  we  have  found to  roughly  correspond to  the  target  building,  the  sky,  and  other

1 The model backbone we used is Xception, pre-trained on the ADE20K dataset [5].
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areas/objects (ground, etc.). Clusters are initialised with k-means++. The advantage of using DeepLab

directly over this approach, is that the learning task ‘becomes’ unsupervised, despite that the base

model (the neural network) had been pre-trained with a supervised learning process. Consequently, no

annotated data is necessary to perform ROI localisation. The cluster with the least average per-pixel

distance to the centre image pixel is chosen as the cluster that is related to the target building. The rest

are classified as background.

(1) (2) (3) (4) (5)

Figure 2: Visible-spectrum/RGB images used to test the proposed pipeline (top row) and corresponding synthetic

thermal IR images (bottom row), created using real IR image statistics (see text for details). 

Figure 3: IR image used to obtain pixel-level intensity statistics, used to create the synthetic IR images in fig. 2.

2.2 Thermal output determination

Once  the  area  corresponding  to  the  target  structure  is  localized  in  the  previous  step,  we  simply

compute mean and standard deviation of the recorded IR intensities. Note that if the previous step was

missing,  we can expect  that  IR statistics  should be a  bad estimate  of  the  target  building thermal

signature, since it would include pixels not corresponding to the region of interest.  This is indeed

corroborated by our experiments (cf. following section).

2.3 Infrared image synthesis

While this is not part of the main proposed pipeline per se, this step is necessary to evaluate the

algorithm, in order to create aligned RGB/IR pairs where the IR image is as close as possible to a real

IR image, w.r.t. to thermal output statistics. We have used a real IR image of the target building (fig. 3)
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to obtain statistics of IR intensities.  In particular, we have computed mean and standard deviation

values for pixels in four semantic groups: sky, walls, windows and ground/other. To this end, the real

IR image has been manually annotated w.r.t. to the aforementioned semantic classes, and intensity

statistics  were  computed per  class.  Subsequently,  we  performed manual  annotations  on our  RGB

images w.r.t. to the same classes. For each of the semantic classes and manually delineated areas per

image, we drew normally distributed intensity samples that follow the statistics of the real IR image

corresponding class statistics. In the context of the current problem, reassuring that the synthesized

images follow real image statistics is important,  as thermal intensity statistics is what we want to

measure.

Table  1:  Quantitative  comparison  of  proposed  pipeline  versus  baseline  method  that  does  not

incorporate visible-spectrum based salient building detection and an Otsu-based localizer. Average

absolute values over test images are presented. Lower absolute values are better.

Percentage offset from ground truth
Image 1 Image 2 Image 3 Image 4 Image 5 Mean +- St.dev.

Baseline method 25.7% 29.8% 17.4% 25.1% 24.8% 24.5 +- 4
Otsu-based method 0.9% 38.3% 50.1% 69.6% 46.1% 40.9 +- 22.5
Deep feature-based

method (Proposed) 

0.3% 2.9% 0.7% 21.9% 21.4% 9.4 +- 10.0

3. Results and Discussion

In order to test the proposed thermal determination method, we have evaluated it quantitatively versus

a ‘baseline’ method and another method where an alternative ROI detection scheme is used (‘Otsu-

based’). The baseline method involves simply computing statistics of IR image raw intensity values

over the whole IR image, as if the full image were of interest. The Otsu-based method employs Otsu

[8], a standard binarization algorithm to segment into building and background. Again, the class that is

closest to the centre is tagged as building. The proposed method gives the lowest divergence w.r.t. to

the true IR mean thermal  intensity,  i.e.  the best  result.  For  3 out  of  5 images,  this  divergence is

minimal, corresponding to an extremely accurate delineation of the target structure boundary. On the

other  hand,  the  other  methods  are  consistently  far  from  the  real  thermal  signature;  perhaps

surprisingly,  Otsu results in a worse estimate compared to the baseline,  i.e.  versus not using ROI

localisation at all. This should be attributed to the low quality of ROI localisation attained by Otsu.

Results can be examined in table 1, where quantitative results over each shot individually (following

the numbering of figure 1), and average offset values are reported.

4. Conclusion

We have  shown how to  use  a  neural  network-based  system to  compute  a  significantly improved

estimate of the thermal signature of a target structure. This estimate is useful to applications using heat
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loss estimates as input, such as Demand Response programs. While our result is to be understood on

the premise that we use only synthetic infrared data in this work, we believe that our conclusion can be

in all probability extended to real-world data, as we have taken care to use statistics of real IR footage

to construct our dataset. Hence, we look forward to testing the proposed pipeline on data that fully

include  real  RGB+infrared  image  pairs.  Future  experiments  on  non-artificial  IR  data  will  also

determine whether a combination of IR+RGB is useful towards salient object detect, and compare

versus using the IR input only for the full processing pipeline. 
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