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Abstract. Handwritten Text Recognition (HTR) is a challenging prob-
lem that plays an essential role in digitizing and interpreting diverse
handwritten documents. While traditional approaches primarily utilize
CNN-RNN (CRNN) architectures, recent advancements based on Trans-
former architectures have demonstrated impressive results in HTR. How-
ever, these Transformer-based systems often involve high-parameter con-
figurations and rely extensively on synthetic data. Moreover, they lack
focus on efficiently integrating the ability of Transformer modules to
grasp contextual relationships within the data. In this paper, we explore
a lightweight integration of Transformer modules into existing CRNN
frameworks to address the complexities of HTR, aiming to enhance the
context of the sequential nature of the task. We present a hybrid CNN
image encoder with intermediate MobileViT blocks that effectively com-
bines the different components in a resource-efficient manner. Through
extensive experiments and ablation studies, we refine the integration of
these modules and demonstrate that our proposed model enhances HTR
performance. Our results on the line-level IAM and RIMES datasets sug-
gest that our proposed method achieves competitive performance with
significantly fewer parameters and without integrating synthetic data
compared to existing systems.
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1 Introduction

Handwritten Text Recognition (HTR) systems aim to enable machines to rec-
ognize human writing. HTR is utilized in several applications such as the digiti-
zation of handwritten and historical documents for easier storage, preservation,
and analysis. The task poses several challenges due to the unique and varying
characteristics and calligraphic style between different writers as well as within
each writer. The complexity of the task requires multimodal approaches that
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bridge Computer Vision and Natural Language Processing techniques to under-
stand and interpret human handwriting.

Research in learning for HTR has been centered around formulating a suit-
able model that can capture faithfully the intrinsic traits of the process of hand-
writing. Perhaps the most salient feature of handwriting is its sequential nature,
and before the advent of Deep Learning most successful models have been us-
ing variants of Hidden Markov Modeling [4]. Recurrent Neural Networks have
been made the deep model of choice for HTR, and they have started gaining
prominence especially after a number of key advances, such as the introduc-
tion of variants that can deal with vanishing/exploding gradients (Long Short
Term Memory, Gated Recurrent Units) and the introduction of Connection-
ist Temporal Classification (CTC)-based objectives [12]. Difficulties in training
Recurrent-only architectures have incentivized researchers to employ convolu-
tional components, or whole convolutional backbones and integrate them with
a Recurrent model. Standard architectures in this vein consist of an encoder-
decoder framework, by deploying a Convolutional Neural Network (CNN) as a
backbone to create the image features and a Recurrent Neural Network (RNN)
for the sequential modeling part.

In the past few years, Transformers [30] have dominated the field of Natural
Language Processing due to the powerful context created by the self-attention
mechanism. Transformers enjoy a global receptive field, as opposed to recurrent
modeling, which enables them to capture long-range dependencies. Combined
with the positional embedding of tokens, this enables an accurate treatment of
sequential data as well as provides a much richer model than recurrent networks.
The mechanism has been explored on visual tasks with Vision Transformers
(ViT) by treating the images as sequence patches instead of text tokens. ViT
have demonstrated promising results within image data, suggesting potential
benefits for enhancing HTR performance. However, this increased effectiveness
does not come without a price: Transformer-based architectures are known to be
exceptionally data-hungry in terms of the sizes of the training set size, as well
as the large size of the model (e.g., [18]).

In light of the above considerations, we believe that a careful analysis and ex-
ploration regarding how to integrate self-attention models in a non-Transformer
pipeline optimally should be considered. Our contributions can be summarized
as follows:

1. We explore the use of Transformer modules in both the visual and textual
parts of the HTR system. Unlike most previous work, special emphasis is
given to a (relatively) resource-constrained setting.

2. We propose a hybrid CNN-MobileViT image encoder to model the sequences
of the images.

3. We present a thorough ablation study on the Transformer parameters in both
the encoding and decoding parts and compare it with other State-of-the-Art
HTR methods.
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2 Related Work

Handwritten text is commonly processed sequentially by methods that learn to
model the input by handling sequences of characters in various lengths. Moti-
vated by formulating the sequential nature of text in terms of a model with a
suitable inductive bias, earlier methods were based on Hidden Markov Models
(HMM) [9,11,4]. Textual latent features were defined to form a Markov chain,
with each component related to an observed column of the text image. After
the revolution brought by Deep Learning in the mid-2010s, HMMs have been
steadily superseded by models based on Recurrent Neural Networks [13].

Advances in Handwritten Text Recognition. When coupled with Con-
nectionist Temporal Classification (CTC)-based objectives, which enable loss
computation during training without requiring exact alignment between predic-
tion and target, RNNs have served as the foundation for numerous excellent-
performing systems [12,24]. Alternatively, Sequence-to-Sequence models offer a
different approach to HTR, separating encoding into a feature vector and de-
coding into the target string as distinct network components [27]. In compar-
ison to Convolutional Neural Networks (CNNs), RNNs possess the advantage
of capturing sequential information dependencies, often resulting in superior
HTR models. Encoding prior knowledge about input characteristics is primarily
achieved through the inherent biases within each model. Convolutional layers,
for instance, model statistical dependencies within each time frame or spatial de-
pendencies of line image cues with respect to nearby pixels. Conversely, recurrent
layers encode the belief that data are inherently sequential, with bidirectional
recurrent variants adept at capturing forward and backward dependencies. How-
ever, RNNs are recognized for being challenging to train and converge to sat-
isfactory solutions. Thus, architectures combining convolutional and recurrent
components have been proposed [27,25,20,28]. A prevalent approach involves a
convolutional backbone transforming input segmented images into a useful fea-
ture map, which is subsequently pooled or reshaped into a sequence of features
fed into a recurrent component. For convolutional-recurrent model architecture,
incorporating an auxiliary CTC-based component into the primary recurrent
network has proven effective, serving as a penalty for cross-entropy loss over
a recurrent decoder. In practice, employing a fully convolutional CTC short-
cut encompassing 2D and 1D convolutions translates to fewer recurrent compo-
nents and faster convergence. The work presented in [25] proposes best practices
in standard CNN-RNN HTR systems trained with CTC loss and manages to
achieve state-of-the-art results without the use of synthetic data.

Transformers. The advent of Transformers [30] and their ability to handle
long-range dependencies has introduced an alternative to the sequential RNN
processing with the use of the attention mechanism. Initially introduced within
the realm of Natural Language Processing [30], they have been adapted for
tasks amenable to sequential processing. At the heart of Transformers lies the
self-attention mechanism, wherein input sequence vectors undergo transforma-
tion into “keys,” “queries,” and “values” via learnable, shared operations, effec-
tively creating a feature dictionary. These features are then combined through
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a softmax-weighted average and further processed via a fully-connected layer to
yield an output sequence. Experimentally, employing multiple transformations
on the same inputs, known as the multi-head variant of self-attention, has proven
effective. These multi-head self-attention operations can be organized into stacks
to form transformer layers. Recent endeavors have explored the application of
Transformers in Document Image Processing applications, including HTR, in-
variably showcasing excellent results [3,36,18].

In recent years, a notable number of works have been done on using Trans-
formers in HTR. [8] have replaced Recurrent components with Self-attention
blocks, showing that this leads to a clear advantage in terms of training time and
model complexity requirements. A Sequence-to-Sequence Transformer is pro-
posed in [1], and experiments are carried out with an architecture that is much
more compact than the norm in Transformer models [2]. In [16], they combine
Transformer blocks with convolutional components for the visual encoding part
and recurrent components are replaced by a Transformer decoder that attends
to both the textual and visual part. An attention-based sequence-to-sequence
system that consists of a CNN-RNN feature extractor and a separate RNN ar-
chitecture for the character sequence decoding, placing an attention mechanism
between the visual encoding and textual decoding part, is presented in [23].
TrOCR [18] is an end-to-end text recognition system consisting of image and
text Transformer models pre-trained on large-scale synthetic data. DTrOCR [10]
explores using a decoder-only Transformer architecture, taking advantage of a
generative language model (Generative Pretrained Transformer, GPT) that is
pretrained on a large corpus. Unlike this line of works, our approach focuses on
exploring the power of Transformers without synthetic pre-training.

Despite these successes, Transformers in HTR are associated with a number
of disadvantages: large model size and a large training dataset –often synthetic
in practice– are among these. [32] urge further caution, as they note that they
can be related to drawbacks such as struggling to handle text repetitions. Models
reliant solely on Transformer structures tend to exhibit significantly larger sizes
compared to their non-transformer counterparts [33]. Also, they are notably even
more data-hungry than what is the (already high) norm in Deep Learning, often
requiring large-scale synthetic datasets to unravel their full potential. With the
current work, we aim to address these issues by exploring an optimal trade-
off with respect to coupling visual transformer blocks with convolutional and
recurrent components and leveraging advances such as the CTC shortcut [25].
We show that the proposed architecture leads to State-of-the-Art results without
requiring the use of synthetic pre-training like previous work [8,18,10].

3 Proposed System

The motivation of the proposed system is straightforward and can be condensed
into this question: “Can we utilize the effectiveness of attention in lightweight
architectures?”. Several aspects are crucial to address the aforementioned ques-
tion:
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– First, we have to consider how the innate large transformer architectures can
be integrated into lightweight systems. To this end, we considered a hybrid
CNN-Transformer architecture, motivated by the MobileViT model [22].

– Second, we are interested in a setting of limited data, namely, using the stan-
dalone training set of datasets without any external/synthetic data augmen-
tation. This can be a notable issue with transformers, which are proven to
be very effective when a very large amount of training data is used [2,18,10].
While such setup is not directly useful in practice for the considered lan-
guages / datasets, it is an important point in low-resources languages.

– Lastly, we aim to highlight optimization tweaks that can be utilized to sup-
port the training of such hybrid architectures under the aforementioned set-
ting of (relatively) limited data.

3.1 Hybrid HTR Architecture

The design of our architecture aims to combine the benefits of both convolutional
and transformer architectures for feature extraction, namely a lightweight and
easily trainable model, as in typical CNNs, and a holistic ability to integrate
context, as in transformers. To this end, we followed the success of Mobile-
ViT [22] and used the same transformer components, referred to as MobileViT
blocks. To be in line with the handwritten text recognition task, we opted for a
task-customized CNN backbone, as in [25]. The transformed blocks were then
intervened between typical convolutional blocks, as in [22]. The aforementioned
hybrid architecture is the backbone of our system, responsible for the feature
extraction step. The extracted feature map should be translated to character
probabilities in order to perform the text recognition step. This is performed
through the head module. Following [25], a recurrent head is selected, while
also a transformer head was considered as an alternative. Both head variants aim
to capture context and assist character prediction. The system is trained using
the Connectionist Temporal Classification (CTC) loss [12]. Figure 1 depicts the
proposed architecture and its components. A description of these components
will be provided in detail in the following subsections.

Hybrid Backbone Our system utilizes a hybrid CNN-Transformer backbone,
where the CNN part is the same as in [25] and the transformer modules are
MobileViT blocks, as defined in [22]. In more detail, the backbone takes a text
image as input and outputs a sequence of features to be processed by the head
of the model. It consists of:

– A first layer of a single 7× 7 convolution and 2× 2 stride to downscale the
initial feature map.

– Groups of sequential 3 × 3 ResNet blocks [15]. There are three such groups
in total. The first has 2 blocks, while the latter two have 4.

– Between these groups of blocks a 2 × 2 max-pooling of stride 2 is used to
further downscale the produced feature map.
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Fig. 1. Overview of the model architecture. We present the hybrid CNN backbone with
the intermediate MobileViT blocks and the Recurrent head with the CTC shortcut.
The MobileViT block components are depicted on the right upper part.

– The MobileViT blocks are added immediately after the max-pooling oper-
ation. This means that we considered 2 MobileViT in total to be added to
our architecture, as seen in Fig. 1.

– A column-wise max-pooling operation flattens the 3D visual feature map,
which is the output of the backbone, into a sequence of features.

MobileViT blocks are the core component of the proposed architectural en-
hancement. To this end, let us describe their functionality in detail. A high-level
description of the MobileViT structure is depicted in Fig. 1, where we can dis-
tinguish three sub-blocks:

– The Local Representation block which simply transforms the input via a set
of convolutional layers. It prepares the input by calculating local correlations
before the upcoming patch-based transformer step.

– The Transformer block uses a number of stacked transformation modules
consisting of Multi-Head (self-)Attention, fully connected, and normaliza-
tion layers in a residual manner. Before this block, a folding operation into
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patches is used. Specifically, given a patch size of p × p, the block’s in-
put of size RH×W×d is transformed into a tensor of size RP×D×d, where
P = HW/p2 and D = p2. The inverse operation of unfolding is applied
after the transformer block to return to a spatial tensor formulation. This
step provides the necessary holistic information to learn long-term spatial
dependencies.

– The final Fusion Block concatenates the input of the whole MobileViT block
and the output of the previous transformer block and processes it through a
final convolutional layer that combines the local and the global information
learned by the whole MobileViT block.

The appeal of MobileViT blocks is two-fold. First, they introduce spatial in-
ductive bias as the authors highlight [22], which seems to be an issue for ViT
optimization [34]. Furthermore, they provide a lightweight approach to gener-
ating context-aware global embeddings, having a receptive field of the whole
spatial domain without losing the order of the patches and without the need for
positional encoding.

The intuition of using such transformer blocks in the context of handwrit-
ten text recognition can be summarized as the ability to correlate intermediate
features along the whole image, hinting towards an implicit writing style adapta-
tion. In other words, by having this global receptive field step, we can understand
and consequently adapt to different writing styles, which may not be detectable
by the local intermediate convolutional layers in the default setting.

Head Variants We explore two types of heads for the decoding part that
generates the character sequences: a recurrent and a transformer head.

– Recurrent Head: Similar to [25], our recurrent head relies on a stack of three
Bidirectional Long Short-Term Memory (BiLSTM) units with a hidden size
of 256, which is projected linearly to the number of character classes.

– Transformer Head: We replace the recurrent head with a transformer head
that operates directly on the sequences and aim to explore the ability of
a self-attention architecture to capture context. Specifically, we use only
the encoder part of the standard Transformer [30], which is comprised of
N stacked blocks of Multi-Head Attention layers. To precisely capture the
order of the sequential input, we also employ a positional encoding layer.

Both variants convert the input sequence of feature dimension d to a se-
quence of the same length with feature size nclasses, i.e. the number of possible
character tokens, including the blank character required by CTC. Thus, training
is performed via CTC, and evaluation is performed via greedy decoding, namely
by choosing the character with the highest probability at each step, reducing
consecutive identical characters into a single one, and then removing the blank
tokens.

An important distinction here is that the Transformer head is designed for
the CTC loss. Thus, we essentially rely on the self-attention concept to capture
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long-term dependencies, along with the required positional encoding. A different
approach would be to use the complete encoder-decoder architecture of the typi-
cal Transformer, as used in NLP task [30]. This assumes a sequence-to-sequence
rationale and, thus, a different loss, where character predictions are performed
sequentially (training can be parallelized). To avoid such computationally intense
architectures, we opted for the more lightweight solution discussed earlier.

Finally, we also use an additional convolutional-only head as an auxiliary
shortcut branch to assist optimization, as done in [25]. Specifically, this auxiliary
head consists of a single 1D convolution layer that outputs features of dimensions
equal to the possible character tokens (nclasses). It is also trained using CTC loss
in parallel to the main branch. Essentially, a multi-task loss is used by adding
the two individual CTC losses with the appropriate weights, namely the main
as it is and the auxiliary scaled down by 0.1. The concept of this shortcut path
is to assist the training by providing a straightforward path for the backward
propagation, akin to the residual rationale, providing high-quality encodings at
the output of the backbone to be further processed by the context-aware head.

3.2 Optimization

As stated before, Transformer modules can lead to subpar performance if the
amount of training data is limited. Considering common HTR settings, without
the use of external data (e.g., synthetic), the training set typically has a few
thousand lines (e.g., IAM has around 6K lines for training). Despite the typical
augmentation step of affine transformations (see Experiments section for details)
during training, such amount of data could prevent our system from unlocking
its potential, even if only two MobileViT blocks are considered.

End-to-end training of the proposed system on limited data may underper-
form [17]. To this end, we considered an alternative training scheme, where two
distinct training steps are considered. First, we train the architecture without
the transformer blocks. Essentially, we train the same architecture as in [25].
Then, we use this pretrained model to initialize all non-transformer weights and
re-train the whole architecture. This simple workaround could potentially fur-
ther “unlock” the effectiveness of the transformer blocks by providing a good
initialization of the whole system. In essence, we force the transformer to learn
well-performing context-aware representations under this specific framework.

4 Experiments

4.1 Experimental Setup

Datasets & Metrics:We evaluate our proposed system on the IAM database [21]
on the line-level setting. We present a thorough ablation study on the Trans-
former parameters of the backbone and head of the system. We further present
an ablation study on the different components of the system in the backbone
and the head. The ablation experiments are performed on IAM, using the writer
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independent train/validation/test split, similar to [24,25]. The reported results
present the Character Error Rate (CER) and Word Error Rate (WER) metrics.
Given the results of the ablation study, we compare the performance of our best
parameter combination model with other state-of-the-art systems on the IAM
and RIMES [14] test sets while taking into account the presence of synthetic
data and the number of parameters.
Data Pre-processing: The pre-processing steps follow the practices presented
in [25]. Specifically:

– Images are fixed to a size of 128×1024. The aspect ratio is kept if the image
is smaller than the aforementioned resolution, and a padding operation is
considered. Otherwise, the image is resized to the required size.

– During training, spatial affine transformation, and Gaussian noise are used
for on-the-fly data augmentation.

– Target text is extended by adding the space token before and after the actual
text in order to correspond to the spaces created by the padding operation
on the images.

Training Details: The proposed HTR system is trained for 240 epochs with
an initial learning rate of 0.001 that decreases by a factor of 0.1 at epochs 120
and 180, following the training scheme of [25]. In our two-step training scheme,
we initialize the pre-trained layers with a learning rate of 0.0001. This choice is
made to ensure training stability and preservation of the knowledge captured in
the layers for effective transfer to the second training step. We use AdamW [19]
as the optimizer and a batch size of 16 samples. The implementation is based
on the PyTorch framework, and every experiment runs on a single A100 GPU.

4.2 Ablation Study

We explore the values of the different parameters present in the Transformer
modules utilized in the backbone or head to obtain a final setting with good
performance and a reasonable number of parameters. To this end, we report the
CER and WER on the validation set of IAM without the use of the pre-trained
layers proposed in our pre-training scheme.

The Transformer architecture consists of several key parameters that impact
its efficiency and performance. The model dimension dmodel corresponds to the
size of the embeddings used in the model and the number of layers N to the
number of identical stacked Transformer blocks. The self-attention in the multi-
headed attention layer is performed in parallel in h number of heads, where
every head has a dimension dhead. Finally, the feed-forward network dimension
mlpdim dictates the size of the inner fully connected layer of the Transformer
that appears after the Multi-headed attention layer.

We explore several combinations of the model dimension dmodel, the number
of layers N , the number of heads h in the multi-headed attention, and the head
dimension dhead in the Transformer module of the two MobileViT blocks. In
every experiment of the ablation study, the feed-forward network dimension is



10 George Retsinas, Konstantina Nikolaidou, and Giorgos Sfikas

Table 1. Ablation on the dmodel of the transformer present in the MobileViT blocks for
N = 1 layer and h = 1 heads. The head dimension in every case is dhead = dmodel/h.

N = 1, h = 1

dmodel CER(%)↓ WER(%)↓ # params

64 3.14± 0.02 11.54± 0.31 10.86M
80 3.07± 0.08 11.27± 0.24 10.90M
128 3.19± 0.04 11.68± 0.21 11.08M
256 3.48± 0.08 12.48± 0.11 11.92M

Table 2. Ablation on the number of heads h of the transformer present in the Mobile-
ViT blocks for N = 1 layer and dmodel = 80 heads. The head dimension in every case
is dhead = dmodel/h.

N = 1, dmodel = 80

h dhead dmodel CER(%)↓ WER(%)↓ # params

1 80 80 3.07± 0.08 11.27± 0.24 10.90M
2 40 80 3.14± 0.11 11.57± 0.38 10.90M
4 20 80 3.13± 0.10 11.45± 0.34 10.90M
8 10 80 3.00± 0.06 11.02± 0.34 10.90M

set to mlpdim = 2 ∗ dmodel, and we keep a fixed patch size dimension of (4, 4)
and (8, 8) in the first and second MobileViT block, respectively.

We begin the exploration using N = 1 layer and h = 1 and experiment with
model dimension dmodel for values 64, 80, 128, and 256. In this scenario, the
combination of parameters is the same for both blocks, and the head dimension
is set as dhead = dmodel/h. The results of the ablation, along with the number
of parameters, are presented in Table 1. The results indicate that a larger value
of the model dimension decreases the performance. In comparison, a model di-
mension of 80, which is closer to the smaller value we picked, gives the best
result. Given the results of Table 1, we proceed with dmodel = 80 and gradually
increase the number of heads. Table 2 shows that for a constant number of model
parameters, the highest number of heads, which is 8, achieves the best perfor-
mance. Following the best-performing setting from the previous ablation again,
we continue to explore how the model performs if we keep a fixed dhead = 80
and increase the model dimension along with the heads as dmodel = h ∗ dhead.
The results are presented in 3, where we can observe that the smaller the model,
the better the performance. To conclude with the setting choice, we use the
best-performing combination, which is dmodel = 80, h = 8, and dhead = 10 and
increases the Transformer layers N . The results of the layer exploration are pre-
sented in Table 5. Similar to the previous ablation steps, the best performance
on the validation set is achieved by the smaller model, making us proceed with
N = 1 for our proposed system.

We replace the BiLSTM head with a standard Transformer block while using
the CNN head without the MobileViT blocks and explore a few combinations
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Table 3. Ablation on the increase of heads h and model dimension dmodel of the
transformer present in the MobileViT blocks for N = 1 layer and dhead = 80 heads.

N = 1, dhead = 80

h dhead dmodel CER(%)↓ WER(%)↓ # params

1 80 80 3.07± 0.08 11.27± 0.24 10.90M
2 80 160 3.22± 0.19 11.89± 0.57 11.24M
4 80 320 3.36± 0.16 12.26± 0.23 12.53M

of the head’s parameter values. The results are presented in Table 6. One can
observe that replacing the BiLSTM head with a Transformer head that oper-
ates directly on the output sequences is not straightforward enough to show an
improved performance and requires further investigation.

Table 4. Ablation on increasing the dmodel of the transformer present in the second
MobileViT block for N = 1 layer dmodel = 80 on the first MobileViT block.

N = 1

block dmodel h CER(%)↓ WER(%)↓ # params

1
2

80
80

8
8

3.00± 0.06 11.02± 0.34 10.90M

1
2

80
160

8
8

3.14± 0.08 11.47± 0.17 11.07M

1
2

80
160

8
16

3.04± 0.05 11.15± 0.10 11.07M

Finally, we explore the impact of our proposed MobileViT blocks by con-
ducting the experiment with and without their addition. We present the results
on both validation and test sets in Table 7.

4.3 Comparison with State-of-the-Art

We evaluate our proposed method, utilizing the optimal setting identified through
our ablation study, and compare it with leading state-of-the-art systems of vari-
ous types of line-level recognition on IAM and RIMES test sets. As demonstrated
in Table 8, our proposed system attains a CER of 4.22% and a WER of 14.58%
on the IAM test set. This performance is achieved using the pretraining scheme
mentioned in 3.2 and without the use of synthetic data augmentation. Notably,
our CER score matches that of the TrOCRSMALL [18], yet our model requires
significantly fewer parameters - even without training on extra data, underscor-
ing the effectiveness of our integration strategy. On the RIMES dataset, our
method achieves a CER of 2.70% and a WER of 9.46%, placing it among the
top-performing methods, but leaving room for improvement. It is important to
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Table 5. Ablation on the number of layers N for dmodel = 80 and h = 8 in the
transformer module of both MobileViT blocks.

N dmodel h CER(%)↓ WER(%)↓ # params

1 80 8 3.00± 0.06 11.02± 0.34 10.90M
2 80 8 3.13± 0.09 11.53± 0.25 11.00M
3 80 8 3.06± 0.11 11.33± 0.42 11.11M

Table 6. Ablation on the Transformer head without intermediate ViT blocks in the
backbone.

dmodel layers heads dhead CER(%)↓ WER(%)↓

32 1 1 32 5.90± 0.04 20.39± 0.20

32 1 2 32 5.89± 0.04 20.39± 0.13

64 1 2 32 5.99± 0.17 20.64± 0.51

80 1 2 40 6.07± 0.22 20.93± 0.61

256 1 1 256 6.10± 0.19 21.06± 0.60

highlight that while the lowest CER is achieved by Diaz et al.[6], DTrOCR[10]
and TrOCR [18] models, our model operates with notably fewer parameters.
This is a vital factor, considering the resource constraints that typically appear
in practical applications. Moreover, these three models not only use considerably
more data for training, but they also augment theirs results with Language Mod-
els (LMs). Diaz et al.[6] use a CTC decoding approach equipped with an external
LM, while DTrOCR[10] and TrOCR [18] decode word tokens and not characters.
On the other hand, Coquenet et al. [5] has a very lightweight approach, with
some similar architecture elements, that achieves vert good results in both IAM
and RIMES datasets further validating our main point on the importance of
properly designing an HTR system.

Our results suggest that the integration of the MobileViT blocks into a con-
ventional CRNN architecture not only retains but can enhance the performance
of the HTR task. This hybrid approach offers a compelling alternative to systems
that heavily depend on synthetic data, achieving competitive performance scores
with a more efficient and lightweight model structure. In summary, our proposed
HTR system not only showcases the potential of integrating self-attention blocks
into a standard CNN-RNN architecture but also emphasizes the importance of
model efficiency in practical applications. Future work will focus on optimizing
the architecture further and addressing the limitations identified in this work,
aiming to push the possibility boundaries in efficient HTR systems.
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Table 7. Ablation on the components of the model Encoder and Head.

CER(%)↓ WER(%)↓

Encoder Head Val Test Val Test

CNN BiLSTM 3.31± 0.07 4.65± 0.03 12.19± 0.35 15.85± 0.05

CNN Transformer 4.10± 0.06 5.89± 0.04 15.28± 0.36 14.64± 0.15

CNN+MobileViT BiLSTM 3.09± 0.03 4.29± 0.08 11.43± 0.09 14.64± 0.15

Table 8. Line-level recognition performance comparison for IAM and RIMES datasets.

IAM RIMES

Method # params synth CER(%)↓ WER(%)↓ CER(%)↓ WER(%)↓

Dutta et al. [7] - ✗ 5.80 17.80 5.07 14.70

Michael et al. [23] - ✗ 5.24 - - -

Tassopoulou et al. [29] - ✗ 5.18 17.68 - -

Yousef et al. [35] - ✗ 4.90 - - -

Retsinas et al. [26] - ✗ 4.55 16.08 3.04 10.56

Retsinas et al. [25] 5.7M ✗ 4.62 15.80 2.75 9.93

Coquenet et al. [5] 2.7M ✗ 4.54 14.55 2.15 6.72

Attention-based Architectures

Kang et al. [16] 100M ✗ 7.62 24.54 - -

Barrere et al. [1] - ✗ 7.42 29.09 - -

Wick et al. [32] 13M ✗ 6.02 - - -

Barrere et al. [2] 6.9M ✗ 5.70 18.86 - -

Wang et al. [31] ✓ 6.40 19.60 2.70 8.90

Wick et al. [32] 27M ✗ 5.67 - - -

Barrere et al. [1] - ✗ 5.07 21.47 - -

Barrere et al. [2] 6.9M ✓ 4.76 16.31 - -

Kang et al. [16] 100M ✓ 4.67 15.45 - -

TrOCRSMALL [18] 62M ✓ 4.22 - - -

TrOCRBASE [18] 334M ✓ 3.42 - - -

TrOCRLARGE [18] 558M ✓ 2.89 - - -

Diaz et al. [6] 105M ✓ 2.75 - 1.99 -

DTrOCR [10] 105M ✓ 2.38 - - -

Proposed 10.9M ✗ 4.22 14.58 2.70 9.46
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5 Discussion

This work acts as an intermediate step to well-designed lightweight HTR archi-
tectures that harness the prowess of modern Transformer Architectures. Even
though the attention modules used in this paper are limited, we have seen non-
trivial improvement aiming to provide global information from the typical self-
attention rationale. Further experimentation could shed light to the intuition
behind such improvement. For example, the global information, exchanged in
the attention modules, could be aligned with style, hinting towards writer de-
pendent features. We also raise the question if you should blindly go towards
very large Transformer architectures. The next logical step, as future work, is to
decompose the vision module from the language modeling aspect, where trans-
formers excel - as seen by [18] and [10], and explore if such a research path leads
to more compact architectures.

6 Conclusion

In this paper, we successfully demonstrated the integration of Transformer mod-
ules into established CRNN architectures for HTR. We proposed a hybrid CNN-
MobileViT image encoder that effectively balances efficiency and performance.
In our analysis, we argued that while Transformers are a powerful learning mod-
ule, proper integration within an HTR pipeline is not straightforward and re-
quires careful adaptation to obtain its full capabilities. By deploying Transformer
modules as part of the image understanding module, we manage to achieve
state-of-the-art performance, all the while avoiding presupposing a constrained
“resource-hungry” regime. Through extensive experiments and ablation studies,
we highlighted the efficacy of our model, which in many cases even outperforms
existing Transformer-based systems that are higher in parameters and dependent
on synthetic data.
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14. Grosicki, E., Carré, M., Brodin, J.M., Geoffrois, E.: Results of the RIMES Eval-
uation Campaign for Handwritten Mail Processing. In: 2009 10th International
Conference on Document Analysis and Recognition. pp. 941–945. IEEE (2009)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016)
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33. Wick, C., Zöllner, J., Grüning, T.: Rescoring sequence-to-sequence models for text
line recognition with CTC-prefixes. In: International Workshop on Document Anal-
ysis Systems. pp. 260–274. Springer (2022)

34. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early Convo-
lutions Help Transformers See Better. Advances in Neural Information Processing
Systems 34, 30392–30400 (2021)

35. Yousef, M., Hussain, K.F., Mohammed, U.S.: Accurate, data-efficient, uncon-
strained text recognition with convolutional neural networks. Pattern Recognition
108, 107482 (2020)

36. Zhang, X., Su, Y., Tripathi, S., Tu, Z.: Text Spotting Transformers. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9519–9528 (2022)

https://doi.org/10.1109/ICIP42928.2021.9506414

	 Enhancing CRNN HTR Architectures with Transformer Blocks 

