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Abstract
Recent architectures for object detection adopt
a Feature Pyramid Network as a backbone for
deep feature extraction. Many works focus on the
design of pyramid networks which produce richer
feature representations. In this work, we opt to
learn a dataset-specific architecture for feature
pyramid networks. With the proposed method,
the network fuses features at multiple scales, it
is efficient in terms of parameters and operations,
and yields better results across a variety of tasks
and datasets. Starting by a complex network, we
adopt Variational Inference to prune redundant
connections. Our model, integrated with standard
detectors, outperforms the state-of-the-art feature
fusion networks.

1. Introduction
Object detection and instance segmentation are two of the
most fundamental problems in the computer vision field.
These problems are quite difficult to solve and provide mul-
tiple challenges as multiple objects have to be detected or
segmented at multiple scales, locations and under different
conditions. The majority of those problems in practice are
today approached via the use of deep learning architectures.
In the recent years multiple deep architectures have been
proposed, leading to widely known models in computer vi-
sion (Ren et al., 2016; He et al., 2017; Redmon et al., 2016;
Carion et al., 2020). Neural network-based detectors are
typically built and designed upon deep robust feature extrac-
tion (sub-)networks referred to as backbones. The task of
these components is to transform the input image to a deep
embedded representation, subsequently fed to the detector
head in order to have it produce the required predictions.
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Figure 1. An illustration of pruning under the proposed method.
The image on the left depicts the initial model before training
which is highly complex, including multiple-level feature fusion
and is “fully” connected. On the right, the same network is shown
after 10 epochs of training, where redundant connections and
building blocks have been pruned, leading to an efficient fusion
network.

These networks heavily rely on good representations, as
the input feature must be descriptive enough to capture the
different relations and scales among the image objects. A
common practice is to use pretrained deep convolutional
backbones such as ResNet (He et al., 2016) or Inception
(Szegedy et al., 2015) to first extract rich features at differ-
ent scales from the input image. Subsequently, their output
is processed using a pyramidal-shaped multi-scale fusion
network in order to create richer and more descriptive fea-
tures. Since the introduction of Feature Pyramid Networks
(FPNs) (Lin et al., 2017a), which standardize the above pro-
cedure, works have been proposed to design more flexible,
sophisticated and also efficient fusion networks.

In the current work, we are using Variational Inference (VI)
in order to build more sophisticated feature fusion networks
that can be used for detection tasks. The model we propose
is applicable in a generic deep-learning based detection con-
text. We combine multiple parts of state-of-the-art fusion
networks to create an “initial” complex network, that is sub-
sequently pruned to its more efficient counterpart. In order
to obtain the pruned network, we opt to learn to highlight the
network components that are more suitable for the specific
task and dataset that it is trained on. Numerical experi-
ments show that the models produced using the proposed
method, combined with various object detectors, produce
state-of-the-art results on a variety of detection tasks.
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We begin in Section 2 with a discussion of previous work
with respect to two key aspects related to our contribution:
FPNs and variational methods for pruning deep neural net-
works. In Section 3, we formally define the proposed varia-
tional FPN and its components, and analyze how parameters
can be interpreted as stochastic random variables. We show
an efficient way to apply inference on those parameters, and
how certain parts of the network can be pruned with an
imposed sparse prior. We evaluate the proposed approach
using numerical experiments in Section 4. The paper is
concluded with a discussion on our contribution and future
work in Section 5.

2. Related Work
2.1. Feature Pyramid Networks

Feature Pyramid Networks (Lin et al., 2017a) were proposed
as an architectural solution to providing a multi-scale fea-
ture representation of the input. A “pyramidal”-structured
hierarchy of feature maps is to be produced by a convolu-
tional pipeline and combined to high-level semantic outputs.
A bottom-up and a top-down pathway are the basic struc-
tural sub-elements of the feature pyramid. The bottom-up
pathway computes a feature hierarchy, where each level
corresponds to a different resolution scale. On the top-down
pathway, starting from the coarsest resolution towards the
finest one, feature maps are progressively upsampled (e.g.
by a constant factor of 2), and combined with corresponding
bottom-up maps. Over each pair of top-down and bottom-
up corresponding blocks, the top-down map is semantically
high-level, and the bottom-up map is semantically low-level.

There are a lot of recent works that propose sophisticated
modules to extract more representative features for object de-
tection tasks. Telling examples include (Wang et al., 2020),
where the Pconv module is introduced to simultaneously
extract features at different scales; attention-based modules
(Kong et al., 2018; Dai et al., 2021); or even methods that
discard the whole FPN structure (Chen et al., 2021) and
methods that incorporate the popular Transformer architec-
ture (Wang et al., 2021). PANet (Liu et al., 2018) adds an
extra bottom-up pathway on top of the original FPN archi-
tecture. The M2Det object detector (Zhao et al., 2019b)
extends the idea and builds stronger feature pyramid rep-
resentations by employing multiple U-shape modules after
backbone pipeline.

Another approach, more related to our method, is NAS-
FPN (Ghiasi et al., 2019). This approach uses a Neural
Architecture Search (NAS) algorithm to find an optimal
structure instead of manually designing architectures for
pyramidal representations. This model requires a significant
computational load for training, and the output network is
irregular and difficult to interpret or modify. In (Tan et al.,

2020), the proposed BiFPN model uses less building blocks
as the authors drop blocks with only one input feature map.
Furthermore, they add an extra edge linking the original
input to an output node if they are at the same level, in order
to fuse more features while avoiding too much extra cost.
Another novelty of BiFPN is weighted fusion, with which
they introduce a set of learnable parameters associated with
each input feature map on every block. In this manner, the
network is allowed to learn the importance of each separate
feature map.

2.2. Variational Pruning Methods

The proposed method can be viewed as a specific case, suit-
able for deep object detectors, of pruning neural network
parameters. The notion of pruning parameters of deep neu-
ral networks comes to relax the implementation difficulties
on resource-constrained platforms. A successful pruning
method must be able to compress the model and improve
efficiency with a minimal loss in terms of accuracy. To
this end, probabilistic approaches using Variational Infer-
ence have already been deployed. (Kingma et al., 2015) treat
weights of neural networks as random variables and leverage
Variational Inference to efficiently estimate the parameters,
in a model that is shown to elegantly generalize Gaussian
dropout (Srivastava et al., 2014). (Molchanov et al., 2017)
revised the previous work and proposed a scheme to esti-
mate the dropout rate, proving that the resulting method
leads to sparse solutions. Further works, imposing sparse
priors on the weights (Louizos et al., 2017), proposed the
use of hierarchical priors on hidden units; on a different
note, neurons can be pruned altogether, including all their
incoming and outgoing weights. This avoids more com-
plicated and inefficient encoding schemes. Unfortunately,
these methods cannot be generalized to complex convolu-
tional layers found in modern deep learning models due to
the complexity and interdependence of operations. To tackle
this problem, more general probabilistic methods of network
pruning have been proposed. In (Zhao et al., 2019a) for ex-
ample, the batch normalization layer is reformulated, where
the normalized features are multiplied channel-wise with
a sparse prior-based stochastic parameter that effectively
prunes redundant channels.

3. Proposed Model
We now formally introduce our multi-scale feature fusion
network that combines aspects proposed in recent works
such as (Tan et al., 2020), which we will use as a network
baseline. Subsequently, instead of using deterministic fusion
weights, we show how to estimate the distribution of fusion
weights cast as random variables via the use of Variational
Inference. We analytically describe how the Stochastic
Gradient Variational Bayes (SGVB) estimator (Kingma &
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Welling, 2014) can be used to apply inference on the fusion
weights. Finally, we introduce sparse prior distributions like
Automatic Relevance Determination (ARD) to effectively
prune network connections, thus obtaining a model with the
optimal lower complexity.

3.1. Multi-Scale Feature Fusion Network

The architecture of our network is initialized as a ’fully
connected’ version of the PaNET (Liu et al., 2018) (with
bottom-up and top-down pathways) using skip connections.
On each building block, the input features are combined via
the use of fast normalized fusion, an efficient approximation
of softmax proposed in (Tan et al., 2020). An illustration of
this initial architecture is depicted in Figure 1 (left).

The output of a building block Fout in our network is for-
mally defined as follows. Let F layerlevel = {F1, . . . , FN} be
the set of all N features that are input to the given block
and W layer

level = {w1, . . . , wN} a set of weights wi ≥ 0 each
of which is associated with one input feature from F layerlevel .
Then for Fout we write:

Fout = Conv(

∑N
i=1 wiFi∑N
i=1 wi + ε

), (1)

where ε is a small constant added for numerical stability and
Conv stands for a 2D convolutional operation. Note that
all features in F layerlevel are resized using bilinear interpola-
tion when they correspond to cross-scale connections. All
building blocks are considered to be identical.

3.2. Variational Inference

In our method, we treat each weight w associated with
each connection on the network as a stochastic variable
coming from a parametric distribution p(W). We consider
a detection or segmentation dataset D = {(xj ,yj)}Jj=1 as
a set of random variables, where x is input data and y is
the corresponding ground truth, in a dataset comprised of J
images. The joint distribution which combines and depicts
the relations of model variables is defined in the following
way:

p(X,Y,W) = p(Y|X,W)p(W). (2)

Our goal is to estimate the posterior distribution of latent
variables W i.e. p(W|Y,X). Since the posterior distribu-
tion cannot be obtained in closed form, we cannot apply
exact inference methods, thus we resort to approximate in-
ference and specifically to the variational Bayesian method-
ology (Bishop, 2006). We assume a family of approximate
posterior distributions qφ(W) parameterized by φ, and then
seek values for the parameters φ that best approximate the
true posterior. Model evidence p(D) =

∫
p(D,W )dW can

be decomposed into:

log p(D) = L(W) +KL(qφ(W)||p(W|D)), (3)

where L(W) is the Variational Lower Bound (VLB) and
KL(qφ(W)||p(W|D)) is the Kullback-Leibler (KL) di-
vergence between the distribution qφ(W) and true poste-
rior distribution p(W|D). The best approximation of the
true posterior distribution comes via maximizing the lower
bound, a process which is equivalent to minimizing the
KL divergence. Unfortunately, the required integrals for
applying a mean-field VB algorithm are also intractable.
These intractabilities appear since the detection networks are
extremely complicated likelihood functions p(Y|X,W).
Thus, in order to find the posterior distribution w.r.t. hidden
variables we directly optimize the VLB, which we write as:

L(W) = Eqφ(W)[log p(Y|X,W)]−KL(qφ(W)||p(W)).
(4)

We want to differentiate and optimize the VLB L(W ) w.r.t.
both the variational parameters φ and generative parameters
θ. However, the gradient of the VLB w.r.t. φ is not trivial to
compute. We proceed by using SGVB (Kingma & Welling,
2014) and use an estimate L̃(W) ' L(W) of the lower
bound and its derivatives w.r.t. the parameters. According
to SGVB, the approximate posterior qφ(W) can be repa-
rameterized via a differentiable transformation f(φ, ε) of an
(auxiliary) noise variable ε:

w = f(φ, ε), where ε ∼ p(ε) (5)

We can now form a low-variance Monte Carlo estimate
on the expectation appearing in (4). Under the change-of-
variables rule for integrals, the expected log-likelihood is
the same as the expectation w.r.t. the auxiliary distribution

L̃(W) =
1

L

L∑
l=1

J∑
j=1

log p(yj |xj ,W = f(w, εl,j))

−KL(qφ(W)||p(W)),

(6)

where εl,j is the lth sample of p(ε) for the jth input datum.

3.3. Choice of Prior Distribution

Here we explicitly define the prior distribution for the con-
nection weights, the choice of the approximate variational
posterior distribution and the VLB. Regarding the type of
prior distribution we have to account for several things. First,
since we want the fusion architecture to be as far from com-
plex as possible we need our model to discard redundant
connections –and if possible entire building blocks– that
do not contribute to the model accuracy. Thus, we have to
choose a sparse prior that will gear a significant part of con-
nections towards zero. Also, for the SGVB to be applicable,
the distribution must be reparameterized w.r.t. an auxiliary
variable, and finally the KL term must be easy to compute
while also being numerically stable in order to facilitate
efficient training.
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3.3.1. AUTOMATIC RELEVANCE DETERMINATION

The mechanism of Automatic Relevance Determination
(ARD) is a well studied subject, first introduced in the con-
text of sparse linear regression using relevance vector ma-
chines (Tipping, 1999; Titsias & Lázaro-Gredilla, 2014).
This setting causes a subset of parameters to be driven to
zero. Assuming that the weights are independent and iden-
tically distributed (i.i.d.) we set the prior distributions to
zero-mean Gaussian 1:

p(W) =
∏
i

p(wi) where wi ∼ N (0, σ̂2
i ) (7)

The straightforward choice for the approximate variational
distribution that satisfies the conditions for applying SGVB
is the factorized Gaussian:

q(W) =
∏
i

q(wi) where wi ∼ N (µi, σ
2
i ) (8)

The set of variational parameters to be optimized is φ =
{µ, σ}. After reparameterization, we have:

w = µ+ σε where ε ∼ N (0, 1). (9)

The optimal hyperparameter σ̂ of the prior distribution can
be calculated by optimizing the VLB:

∂L̃(W)

∂σ̂2
i

= 0⇒ − ∂

∂σ̂2
i

KL(qφ(W)||p(W)) = 0, (10)

which yields the optimal parameters σ̂2
i = µ2

i + σ2
i . By

substituting those parameters the KL term of the VLB can
be computed analytically, as it is defined over Gaussian
terms:

KL(qφ(W)||p(W)) =
1

2

∑
i

log(
µ2
i

σ2
i

+ 1) (11)

3.3.2. ARD WITH CORRELATED WEIGHTS

We extended the mechanism of Automatic Relevance Deter-
mination (ARD) in order to study the correlation between
the connection weights and how it affects the pruning pa-
rameters of our method. We now set the prior distributions
to zero-mean multivariate Gaussian:

p(W) = N (w|0, Σ̂), (12)

where w is now a vector containing all the connection
weights of our model. The straightforward choice for the

1In the remainder of the text, we omit the upper limit on i-
indexed sums and products for brevity. This will be implied equal
to the total number of network weights-connections, unless stated
otherwise.

approximate variational distribution that satisfies the condi-
tions for applying SGVB is Gaussian:

q(W) = N (w|µ,Σ), (13)

and the set of variational parameters that we wish to opti-
mize is now φ = {µ,Σ}. Reparametrizing, we have:

w = µ+ Lε where ε ∼ N (0, I) (14)

where Σ = LLT is the Cholesky decomposition of the co-
variance matrix Σ. The optimal hyperparameter Σ̂ can be
calculated directly by maximizing the VLB which yields
parameters Σ̂ = µµT + Σ. By substituting these parame-
ters, the KL term of the VLB can be computed analytically.
For numerical stability, the variational parameters that we
estimate are the mean of the variational distribution µ and
the lower triangular matrix with positive diagonal elements
L−1. Using the estimate matrix L−1, we can sample from
the variational distribution with eq. 14. Instead of inverting
L−1, we directly sample the weights by solving the trian-
gular linear system L−1(w − µ) = ε. Solving the linear
system is much more numerically stable and can be executed
fast via hardware acceleration.

In order to avoid the inversion of the covariance matrices and
the calculation of the determinants during the optimization
procedure we decompose the KL term as:

KL(q(W)||p(W))

= −
∫
q(w) log p(w)dw +

∫
q(w) log q(w)dw

= −Eq(w)(log p(w))−H(q(w)),

=
1

2
log(|Σ̂|) +

1

2
Eq(W)(w

T Σ̂−1w)− 1

2
log(|Σ|) + C,

(15)
where H(q(W)) is the entropy of the variational distribu-
tion. By substituting the optimal hyperparameters found as
Σ̂ = µµT +Σ, the term log(|Σ̂|) can be decomposed further
by leveraging the matrix determinant lemma (Petersen et al.,
2008):

log(|Σ̂|) =
1

2
log(1 + µTΣ−1µ) +

1

2
log(|Σ|). (16)

The second term in equation (15) can be computed using
the reparameterization trick (14) which leads to the final
expression for the KL term:

KL(q(W)||p(W)) =
1

2
log(1 + µTΣ−1µ)

+
1

2
Eq(ε)(w̃T Σ̂−1w̃),

(17)

where w̃ are the reparameterized sampled values for the
weights using ε and the matrix Σ̂−1 can be easily computed
via the Sherman-Morrison identity. This decomposition
of the KL term allows us to avoid the inversion and log
determinant operation in the VLB computations leading to
very stable training of the network.
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4. Experimental Results
In this Section, we provide numerical results for the pro-
posed method, in comparison to recent existing feature fu-
sion networks. For our numerical analysis, we perform three
different experiments. First, we evaluate our methods as a
backbone network for detection, using (Ren et al., 2016)
and instance segmentation, using (He et al., 2017) versus
state-of-the-art backbone combinations. We carried out ex-
periments to evaluate how the learned architecture of our
network can adapt to different types of datasets, containing
objects at various scales and sizes. Furthermore, we tested
the proposed probabilistic pruning methods versus different
deterministic ones and we highlight the benefits of pruning
components probabilistically. Finally, we introduce a way of
acquiring uncertainty estimates of the model predictions and
we evaluate the quality of those estimates experimentally.

4.1. Implementation Details

4.1.1. MODEL DETAILS

Following (Lin et al., 2017b; Tian et al., 2019) we use fea-
ture pyramid levels P3 to P7, where P3 to P5 are computed
from the output of the corresponding ResNet-50 residual
stage (C3 through C5) using top-down and lateral connec-
tions, P6 is obtained via a 3 × 3 stride-2 convolution on
C5, and P7 is computed by applying ReLU followed by a
3 × 3 stride-2 convolution on P6. These minor modifica-
tions have a positive impact on training and inference speed
while maintaining accuracy. We used a 3 × 3 depth-wise
separable convolution (Chollet, 2017) for feature fusion, as
it reduces significantly the number of trainable parameters,
and we added batch normalization and ReLU activation af-
ter each convolution. Each connection weight was restricted
to positive values via the use of ReLU activation. Also, in
order to avoid numerical instabilities our network optimizes
the logarithmic variance log(σ2

i ) of the variational distribu-
tion, instead of the equivalent optimization over σ2

i . All the
means were initialized with a value of 1 and the logarithmic
variances were set to 0 corresponding to variance of 1. In
order to improve training stability and also force our model
to take advantage of all 5 levels, we added residual con-
nections from P3, P4, P5, P6, P7 to their respected outputs.
This significantly helped the optimization procedure and
slightly boosted model accuracy.

4.1.2. TRAINING DETAILS

Our main experiments are conducted on the large-scale de-
tection benchmark COCO (Lin et al., 2014). Following
common practices (Lin et al., 2017b; Tian et al., 2019), we
use the COCO trainval35k split (115K images) for training
and the minival split (5K images) as validation. We report
our main results on the test dev split (20K images) by up-

loading our detection results to the evaluation server. Our
model implementations were based on the MMDetection
open source project (Chen et al., 2019). At each trial, we
have trained the network for 15 epochs using Stochastic
Gradient Descent (SGD) with momentum set to 0.9 and
weight decay parameter set to 0.0001. The learning rate was
set according to the linear scaling rule (Goyal et al., 2017);
this rule states that the learning rate has to be proportional to
the batch size, where each batch was set to include 2 input
images, each at resolution of 1333× 800 pixels. The train-
ing and test parameters for the employed detectors were set
according to the values prescribed in the respective papers.

4.1.3. VARIATIONAL DETAILS

We prune redundant connections based on the distribution
of weights w. When the means of the variational distribu-
tion are less than a threshold value, those connections are
dropped; additionally, when a building block is left with
zero input connections, the whole block is dropped, further
reducing model complexity. Through our experiments, the
KL term in the loss function was annealed by a small factor
to avoid over-regularization. At test time, we followed the
weight scaling rule (Srivastava et al., 2014) by replacing the
weights with their expected values, i.e. formally:

Eqφ(w)p(y|x,w) ≈ p(y|x,Eqφ(w)[w]). (18)

4.2. Results

For fair comparison we followed the same training scheme
for all the networks. As recent works have shown, repeat-
ing the same feature fusion network multiple times enables
higher-level feature fusion and provides better accuracy.
However, in our experiments we choose not to repeat the
networks, as we believe that stacking layers makes the re-
sults of the experiments more difficult to interpret.

Table 1 shows the accuracy and model complexity for our
proposed network and other state-of-the-art feature fusion
networks, (NAS-FPN) (Ghiasi et al., 2019),(PANet) (Liu
et al., 2018), (BiFPN) (Tan et al., 2020), (PConv) (Wang
et al., 2020), (HRNet) (Sun et al., 2019). The variational-
based networks were compared according to the choice
of prior distribution. As we can see, in all cases accurate
detection is quite a challenging problem. It is clear that
supervised segmentation techniques like deep convolutional
neural networks can benefit from the presence of sophisti-
cated feature fusion. The variational models outperform the
standard architectures in terms of average precision. With
respect to the type of the model prior, the model that is inte-
grated with the correlated Gaussian (FullARD) outperforms
other variants, but at a small cost of pruning less weighted
connections.

In Table 3, we added some experiments in order to high-
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Table 1. Numerical results for object detection/segmentation trials on COCO (Lin et al., 2014). Average precision and precision on
different threshold and object sizes are shown, alongside with network size and inference time (measured in milliseconds), for proposed
models and other feature pyramid variants.

Network Model AP AP50 AP70 APS APM APL Params Inference

Faster RCNN

BiFPN 0.293 0.486 0.311 0.163 0.316 0.350 1.60M 7.8± 0.01
PANet 0.296 0.486 0.314 0.167 0.320 0.351 1.74M 6.7± 0.01
NAS-FPN 0.307 0.509 0.326 0.175 0.342 0.392 1.53M 5.4± 0.10
PConv 0.308 0.510 0.320 0.180 0.346 0.391 1.25M 8.4± 0.77
HRNet 0.305 0.510 0.310 0.161 0.345 0.381 1.32M 3.2± 0.17
ARD 0.315 0.525 0.331 0.187 0.340 0.377 1.67M 6.3± 0.01
FullARD 0.322 0.533 0.342 0.186 0.351 0.388 1.74M 6.5± 0.01

Mask RCNN

BiFPN 0.271 0.451 0.284 0.109 0.291 0.402 1.60M 7.8± 0.01
PANet 0.268 0.446 0.279 0.111 0.288 0.393 1.74M 6.7± 0.01
NAS-FPN 0.280 0.468 0.290 0.117 0.308 0.411 1.53M 5.4± 0.10
PConv 0.279 0.464 0.290 0.117 0.309 0.410 1.25M 8.4± 0.77
HRNet 0.288 0.484 0.301 0.114 0.314 0.418 1.32M 3.2± 0.17
ARD 0.290 0.481 0.303 0.124 0.315 0.424 1.67M 6.5± 0.01
FullARD 0.299 0.499 0.314 0.126 0.324 0.447 1.74M 6.8± 0.02

Table 2. Numerical evaluation of uncertainty estimates for Faster
RCNN trained on three different datasets. Baseline indicates de-
tections acquired using the weight scaling rule and thresholded
via the use of NMS, Mean detections are obtained with test time
averaging and NMS applied and Var voting indicates predictions of
time averaging but with the use of prediction variance coupled with
the var voting algorithm. Ten forward passes where performed for
each image.

Dataset Model AP AP50 AP70

PlantDoc
Baseline 0.321 0.525 0.354
Mean 0.333 0.533 0.364
Var voting 0.351 0.539 0.404

COCO
Baseline 0.313 0.521 0.332
Mean 0.286 0.451 0.315
Var voting 0.341 0.563 0.365

Cards
Baseline 0.886 0.997 0.984
Mean 0.889 0.999 0.989
Var voting 0.912 0.999 0.994

light the benefits of pruning weights in a probabilistic man-
ner. Specifically, we experimented with the initialized com-
plex architecture of our model with no pruning; also, we
randomly pruned a subset of weights and trained the re-
sulting network via maximum likelihood (respectively “no
pruning” and “random pruning” in Table 3). We tested
the non-probabilistic method of Lasso pruning where a
scaled regularization term based on the L1 norm of the
weights was added to the detector loss function. Finally, we
added more sophisticated deterministic pruning methods.
We experimented with the gradient-based pruning method
in (Molchanov et al., 2019) and with the method of (Frankle

& Carbin, 2019). Both methods require the fully connected
network to be trained up to an optimal point, and then itera-
tive connection pruning is applied. We set both methods to
prune connections until 9 connections remain (in order to
match ours and the Lasso-based pruning techniques).

We can see that the probabilistic methods of pruning yield
better results than the deterministic ones. The correlated
prior furthermore has the same accuracy as the fully complex
model with no pruning while keeping only 25% of total
connections. Additionally, both the variational and Lasso
based methods yield better results than random pruning,
verifying our notion that the network can learn to drop
redundant connections. In Figure 2, we present two plots:
the top plot depicts the active weights versus the training
iteration, where all the methods progressively drop this
number to a point where it reaches stability. In the bottom
plot, we can observe some indicative values of the means of
the approximate posterior on the weights.

Finally, we trained our proposed model with the ARD prior
on the connection weights, integrated with the Faster RCNN
network in three distinct datasets (COCO, Plants, Cards). By
conducting these experiments we wanted to study the feature
fusion architecture (i.e., corresponding to the non-pruned
connection set after training). The datasets for this experi-
ment where carefully chosen as each one bears its unique
characteristics. Specifically, COCO (Lin et al., 2014) is an
extremely demanding dataset containing multiple objects
at different scales and sizes, PlantDoc (Singh et al., 2019)
contains (mostly) medium and large objects and the Cards
dataset (Crawshaw, 2020) is comprised solely of small ob-
jects. As we can see in Figure 3, each dataset leads to its
own distinct optimal architecture. This means that the net-
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Table 3. Numerical results for instance segmentation trials on COCO (Lin et al., 2014). Average precision (AP) is shown, alongside
with network size (in terms of preserved connections, “Cons” and number of parameters, “Params”) and inference time (measured in
milliseconds) for different pruning schemes.

Model AP Cons Inference Params
No Pruning 0.299 63 14.2± 0.1 1.74
Random Pruning 0.222 16 8.1± 0.04 1.60
Lasso-based 0.283 9 4.8± 0.02 1.32
(Molchanov et al., 2019) 0.286 9 6.1± 0.03 1.38
(Frankle & Carbin, 2019) 0.280 9 7.1± 0.02 1.40
ARD 0.290 9 6.5± 0.01 1.39
FullARD 0.299 16 6.8± 0.02 1.60

work can learn to fuse and use those feature maps that are
more valuable to each specific dataset.

4.2.1. EVALUATING MODEL UNCERTAINTY

We conducted experiments to quantify the uncertainty es-
timates of our model. By having the distribution of the
connection weights w we can easily sample values of w.
Each different sample from these distributions results to a
distinct feature fusion network. Thus, instead of directly
using the mean values of w at test time, we can first draw
sample of weights acquiring a feature fusion network and
then pass the image to it. This practice is referred to as
test time averaging, and has been used for acquiring uncer-
tainty estimates in stochastic neural networks (Kingma et al.,
2015). Also, it has been previously applied in an objection
detection architecture context (Miller et al., 2018).

We have performed 10 single forward passes (each time
sampling different values of w), a process which yields a
larger set D = {D1, . . . , D10} of 10 individual detection
sets Di = B,S where B and S are sets containing the
bounding boxes and the object scores respectively. Those
prediction sets will have significant overlap, thus we sort
the predictions according to their IoU and then we calculate
the mean and variance of each prediction box resulting in
Df = {Bmean, Bvariance, Smean, Svariance}.

In order to numerically quantify those uncertainty estimates
we used the variance voting (“var voting”) algorithm pro-
posed in (He et al., 2019), which modifies the non-maximum
suppression (NMS) scheme. It uses the variance of a pre-
dicted location and refines each candidate bounding box
location according to the learned variances of neighboring
bounding boxes. The results are reported in Table 2. For
all the datasets we can observe that the use of variance
estimates can slightly improve network performance. We
can observe the effectiveness of the var voting algorithm
combined with our uncertainty estimates in Figure 4. The
bounding boxes where refined to better match the target
object. We can also observe model uncertainty for the pre-

dicted locations of bounding boxes, and we can see that
accumulating predictions can even result in a prediction that
a single forward pass could miss.

5. Conclusion and Future Work
We have presented Variational Feature Pyramid Networks,
as extensions to the widely used FPN backbone. These
networks are efficient and can be easily applied to various
detectors for more efficient feature fusion. They can adapt to
the underlying data, leading to specific fusion architecture
for each training set. The Bayesian framework is used
in our methods, allowing the user to capture uncertainty
estimates about the trained model in contrast to deterministic
variants. Numerical experiments show that the integration
of the proposed model results in improving overall detection
efficiency. For future work, we aim at exploring other forms
of initial complex architecture with more hidden layers and
modules. We also plan to experiment with different sparse
prior distributions, allowing for more complex variational
distributions over the model weights. As recent research
does point out to non-Gaussianity (Fortuin et al., 2022),
we plan to experiment with heavy-tailed alternatives 2. We
can envisage a Student’s-t model using a Gaussian-Gamma
factorization, and other options may include a Weibull or a
Gamma distribution, in order to constrain weights as strictly
positive following (Fan et al., 2020) or (Figurnov et al.,
2018). We look forward to a fuller exploration of the pros
and cons of all these models as future work.
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A. Using a Laplace prior
A.1. Laplace Distribution

Our first option for the weight-connection prior had to be a Gaussian distribution, due to its simplicity, good analytical
properties, and implications of the central limit theorem (Bellido & Fiesler, 1993). Recent research however does point out to
non-Gaussianity of neural network weights (Fortuin et al., 2022), and we have indeed conducted (preliminary) experiments
towards this direction, especially focusing on heavy-tailed alternatives. We experimented with the Laplace distribution
which has heavier tails than the Gaussian and is discontinuous at w = µ. It is often used in the context of Lasso regression,
where it encourages sparsity in the learned weights (Tibshirani, 1996). Assuming that the weights are i.i.d., we set the prior
distributions to zero-mean Laplace:

p(W) =
∏
i=1

p(wi) where wi ∼ Laplace(0, 1). (19)

The straightforward choice for the approximate variational distribution that satisfies the conditions for applying SGVB is the
factorized Laplace distribution:

q(W) =
∏
i=1

q(wi) where wi ∼ Laplace(µi, βi). (20)

Thus the set we wish to optimize are the variational parameters φ = {µ, βi}. We can easily draw samples from the
variational posterior:

w = µ− βsign(ε) log(1− 2|ε|+ α) where ε ∼ U(−1

2
,

1

2
), (21)

where the sign function evaluates the sign of ε and α is a parameter with small value introduce to provide numerical stability.
The KL term of the VLB can be computed analytically as:

KL(qφ(W)||p(W)) = − log(β) + |µ|+ β exp(
−|µ|
β

)− 1. (22)

A.2. Experimental Results

Table 4. Numerical results for object detection/segmentation trials on COCO (Lin et al., 2014). Average precision and precision on
different threshold and object sizes are shown, alongside with network size and inference time (measured in milliseconds), for proposed
models and other feature pyramid variants.

Network Model AP AP50 AP70 APS APM APL Params Inference
Faster RCNN Laplace 0.312 0.517 0.328 0.179 0.346 0.392 1.602M 6.8± 0.10
Mask RCNN Laplace 0.283 0.473 0.294 0.125 0.304 0.412 1.740M 6.9± 0.03
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Figure 5. Plot of the number of non-pruned weights/connections versus the training iterations using different priors on the same setting on
COCO, (left Mask-RCNN and right Faster-RCNN).


