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ABSTRACT

In this paper we present a semi-supervised, attribute-based
model suitable for keyword spotting (KWS) in document
images. Our model can take advantage of available non-
annotated segmented word images, as well as string annota-
tions without a matching word image. We build our model
by extending on the probabilistic interpretation of Canoni-
cal Correlation Analysis (CCA), solved using Expectation-
Maximization (EM). On test-time, we back-project the query
and database images to the embedded space by calculating
the embedding space posterior density given the observations.
Keyword spotting is then efficiently performed by computing
query nearest neighbours in the embedded Euclidean space.
We validate that our model offers superior performance given
the presence of partially-labelled data, with keyword spotting
trials on the Bentham and George Washington datasets.

1. INTRODUCTION

Keyword spotting has been established as an important ap-
plication in the field of document image processing in the
recent years. In cases where optical character recognition
(OCR) of a scanned document is deemed to be very difficult
and expected to give less than satisfactory results, or simple
indexing is sufficient, keyword spotting has been proposed
as an alternative to full OCR. In keyword spotting, the user
queries the document database for a given word and the sys-
tem is expected to return to the user a number of possible
locations of the query in the original document. The query
can either be a text string or an example word image. Vari-
ous techniques have been proposed in the literature, covering
the two scenarios, known as Query by Example (QbE) and
Query by String (QbS) respectively [1, 2, 3, 4]. The taxon-
omy of word spotting systems further includes the distinction
into segmentation-based and segmentation-free systems. In
the former case, the datasets to be indexed are assumed to be
segmented beforehand into line or word images [4].

1The research leading to these results has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation Programme (H2020-
EINFRA-2014-2015) under grant agreements n 674943 project READ.

Machine learning methods, and in particular, supervised
learning methods [3, 5, 6], have been employed in document
image processing with much success. Supervised learning
methods require the existence of a set of manually tran-
scripted documents, where word or line images are related
to corresponding text strings. Learning using data of which
only a (typically small) part is labelled is known as semi-
supervised learning in the machine learning literature [7]. In
[8], word-level segmented and annotated images have been
used to learn attribute vectors for each input, and to embed
them to a latent common subspace of image data and tran-
scriptions. In that work, the embedding is performed using
Canonical Correlation Analysis (CCA) [9]. In the current
work we use a hierarchical, probabilistic model to learn pro-
jections of inputs instead of CCA. It has been shown [10] that
CCA can be formulated as a hierarchical probabilistic model,
in a manner that resembles the formulation of probabilis-
tic PCA versus standard PCA. The proposed model, called
”SemiCCA”, uses the probabilistic formulation of CCA, fur-
ther extending it to a semi-supervised model that can handle
partially labelled data. Query-by-Example keyword spotting
can then be performed by estimating the latent image y of
the query in the common latent space, and comparing with
the database using the Euclidean metric. Partially labelled
data are defined in the current context as either (a) word im-
ages that have an unknown transcription or (b) word strings
with no known word image match. Under the hypothesis that
partially labelled data are more readily available than fully-
transcribed ground truth data, we show that the proposed
model is at a clear advantage compared to standard keyword
spotting methods that cannot use unannotated data. Partially
labelled data are used to better estimate the structure of the
input spaces, and in turn learn better projections relating the
input spaces with the common latent subspace. We confirm
the validity of our assumption with numerical experiments on
well-known collections of documents, such as ”Bentham”,
which was used in the ICFHR’14 keyword spotting competi-
tion [11], and ”George Washington” [1] databases.

The remainder of this paper is structured as follows. In
Section 2, we present the proposed probabilistic SemiCCA



model and its solution with EM. In Section 3, we present nu-
merical experiments that show that the proposed model can
benefit from partially labelled data to boost keyword spotting
performance. Finally, in Section 4 we discuss the paper’s con-
tribution and future work.

2. PROPOSED MODEL

In the current work we follow the (word level) segmentation-
based paradigm, meaning that the document image content is
assumed to be segmented into a set of word images. We fur-
ther assume that we have training set, containing data that can
be categorized either as fully-labelled or partially-labelled.
With each datum, we associate (at most) two pieces of infor-
mation: image content-based information and annotation in-
formation. Data are considered to be fully labelled when both
word image content and annotation is available. If only one
piece of information is available, the related datum is consid-
ered to be partially labelled.

For each type of information associated with each word
token, i.e. image content or annotation, we compute a sepa-
rate fixed-length descriptor. In order to describe word image
content, we use an attribute-based representation [3, 8]. This
representation is computed in two major steps: First, dense
SIFT descriptors are extracted from all training data and are
used to train a Gaussian Mixture Model (GMM). This is used
as a means of describing the variability of input in terms of
image content. Fisher Vectors (FVs) for an unseen word im-
age are in turn computed [8] as a function of the SIFT infor-
mation and the GMM. For each one of the defined attributes,
a SVM is trained using FVs of all training images as input.
In this work we shall denote an attribute vector as xα ∈ <D.
We use the Pyramidal Histogram Of Characters (PHOC) de-
scriptor [8] to represent word annotation information. PHOC
is constructed as a set of binary histograms, describing let-
ter appearance in a hierarchy of different spatial levels of the
word string. Based on an analogous hierarchical scheme, bi-
nary ground-truth responses for each attribute are concate-
nated into a singleD-sized vector. Note that the PHOC vector
is of the same size as the attribute vector. We shall denote a
PHOC vector as xφ, with xφ ∈ {0, 1}D. D stands for the
number of attributes, and is the same for both the word image
and the annotation (PHOC) representation. DimensionalityD
depends on the characteristics of the target language and the
number of histogram levels.

We proceed by using both the available fully labelled and
partially labelled data to learn an embedding/relation of at-
tributes and PHOCs onto a common, latent, low-dimensional
subspace. We formally define labelled data as |Nαφ| pairs
of attribute vectors and matching transcription vectors, i.e.
{xnα, xnφ}n∈Nαφ and partially labelled data as |Nα| attribute
vectors and |Nφ| PHOC transcription vectors, i.e. {xnα}n∈Nα
and {xnφ}n∈Nφ respectively. Nα, Nφ are sets of indices of
partially labelled data and Nαφ is a set of indices of (fully)

labelled data. The aforementioned sets are disjoint. Let us
stress that attribute and transcription vectors in the partially
labelled set do not form matching pairs, that is, in this set,
attribute vector xnα does not have a transcription that is de-
scribed by PHOC vector xnφ, and in general |Nα| 6= |Nφ|.
All attribute and PHOC vectors are D-dimensional. The
proposed graphical model can be examined in Fig.1. The
fully/partially labelled data are the model observations,
while {yn}n∈N where N = Nα ∪ Nφ ∪ Nαφ are latent
d-dimensional random variables, with d ≤ D. The variables
y are independent and identically distributed as:

yn ∼ N(0, I),∀n ∈ Nαφ (1)

Fig. 1. The graphical model for SemiCCA, proposed in this work.
See text for details.

We shall dub the d-dimensional space where the y latent
variables y reside at y-space or common latent subspace. For
each pair of attribute and PHOC vector a common variable
y is assumed to exist. Latent variables and observations are
related through the assumptions

xnα ∼ N(WT
α y

n + µα,Ψα),∀n ∈ Nαφ (2)

xnφ ∼ N(WT
φ y

n + µφ,Ψφ),∀n ∈ Nαφ (3)

where Wα and Wφ are d × D projection matrices, µα and
µφ are D-dimensional vectors and Ψα and Ψφ are D × D
covariance matrices. Expressions (1), (2), (3) hold for all
fully-labelled data and together correspond to the leftmost
plate shown in the graphical model of Fig.1. It has been
shown in [10], that the Maximum Likelihood (ML) solution
for the model where only labelled data are available, is iden-
tical to the solution for a corresponding CCA model where
xα and xφ are the two observed views for each pair/labelled
datum. This model is extended here to handle single-view
observations with the two additional plates of fig.1. We shall
refer to this model as SemiCCA in this paper. In a manner
analogous to what has been assumed for labelled data, we
further assume for partially labelled data yn ∼ N(0, I),∀n ∈
Nα ∪ Nφ; xnα ∼ N(WT

α y
n + µα,Ψα),∀n ∈ Nα; xnφ ∼

N(WT
φ y

n + µφ,Ψφ),∀n ∈ Nφ. These equations corre-
spond to the two right-most plates of the graphical model
in Fig.1. Note that the model parameters Θ = {{Wα,Wφ},
{Ψα,Ψφ}, {µα, µφ}} are the same for either fully or partially
labelled data.



The proposed SemiCCA model can be solved, that is com-
pute Θ? = arg maxΘ ln p(xα, xφ; Θ), using the EM algo-
rithm [12]. In EM, after selecting initial values for the model
parameters, updates for latent variable moments (E-step) and
parameters (M-step) are applied and reiterated until conver-
gence.

The E-step updates are computed as follows:

cov{yn}(t+1)
n∈Nαφ = {WT (t)

α Ψ−1(t)
α W (t)

α

+ W
T (t)
φ Ψ

−1(t)
φ W

(t)
φ + I}−1, (4)

cov{yn}(t+1)
n∈Nα = {WT (t)

α Ψ−1(t)
α W (t)

α + I}−1, (5)

cov{yn}(t+1)
n∈Nφ = {WT (t)

φ Ψ
−1(t)
φ W

(t)
φ + I}−1 (6)

<y>
n(t+1)
n∈Nαφ = cov{yn}(t+1)[WT (t)

α Ψ−1(t)
α (xnα − µ(t)

α )

+W
T (t)
φ Ψ

−1(t)
φ (xnφ − µ

(t)
φ )], (7)

<y>
n(t+1)
n∈Nα = cov{yn}(t+1)[WT (t)

α Ψ−1(t)
α (xnα − µ(t)

α )],(8)

<y>
n(t+1)
n∈Nφ = cov{yn}(t+1)[W

T (t)
φ Ψ

−1(t)
φ (xnφ − µ

(t)
φ )],(9)

<yyT>
n(t+1)
n∈N = cov{yn}(t+1)+<y><yT>n(t+1) . (10)

The M-step updates are computed as follows:

µn(t+1)
α =

∑
n∈Nα∪Nαφ

(x
n
α −W

(t)
α <y>

n(t+1)
)/|Nα ∪Nαφ|, (11)

µ
n(t+1)
φ =

∑
n∈Nφ∪Nαφ

(x
n
φ −W

(t)
φ

<y>
n(t+1)

)/|Nφ ∪Nαφ|, (12)

Wn(t+1)
α =

∑
n∈Nα∪Nαφ

x̂
n(t+1)
α <yT>n(t+1)∑

n∈Nα∪Nαφ
<yyT>n(t+1)

(13)

W
n(t+1)
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∑
n∈Nφ∪Nαφ

x̂
n(t+1)
φ <yT>n(t+1)∑

n∈Nφ∪Nαφ
<yyT>n(t+1)

(14)

Ψn(t+1)
α =

∑
n∈Nα∪Nαφ

{Ŵn(t+1)
α + Â

n(t+1)
α − 2B̂

n(t+1)
α }/|Nα ∪Nαφ|,

(15)

Ψ
n(t+1)
φ =

∑
n∈Nφ∪Nαφ

{Ŵn(t+1)
φ

+ Â
n(t+1)
φ

− 2B̂
n(t+1)
φ

}/|Nφ ∪Nαφ|,

(16)

where we have defined x̂
n(t+1)
α = (xnα − µ

n(t+1)
α ),

Â
n(t+1)
α = x̂

n(t+1)
α x̂

n(t+1)T
α , B̂n(t+1)

α = x̂
n(t+1)
α <yT>n(t+1)

W
n(t+1)
α , Ŵn(t+1)

α = W
(t+1)
α < yyT >n(t+1) W

T (t+1)
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Quantities x̂φ, Âφ, B̂φ, Ŵφ are defined in an analogous man-
ner, simply by substituting φ in place of α.

Let us note that in the equations of the M-step, the quanti-
ties indexed by α are computed ∀n ∈ Nα ∪Nαφ, while every
quantity indexed by φ is computed ∀n ∈ Nφ ∪Nαφ.

After the ML parameters of the model are estimated using
the EM algorithm we can perform QbE word spotting, i.e. we
assume that the word image of the query is available.

The required equations to compute expected values of y
are already available as part of the EM algorithm (E-step). By
combining equations (5) and (8) we can compute the required
expectation as

<y>new= [WT
α Ψ−1

α Wα+I]−1[WT
α Ψ−1

α (xnewα −µα)] (17)

where we use the EM-optimized values for the model parame-
ters. After comparing ynew with common subspace images of
words in the queried database, the nearest neighbors of y are
returned as the query result. A summary of the full algorithm
to perform keyword spotting using the proposed SemiCCA
model can be examined below (Algorithm 1).

Algorithm 1 Keyword spotting using SemiCCA
Process database

Compute attribute vectors for fully and partially-labelled data
Compute PHOC vectors for fully and partially-labelled data

Train SemiCCA model
Compute E-step (eq. 4-10)
Compute M-step (eq. 11-16)
Reiterate E-step and M-step until convergence
Store model parameters Θ?

Perform query
Compute attribute vector for query word image
Use eq. 17 and Θ? to compute latent subspace image for query
Return nearest neighbours of query image

3. EXPERIMENTAL RESULTS

(a) (b)

Fig. 2. Samples from the (a) Bentham [11] and (b) George Wash-
ington [1] datasets, used in our experiments.

We have run experiments on two different datasets (Fig.
2): Bentham, and George Washington [1]. Dataset Bentham
has been used in the ICFHR’14 Keyword Spotting competi-
tion [11]. We have used a number of different partitions of
these sets into fully-labelled training/validation sets, partially
labelled training sets and test sets. We have used the naming
convention database-number to identify each partition, where
number corresponds to the total number of fully-labelled data
used (fully-labelled training + validation). For example Ben-
tham100 refers to the Bentham dataset partitioned so that 100
fully-labelled data, that is 100 pairs of word images and corre-
sponding transcriptions, are available. We kept the size of the
test set fixed, and vary the size of the fully-labelled training
set versus the size of the partially-labelled training set. 1

We used both the fully-labelled training and partially-
labelled training sets to train the SIFT-based GMM. Fisher
vectors and PHOC vectors were then computed over the
whole database. SVM-based attribute models are computed
over only fully-labelled data (since both image and annotation
content is necessary). Attribute vectors are then computed

1The exact indices, corresponding to the index of each segmented word
image in the collection in reading order, are as follows: Washington50: 1 −
40, 41−3000, 3001−4849, 4850−4859, Bentham50: 1−40, 41−5300,
5301− 10638, 10639− 10648, Bentham100: 1− 80, 81− 5300, 5301−
10628, 10629−10648, Bentham500: 1−400, 401−5300, 5301−10548,
10549− 10648.



for the whole set ({xnα}) and fed into the SemiCCA model
along with PHOC vectors ({xnφ}). Following [8], we set the
dimensionality of the common latent subspace to 80.

Concerning the experiment and benchmarking layout we
used, we first selected a number of word classes as queries.
We chose queries following [11] for Bentham, and for George
Washington we used the query classes suggested in [13]. We
have first compared the performance of the proposed model
given differing types of partially labelled data. The stan-
dard CCA-based model of Almazán et al. [8] was used as a
baseline. In Fig. 3, MAP figures and precision-recall (PR)
curves are shown for results over the Washington50 dataset.
SemiCCA/{∅} corresponds to the proposed model with no
partially labelled data available. In the sense of the type of
data that can be used, it is equivalent to the standard CCA
model. However, results are markedly inferior to standard
CCA. The difference in performance is explained by the
way the two models are solved. Standard CCA offers an
eigenanalysis-based solution which is (globally) optimal in
the sense that computed projections are indeed maximally
correlated by construction of the solution. On the other hand,
the solution of SemiCCA is EM-based, which is known to
offer only a locally optimal, hence in general suboptimal,
solution. SemiCCA/φ corresponds to the proposed model
with PHOC partially labelled data available (xφ), that is ex-
tra transcriptions and PHOC vectors for these transcriptions
are available, which are not linked to a specific word im-
age. SemiCCA/α corresponds to the proposed model with
attribute partially labelled data available (xα), that is, data
coming from extra word images with no known transcription.
This result suggests that string transcription information is
nowhere near as useful as word image information as par-
tially labelled data. This result is confirmed by comparing
SemiCCA/α+φ, which uses both untranscripted word images
and strings (with no matching word image) with SemiCCA/α.
The improvement is only minimal.

We proceed with numerical tests on partitions of datasets
where the factor that varies is the ratio of fully-labelled data
to partially-labelled. The type of partially-labelled data that
we chose to vary in this experiment is the number of unan-
notated word images, as this has the greatest impact on per-
formance (according to the previous experiment, cf. Fig.3).
For the same reason, the variant of the proposed model used
here is SemiCCA/α. In semi-supervised learning, a usual un-
derlying hypothesis is that fully-labelled data are only a very
small portion of the training set [14]. The results show that
the proposed framework exhibits its best performance when
this is indeed the case. Conversely, it does not perform as
well when there are enough fully-labelled data available. This
can be seen in table 1, where we show MAP figures for word
spotting trials that we have run on three different partitions of
Bentham, where the number of fully-labelled data is 50, 100
and 500 data respectively.

Method MAP(%)
Standard CCA [8] 58.2
SemiCCA/{∅} 43.1
SemiCCA/φ 55.2
SemiCCA/α 68.0
SemiCCA/α+ φ 69.0

Fig. 3. Performance comparison between standard CCA (used in
[8]) and different variants of SemiCCA (proposed model). Trials
were run on Washington50 dataset. The MAP table below the graph
summarizes the results of the PR curve. Variants differ in what type
of partially-labelled data is available. The proposed model corre-
sponds to SemiCCA/α and SemiCCA/α+ φ.

Table 1. Performance comparison between standard CCA and
SemiCCA (proposed model) on dataset partitions with different ra-
tios of fully-labelled to partially-labelled data (Ratio F to P). Our
model outperforms standard CCA when few fully-labelled data are
available but there is an abundance of partially-labelled data.

Dataset Ratio F to P CCA [8] SemiCCA
Bentham50 ∼ 1 to 100 31.9 42.3

Bentham100 ∼ 1 to 50 47.2 50.4
Bentham500 ∼ 1 to 10 57.2 53.1

4. CONCLUSION

We have presented a new method for keyword spotting, for-
mulated as a semi-supervised probabilistic keyword spotting
model. When unannotated word images and lexicon text
strings are available, our model can take advantage of it
to improve performance. Experiments have shown that the
proposed model outperforms the state-of-the-art supervised
learning model of [8] when sufficient partially labelled data
are available. Compared with other well-known learning-
based algorithms, like Hidden Markov Model or Neural
Network-based models, our model is also at an advantage
as (a) neither they can exploit partially labelled data and (b)
they require an amount of annotated/fully-supervised data
that is significantly larger than the corresponding amounts we
have used (for example, as few as 50 annotated words). As
future work, possible directions could include extending the
model to a kernel-CCA like version, or integrating with Deep
Learning-based features [2].
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