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Abstract—Detection of cell nuclei in microscopy images is a
challenging research topic due to limitations in acquired image
quality as well as due to the diversity of nuclear morphology.
This has been a topic of enduring interest with promising
success shown by deep learning methods. Recently, attention
gating methods have been proposed and employed successfully
in a diverse array of pattern recognition tasks. In this work,
we introduce a novel attention module and integrate it with
feature pyramid networks and the state-of-the-art Mask R-CNN
network. We show with numerical experiments that the proposed
model outperforms the state-of-the-art baseline.

Index Terms—Nuclei detection, Attention gates, Feature Pyra-
mid Network, Mask R-CNN

I. INTRODUCTION

Cellular image analysis is a research area that is increasingly
taking advantage of developments in generic machine vision
and pattern recognition methods. Automated methods have
been proposed and applied with sucess in various tasks,
including image classification, segmentation, detection and
tracking [1], [2]. In this paper, we are interested in automatic
detection of cell nuclei in microscopy images. Challenges
of this task include limitations in cellular image quality and
diversity of nuclear morphology, which includes varying nuclei
shapes, sizes, and overlaps between multiple cell nuclei. This
has been a topic of enduring interest with recent success shown
by deep learning methods [3].

The application of deep learning in digital image processing
usually involves the use of a network architecture that can be
categorized as a feed-forward, convolutional network. Under
this family of models, information typically flows from the
input towards the output from layer to layer in a sequential
fashion [4]. An apparently simple, yet practically important
development in terms of convolutional network architecture
has been the introduction of skip connections [5], [6]. This in-
volves the idea of combining feature maps at different scales /
resolutions, with intermediate layers being fed input also from
layers that do not directly precede them. Fully Convolutional
Networks [6] and the celebrated U-Net architecture [5] were
among the first works to have popularized this idea. The more
recent Feature Pyramid Networks (FPNs) [7], also utilizing
skip connections, have been successfully used as a network
backbone of the Mask R-CNN instance segmentation model
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[8], in order to perform detection and localization of nuclei in
cell images [3], [9], [10].

A more recent development is the concept of the Atten-
tion Gate (AG) [11]. Attention Gates act as a soft mask
on concatenated intermediate layer inputs. These eventually
weigh up activations over regions of interest, while weighing
down task unrelated to the task. In the current work, we
are using attention gates in order to build more sophisticated
skip connections that can be used for detection tasks and
improve overall efficiency. We propose a novel attention
module architecture, applicable in perspective to a generic
deep-learning based detection model. We fuse the proposed
attention module to the FPN architecture as part of a baseline
Mask R-CNN model. Numerical experiments show that the
proposed attention-based detector can detect nuclei in a wide
range of microscopy images of cell nuclei, outperforming the
state-of-the-art Mask R-CNN detector.

The remainder of the paper is structured as follows. In the
following section, section II, we discuss related work with
respect to the key aspects of the current work: nuclei detection,
feature pyramids and attention gates. In section III we review
the basics concerning attention mechanisms and in section
IV we discuss the state-of-the-art detection model that we
aim to extend with attention, which is Mask-RCNN with a
FPN backbone. We present the proposed attention mechanism
in section V, and evaluate it with numerical experiments in
section VI. The paper is concluded with a discussion on the
paper contribution and future work in section VII.

II. RELATED WORK

Mask R-CNN is a state-of-the-art neural network that has
originally been proposed for instance segmentation [8]. Its
original formulation can take into account different classes of
objects to be detected; it has already been used successfully
as a nuclei detector in digitized cell images, where the class
of interest is only one (vs background) [3], [9], [10]. The
Mask R-CNN network architecture can be analyzed into two
distinct components: a convolutional backbone and a network
head. In the original paper [8], the most efficient backbone is
found to be the Feature Pyramid Network backbone, which
includes skip connections between layers at different scales.
In the current work, we extend this backbone by fusing it with
the proposed attention module.



Attention mechanisms have been proposed and used for
various learning tasks, ranging from natural language pro-
cessing for image captioning and machine translation, to
machine vision tasks such as detection, segmentation, person
re-identification and many more [11]–[13]. Apart from fusions
with Recurrent Neural Network (RNN) [14] standard Convo-
lutional Neural Network (CNN) architectures [12], attention
gates have been employed also in conjunction with Generative
Adversarial Networks, as for example in [15] where the
attention gate helps in weighing feature map regions related
to an image translation task. Attention modules have also
been generalized to a ’non-local’ version, with non-local self-
attention defined in [16], capable of capturing long-range spa-
tial dependencies. Application-wise, perhaps one of the most
related applications of an attention mechanism in a medical
imaging context, is the Attention U-Net [11], fusing attention
modules to a standard U-Net architecture. The integrated
module is applied to pancreas segmentation.

III. ATTENTION GATES

Attention in deep neural networks can be defined as a
generic alignment score between two input signals [17]. Given
two input signals x and y, attention computes the alignment
score between xi and yi by a compatibility score function
f(xi, yi) where i ∈ 1, .., n spatial locations. In general we
write:

αi = f(xi, yi),

zi = g(xi)αi, (1)

where the output of the compatibility function f is stored as
a feature map α, with one attention value per pixel. Signals x
and y are feature maps corresponding to intermediate layers
and different scale. The attention per-pixel values for α are
typically constrained to take values in [0, 1], and multiplied
by the transformed input xi, they serve as local weights to
feature map x. After training, these will be pushed towards
unity for feature map regions of x that are relevant to the
task, and close to zero for irrelevant regions.

The compatibility score function f can be defined in various
ways [11], [18], [19], leading to different attention modules.
For example, additive attention [11], [18] is defined as:

αi = σ(ψ(ReLU(θ(xi) + φ(yi)))) (2)

where ψ, θ, φ are embedding functions which can be incorpo-
rated using 1× 1 convolutions, and σ is the sigmoid function,
mapping outputs to the required [0, 1] range.

Used in conjuction with skip connections in a convolutional
neural network, the coarse scale input is used to disambiguate
irrelevant regions to the finer scale input [11]. This region
highlighting and pruning process is relevant to the feed-
forward pass as well as during training. In particular, in
the context of back-propagation, attention gating results in
gradients to be weighted according to their importance to the
task at hand.

Fig. 1. Building block responsible for constructing the top-down feature maps.

IV. FEATURE PYRAMID NETWORKS AND NUCLEI
DETECTION WITH MASK R-CNN

Feature pyramid networks (FPNs) [7] were designed as a
solution for detecting the objects of an image at different scales
efficiently by providing multi-scale feature representation of
the input image. The main idea of these networks is to take
advantage of the ”pyramid-like” feature maps produced by a
CNN and combine them to high-level semantic feature maps.
The construction of the feature pyramid involves a bottom-up
and a top-down pathway. The bottom-up pathway is the feed-
forward computation of the backbone CNN, which computes
a feature hierarchy consisting of feature maps at several scales
with a scaling step of two.

Fig. 2. Feature Pyramid Network Architecture. Bottom-up and Top-down
pathway layers are connected via skip connections, and outputs are created
at multiple resolutions.

A building block is responsible for constructing the top-
down feature maps. The feature map at the coarsest resolu-
tion is upsampled by a factor of 2, then merged with the
corresponding bottom-up map by element-wise addition. At
each pair of corresponding blocks, a bottom-up feature map is
semantically low-level, and the top-down map is semantically
high-level. This merging is performed by so-called lateral or
skip connections.

The Feature Pyramid Network is in the current context used
as a backbone network for Mask R-CNN [8], a state-of-the-art
instance segmentation / detection network. Mask R-CNN is a
convolutional network that incorporates a multi-task loss of
the form:

L = Lclass + Lbox + Lmask, (3)

where Lclass is the loss related to correct prediction of each
object class, Lbox depends on correct prediction of object



bounding boxes. Lmask depends on binarizing the detected
bounding box correctly, so as to label only relevant pixels as
the detected mask (and not the whole rectangle). Each of the
losses of the multi-task loss L corresponds to a separate output
in the network. While this architecture evidently can handle
multiple object classes, in the context of nucleus segmentation
we simply set the number of object classes to be detected as
1.

V. PROPOSED MODEL

The proposed model is a based on the vanilla Mask-RCNN
network, including however a number of important modifica-
tions as well as architectural choices. Following the standard
feature pyramid architecture for a ResNet backbone [20], we
are using 3 building blocks on top of the last residual block
at each stage. We follow the original notation of the output
of these last residual blocks, named as C2, C3, C4, C5 for
conv2, conv3, conv4 and conv5 outputs. We do not include
conv1 into the pyramid, due to its large memory footprint.
Finally, the FPN outputs are denoted as 3 building blocks
P2, P3, P4 where the network gives predictions indepen-
dently at every scale.

Concerning attention, we have used an additive attention
gate to define α, as presented in section III (cf. eq. 2). We
also replaced the re-sampling module by using zero-padded
convolutions. The information flow according to this gate can
be examined at fig. 3.

We then combined the aforementioned FPN building blocks
[7] and an additive attention gate to build the proposed final
block:

z = h(γα(x, y)g(x) + g(x) + q(y)), (4)

where block output is denoted as z. The alternated attention
modules are incorporated into the standard feature pyramid ar-
chitecture to highlight salient features that are passed through
the skip connections. This scheme allows us to build a richer
hierarchy that combines both non-local and local information.
The proposed attention-based block can be examined at fig. 1.

Attention gates are integrated to all 3 Feature Pyramid
levels. Functions θ, φ, ψ, g, q are all defined as 1 × 1 × N
convolutions. Function h is also a 3 × 3 × N convolution,
acting over the block output, effectively mitigating aliasing
due to upsampling. (This is operation is akin to that of a
deconvolutional layer [21], acting as a parameterized linear
upsampler).

The significance of the γ residual coefficient in eq. 4
is related to a compromise between weights resulting from
a pretrained, non-attention version of the backbone. Using
weights obtained from pretraining on a very large dataset (e.g.
ImageNet) is standard practice for deep neural network train-
ing. The coefficient γ is a scalar initialized as 0. Introducing
γ as a learnable parameter, allows the network to first rely on
the learned pretrained weights and then gradually and during
training to take into account attention gating.

VI. EXPERIMENTS

A. Setup

For our numerical experiments, we have used the publicly
available microscopy imaging dataset BBBC038v1, part of the
Broad Bioimage Benchmark Collection [22]. The data consists
of 729 microscopy images, where pixel-level annotations of
nucleus positions are provided. Dataset nuclei are imaged in
a variety of conditions, including fluorescent and histology
stains, several magnifications, and varying quality of illumi-
nation. A small sample of the dataset can be seen at fig. VI.

We have run experiments on various different versions of
the Mask R-CNN model [8], integrated with a Feature Pyramid
backbone and the proposed attention mechanism. Resnet-101-
FPN is used as the Feature Pyramid backbone for Mask-
RCNN. 1. All the standard building blocks where replaced by
the proposed residual attention block (fig. VI-A). This setting
has been compared with numerical trials versus the baseline
Mask-RCNN with no attention gating, as wells as various
different variations of the attention-based model.

At each trial, we have trained the network for 50 epochs
using Stochastic Gradient Descent (SGD) with momentum 0.9
and weight decay parameter set to 0.0001. We constrained the
number of training RoIs per image to 600, as these images are
small and tend to have fewer objects, allowing RoI sampling
to pick 33% positive RoIs.

Furthermore, each batch was set include 2 input images,
each at resolution of 512×512 pixels. As the dataset contains
microscopy images at various different resolutions, we create
fixed-size training images by sampling random 512 × 512
crops from the available data. Data augmentation has also been
employed, with cropped inputs undergoing a random set of
simple transforms to produce augmented data. In particular, we
have used horizontal and vertical flips and random rotations.

In order to evaluate our results, we have computed average
precision (AP) values at different intersection over union (IoU)
thresholds, following the evaluation protocol of the Kaggle
2018 Data Science bowl competition [3]. In this context, AP
is defined as

1

thresholds

∑
t

TP (t)

TP (t) + FP (t) + FN(t)
(5)

where TP (t), FP (t), FN(t) are numbers of True Positives,
False Positives and False Negatives, computed with respect to
IoU threshold t. The IoU threshold is set to vary on values
from 0.5 up to 0.95, with a step size of 0.05.

B. Discussion of results

Numerical results can be examined in table I. We have tested
the standard attention modules as proposed in [11] and the
novel residual modules proposed in this paper. The attention-
based variants that were compared (aside from the proposed
variant presented in section V) are as follows:

1The implementation used is based on an the implementation at https://
github.com/matterport/Mask RCNN



Fig. 3. Proposed attention module.

Fig. 4. Indicative samples images from dataset BBBC038v1, and their
corresponding ground truth masks showing nucleus positions.

TABLE I
NUMERICAL RESULTS FOR NUCLEI DETECTION TRIALS. AVERAGE

PRECISION (AP) FIGURES ARE SHOWN, COMPUTED FOR THE PROPOSED
METHOD VERSUS A VANILLA MASK-RCNN MODEL AND OTHER

ATTENTION-BASED VARIANTS OF THE PROPOSED METHOD.

Model AP
No attention gating (vanilla Mask R-CNN) 0.625

Attention Mask - No Gamma 0.636
Attention Mask - Gamma for pixel vector 0.639

Attention Mask - Concat 0.637
Attention Mask - Proposed model 0.641

Attention Mask - No Gamma: The γ parameter is not
included, hence block outputs are instead of eq. 4 computed
as

z = h(γα(x, y)g(x) + g(x) + q(y)).

Attention Mask - Gamma for Pixel Vector: FPN blocks and
attention is defined as in the proposed model, but functions
ψ, θ, φ are 1× 1× 1 (instead of 1× 1×N ), following [11].

Attention Mask - Concat: Attention under this variant is
defined as:

αi = σ(ψ(ReLU([θ(xi), φ(yi)]))) (6)

where [·, ·] corresponds to an input concatenation operation.
Detection results for the baseline Mask R-CNN detector

without an attention module are also included in Table I. As
we can see, in all cases accurate nuclei detection is quite a
challenging problem. It is clear that a supervised segmentation
techniques like a deep convolutional neural networks can
benefit from the presence of attention modules since models
with attention modules outperform the standard setting.

With respect to the type of model, the model that is
integrated with the proposed attention module outperforms
other variants. As we can see the effect of the trainable γ
is crucial for the model’s final result as experiments without
this parameter give lower scores. Also, even though the
concatenation attention module has more parameters than the
other modules, it still does not perform as well as the additive
module.

The usefulness and importance of the learned attention
coefficients α on detection can be seen clearly in figure VI-A.
As we can see, regions of the input image that are highly
correlated with ground truth positions of nuclei attain higher
attention coefficient values.

VII. CONCLUSION AND FUTURE WORK

We have presented a nuclei detection scheme that utilises
a novel attention gating mechanism, integrated with feature
pyramids and the state-of-the-art Mask R-CNN network. Nu-
merical experiments show that the addition of the proposed
attention module results in improving overall detection ef-
ficiency. Furthermore, visualizations of relevant feature map
activations show that indeed the proposed attention gating
manages to prune areas of the input that are irrelevant to the
task. This results in subsequent network intermediate layers
being given only parts of the feature map that are relevant,
eventually leading to a more efficient detection task.

For future work, we aim at exploring other forms of gating
functions, like non-local gating extensions [16]. We also look
forward to extending the proposed attention mechanism to
detecting 3D structures, by defining networks that are applied
on 3D structures / volumes [23], [24] or sequences of frames
[25] (for example, for cell tracking). Finally, we envisage
fusioning the proposed detection mechanism with a probabilis-
tic model approach, as popularized recently with Variational



Fig. 5. Proposed feature pyramid residual attention block.

Fig. 6. Visualization of learned attention coefficients. Attention is visualized over indicative nuclei images, pseudocoloured as a heat map. Attention coefficients
from the C4/P4 pyramid stage module are shown.

Autoencoder-based models [26] or the more classical Bayesian
paradigm [27]–[29].
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