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Abstract—Nonlinear manifold embedding has attracted consid-
erable attention due to its highly-desired property of efficiently
encoding local structure, i.e. intrinsic space properties, into
a low-dimensional space. The benefit of such an approach is
twofold: it leads to compact representations while addressing the
often-encountered curse of dimensionality. The latter plays an
important role in retrieval applications, such as keyword spotting,
where a sorted list of retrieved objects with respect to a distance
metric is required. In this work, we explore the efficiency of
the popular manifold embedding method t-distributed Stochastic
Neighbor Embedding (t-SNE) on the Query-by-Example keyword
spotting task. The main contribution of this work is the extension
of t-SNE in order to support out-of-sample (OOS) embedding
which is essential for mapping query images to the embedding
space. The experimental results demonstrate a significant increase
in keyword spotting performance when the word similarity is
calculated on the embedding space.

I. INTRODUCTION

Keyword spotting (KWS) is closely related to document
indexing and can be defined as the task of locating and
retrieving specific words of interest, referred as keywords or
queries, in a document collection. In this work, we focus
on the segmentation-based Query-by-Example (QbE) keyword
spotting category which falls under the content based image
retrieval paradigm. Approaches belonging to this category as-
sume as input a query image together with a set of (segmented)
word images and return a ranked list of the potentially relevant
word images.

Feature extraction is the most crucial step of a QbE KWS
method. QbE KWS methods can be categorized, with respect
to the extracted features, into (i) methods that extract a
feature vector (descriptor) of fixed dimensionality for each
word image and (ii) methods that extract a set of features
for each word image. Methods of the former category, also
called holistic word representations, attract a lot of interest
due to their simplicity at the retrieval step. Specifically, such
representations require a simple distance/similarity measure
for the retrieval step (e.g. Euclidean distance) contrary to
techniques belonging to the second category which require
more complex matching algorithms (e.g. DTW sequential
matching).

The majority of KWS methods that rely on holis-
tic word representations generate high-dimensional descrip-

tors ([1],[2],[3],[4]). However, Euclidean distance on high-
dimensional vectors is not a reliable metric for the generation
of the retrieval list. This observation leads to the realization
that a dimensionality reduction technique is essential in order
to fully utilize the descriptive power of holistic representations.
Preserving as much of the significant structure of the high-
dimensional data as possible in the low-dimensional map is
crucial and thus nonlinear dimensionality reduction techniques
are required. An interesting property, which has proven to be
effective, is to assume that the high-dimensional data lies on a
manifold of significant lower intrinsic dimensionality. Thus,
the computation of the low-dimensional map is equivalent
to learning the underlying manifold. The generated nonlinear
mapping is called manifold embedding ([5],[6],[7]).

This work relies on the well-known t-distributed Stochastic
Neighbor Embedding (t-SNE) [8] due to its success on the di-
mensionality reduction task for a large variety of real datasets.
The main hindrance for a t-SNE based KWS application is
the addition of a new descriptor on the previously learnt
embedding, i.e the embedding of the query representation.
The majority of manifold learning approaches, including t-
SNE, are non-parametric, meaning that no straightforward way
exists to add a new descriptor to the embedding. This is
referred as the out-of-sample problem. In order to overcome
this problem, we propose a novel out-of-sample extension to
the t-SNE embedding. This extension enables us to utilize the
t-SNE method and explore its efficiency for the KWS task.

The rest of this paper is organized as follows. In Section II
related work is highlighted, while in Section III a summariza-
tion of t-SNE is presented. Section IV describes in detail the
proposed out-of-sample extension. Comparative experimental
results are discussed in Section V. Finally, conclusions and
future directions are drawn in Section VI.

II. RELATED WORK

Several manifold embedding methods have been reported
in the literature aiming to generate a non-linear mapping
which encodes high-dimensional data to a low-dimensional
space without significantly affecting the local structure of
the initial space. Notable manifold embedding techniques are
Isomap [5], which creates an embedding based on geodesic



distances, and Locally Linear Embedding (LLE) [6] as well
as Laplacian Eigenmaps [7], which both assume the same
local structure (linearity) for both the initial high-dimensional
and the resulting low-dimensional space. Such techniques
can be viewed as generalized eigenvector problems at adja-
cency matrices. The aforementioned techniques are sensitive
to outliers as well as to the predefined dimensionality of the
embedding space and consequently lead to the generation of
low quality embeddings for the case of challenging datasets.
On the contrary, t-SNE [8] has been extensively used on
real datasets, providing embeddings of high quality, even
when the embedding dimensionality is lower than the intrinsic
dimensionality of the underlying manifold.

The majority of the manifold embedding methods do not
support the addition of a new sample to the already learnt
embedding. This is referred as the out-of-sample problem for
which many approaches have been proposed in the literature.
Two main categories can be distinguished: parametric and non-
parametric out-of-sample extensions. Parametric approaches
assume that the learnt embedding can be modeled by a
(non-linear) combination of the initial data along with a set
of parameters [9], [10]. By estimating these parameters on
the already extracted embedding, the out-of-sample extension
is straightforward using the same model and the estimated
parameters. The main disadvantage of such approaches is
the assumption that the generated mapping can be efficiently
represented by a (non-linear) model of ideally few parameters.
On the other hand, non-parametric approaches usually exploit
the geometric intuition of the local structure and the nature
as well as specific characteristics of the selected manifold
learning algorithm [11], [12], [13].

To the best of our knowledge, the only approach that utilizes
manifold embedding for the task of KWS is the work of
Sudholt et al. [14]. The authors of [14] proposed a variation
of Isomap embedding for the case of Bag of Visual Words
(BoVW) features. Although one can become aware of the
efficiency of manifold embedding on the reduction of the
descriptor’s size without significantly affecting the retrieval
performance, the presented system has some notable short-
comings mainly derived from the Isomap embedding, such as
its sensitivity to the selection of the embedding dimensionality.
Furthermore, the Isomap embedding requires the computation
of geodesic distances, even for the out-of-sample scenario,
which is a computational overhead for the retrieval step.
In addition, although a significant reduction of the memory
requirements has been achieved no consistent gain in retrieval
performance was reported.

III. t-SNE

The goal of t-SNE is to minimize the divergence between
the pairwise similarity distributions of input points and the
low-dimensional embedded points. The input points are de-
noted as {xi} and their corresponding embeddings are denoted
as {yi}, where i = 1, . . . , N . The joint probability pij that

measures the pairwise similarity between two points xi and
xj is denoted as follows:

pj|i =
exp(−d(xi, xj)2/2σ2

i )∑
k 6=i exp(−d(xi, xk)2/2σ2

i )
, pi|i = 0 (1)

pij =
pj|i + pi|j

2N
(2)

For the rest of this work, the distance function d(· , ·) is
considered to be Euclidean as in [8]. The standard deviation
σi is computed according to a predefined perplexity which can
be considered as the effective number of neighbors for each
point xi.

The pairwise similarities in the embedding space are mod-
eled by a normalized Student’s-t distribution with a single
degree of freedom. The embedding similarity between two
points yi and yj is defined as:

qij =
(1 + ‖yi − yj‖2)−1

Z
, qii = 0 (3)

Z =
∑
k

∑
l 6=k

(1 + ‖yk − yl‖2)−1 (4)

The choice of the Student’s-t kernel prevents the crowding
problem, as it is explained in [8], which favors embeddings
whose points are gathered in the center of the space. The
heavy-tailed Student’s-t maps sufficiently well points that are
far-apart even if the dimension of the embedding space is lower
than the (unknown) intrinsic dimensionality of the existing
manifold.

Given the definitions of pairwise similarity distributions for
both the initial and the embedding space, the embedding Y is
calculated by minimizing the Kullback-Leibler divergence:

C(Y) = KL(P ||Q(Y)) =
∑
i

∑
j

pij log
pij
qij

(5)

The aforementioned minimization problem does not have an
analytical solution. To this end, iterative methods are employed
in order to find an embedding Y that (locally) minimizes
the divergence. The problem is solved by a gradient descent
method, whereas the gradient of the divergence for each point
of the embedding space is computed as follows:

∂C

∂yi
= 4

∑
j 6=i

(pij − qij)qijZ(yi − yj) (6)

IV. OUT-OF-SAMPLE (OOS) EXTENSION OF t-SNE
We assume a set of points xi, which correspond to the

descriptors of the word images for the KWS task, and their
embeddings yi as the result of the t-SNE optimization. Given
a new point x in the initial space, our goal is to estimate
its mapping y to the t-SNE embedding space. We define
the following auxiliary functions in accordance to the t-SNE
formulation:

p(x|xi) =
exp(−‖x− xi‖2/2σ2

i )∑
k 6=i exp(−‖xk − xi‖2/2σ2

i )
(7)

p(x, xi) =
p(x|xi) + p(xi|x)

2N
, p(xi, xi) = 0 (8)

s(y, yi) = (1 + ‖y − yi‖2)−1 (9)



q(y, yi) = s(y, yi)/
∑
k

∑
l 6=k

s(yk, yl) (10)

A straightforward solution to the out-of-sample problem is
to preserve the local structure of the initial space [6] which
can be formulated as the minimization of the cost:

Coos(y|x) =
∑
i

w(x, xi)‖y − yi‖2 (11)

All previously learnt embeddings yi are considered fixed, so
we minimize over the sought embedding y. The function
w(x, xi) is a pairwise similarity function (e.g. a Gaussian
kernel) and in correspondence to t-SNE, the previously defined
function p(x, xi) can be used. The above minimization has a
closed form solution:

y? =

∑
i p(x, xi)yi∑
i p(x, xi)

(12)

A drawback of this solution, as well as of the majority of the
existing OOS methods, is that it provides a general approach
for the OOS problem (i.e. locality preservation of the initial
space) while ignoring crucial aspects of t-SNE success, namely
the Student’s-t distribution and the locality of the embedding
space. Contrary to existing approaches, in order to address the
out-of-sample problem, we examine the initial equations of
t-SNE.

Proposed Gradient Descent Approach: The estimation of
the new embedding y is computed iteratively by minimizing
the t-SNE cost according to a gradient descent procedure:

yt+1 = yt − α∂C(y
t)

∂yt
(13)

∂C(y)

∂y
= 4

∑
i

[p(x, xi)− q(y, yi)]s(y, yi)(y − yi) (14)

The main shortcoming of a gradient descent estimation is
its convergence rate. If a fixed step size a is predefined, the
convergence may be extremely slow. In order to avoid a slow
convergence, we propose the use of the following adaptive
step size:

α(yt) =
[
4
∑
i

p(x, xi)s(y
t, yi)

]−1 ≥ 0 (15)

Therefore, the update equation for iteratively estimating the
embedding y is:

yt+1 = yt −
∑
i[p(x, xi)− q(yt, yi)]s(yt, yi)(yt − yi)∑

i p(x, xi)s(y
t, yi)

(16)

It should be noted that the update equation (Eq. 16) can
be derived from the solution of ‖∂C(y)

∂y ‖ = 0 and thus it is
equivalent to a fixed point iteration approach.

Aiming to further promote the simplicity of the up-
date equation and the speed convergence, we choose to
omit the terms of Eq. 16 referring to q(yt, yi). The term∑
i q(y

t, yi)s(y
t, yi)(y − yi) corresponds to the derivative

of the normalizing term Z =
∑
k

∑
l 6=k s(yk, yl) and it is

responsible for keeping the new embedding y sufficiently apart
from the embeddings yi, as a repulsive force. Concerning

retrieval applications, only the relative distances between the
new embedding and the already embedded points are of
interest and thus this repulsion property is not important.
Consequently, for the rest of this work, the proposed out-
of-sample embedding is approximated by minimizing the
cost Cr(y|x) =

∑
i p(x, xi)log

(
p(x, xi)/s(y, yi)

)
which is

performed by the following update equation:

yt+1 =

∑
i p(x, xi)s(y

t, yi)yi∑
i p(x, xi)s(y

t, yi)
(17)

The adaptive step size a(y) for the latest update equation can
be easily proven to concede with the optimum step size for the
line search strategy over the gradient descent algorithm. This
means that the acquired step size of Eq. 15 at each iteration
is the solution to the minimization problem:

α(yt) = argmin
α>0

Cr
(
yt − α∂Cr(y

t)

∂yt
)

(18)

The aforementioned observation ensures significantly faster
convergence compared to setting a predefined step size, which
was empirically verified through experimentation.

Implementation Issues: The computation of q(y, yi) is
straightforward at each iteration. However, p(x, xi) is calcu-
lated only once, before the iteration process, and involves
summations over all the pairwise Gaussian functions. To
overcome this problem, we store the standard deviations σi
and the partial sums Si =

∑
k 6=i exp(−‖xk − xi‖2/2σ2

i ) as
auxiliary variables generated during the t-SNE embedding.
Having estimated the standard deviation σ for the unseen point
x (using the predefined perplexity), we redefine the equations
of p(x, xi) as follows:

p(xi|x) =
exp(−‖x− xi‖2/2σ2)∑N
k=1 exp(−‖x− xi‖2/2σ2)

(19)

p(x|xi) =
exp(−‖x− xi‖2/2σ2

i )

Si + exp(−‖x− xi‖2/2σ2
i )

(20)

p(x, xi) =
p(x|xi) + p(xi|x)

2N
, p(xi, xi) = 0 (21)

The above formulation requires only the distances of the new
point x from the existing points xi, i.e. O(N) computations.

Complexity: Given a set of N points {xi} of dx dimensions
and their embeddings {yi} of dy � dx dimensions, the
complexity of computing the embedding y of an out-of-sample
point x is estimated as follows:
• O(Ndx) for computing the p(x, xi) pairwise similarities.
• O(Ndy) for updating y in each iteration.

Assuming k as the total number of iterations for convergence,
the overall complexity is O(N(dx + kdy)). For small embed-
ding dimension dy and number of iterations (dy = 3& k =
10), the computation of the pairwise similarities in the initial
space, when dx is large enough which is usually the case,
governs the computation time (dx � kdy). This observation
hints that the proposed OOS extension is only sligthly slower
than the closed form solution approach of Eq. 12. It should
be noted that the OOS embedding procedure should be fast



for KWS applications, because it is computed during query
(retrieval) time. Memory requirements correspond to storing
the initial data points and their embeddings, as well as the
standard deviations σi and sums Si, i.e. O(N(dx + dy + 2)),
which requires only N × (dy + 2) more memory space
compared to storing only the initial data points.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed OOS extension of t-SNE embedding method
is applied on QbE keyword spotting as a post-processing
step after the extraction of fixed-sized descriptors. In order
to highlight the efficiency of the manifold assumption and the
capability of the proposed method, its evaluation is performed
on three state-of-the-art descriptors. The performance of the
KWS task was recorded in terms of the Precision at Top 5
Retrieved words (P@5) as well as the Mean Average Precision
(MAP).

The workflow for the application of t-SNE embedding on
KWS includes the following steps: 1) Extract the descriptors
for each word image of the dataset. 2) Perform Principal
Component Analysis (PCA) on the dataset descriptors. This is
suggested before using t-SNE because it preserves the global
structure of the points/descriptors and reduces noise. For this
work, the feature vector dimension after PCA is set to dpca =
400 regardless the initial dimension of the descriptors (selected
descriptors have a dimensionality over 400). 3) Perform t-SNE
embedding on the descriptors. The accelerated version of t-
SNE is selected, which uses tree-based structures [15]. Due
to the fact that the t-SNE approach generates an embedding
which corresponds to a local minimum of the t-SNE cost
optimization problem, the process was repeated multiple (five)
times with different (random) initialization. The embedding
with the lowest cost was selected as the final embedding. 4)
Compute the auxiliary values σi and Si, which are required
in the proposed out-of-sample extension. 5) Given a query
image, compute the initial descriptor and perform PCA. The
resulting descriptor is used as input (along with descriptors of
the dataset, their corresponding embeddings and the auxiliary
variables) to the out-of-sample estimation method. 6) Generate
the retrieval list using Euclidean distance on the embedding
space.

B. Preprocessing and Descriptors

Before we proceed with feature extraction, we apply a
preprocessing step which consists of contrast and main-zone
normalization. Contrast normalization is performed by replac-
ing Sauvola’s binarization hard assignment with a soft one.
Main-zone normalization is based on detecting the main-zone
in a way similar to [1]. After the detection of the main-
zone, skew correction is performed using the slope of the
detected main-zone, as well as a vertical normalization of
the image by moving the main zone at the center of the
generated normalized image. An example of the effect of the
aforementioned preprocessing step is depicted in Figure 1.

(a) (b)

(c) (d)
Fig. 1. Different instances of the same word before (a),(b) and after (c),(d)
the preprocessing.

Three state-of-the-art holistic descriptors are selected, which
are briefly described below:

BoVW: A Bag of Visual Words (BoVW) approach or-
ganized in Spatial Pyramids was implemented due to the
established efficiency of such methods in keyword spotting [3].
Dense SIFT features at multiple scales were chosen as local
descriptors and a codebook of 1024 entries for the histogram
encoding. Spatial pyramids are employed to encode indirectly
the spatial information as in [3].

POG: An image is segmented in three (overlapping) parts
and each segment is encoded using the Projections of Oriented
Gradients (POG) descriptors, which have shown to perform
well in keyword spotting [1]. In this work, a slight modification
of POG descriptor is used in order to be applied to gray-scale
images.

ZAH: Zoning Aggregating Hypercolumns (ZAH) features
are based on a pre-trained Deep Convolutional Network
(DCN) [2]. The features are extracted from the output of
the convolutional layers of a DCN, which was trained on an
independent set of typewritten characters. The final descriptor
is produced by the concatenation of the aggregated convolution
responses over (six) image segments.

C. Out-of-Sample Approaches

Concerning the efficiency of the proposed OOS method, the
following OOS embedding methods have been considered for
comparison:

CFS: Out-of-sample extension using Eq. 12. This approach
assumes that the local structure of the embedding space is
defined only by pairwise similarities of the initial points [6].

Parametric: A parametrization between the initial data
and the produced embeddings is introduced according to
[9], where the parametric form y(x) = fa(x) is as-
sumed and a are the sought parameters. Non-linearity is
introduced by Gaussian kernels of the form k(x, xi) =
exp(−‖x − xi‖2/2σ2

i ). Thus, the parametrization is defined
as y(x) =

∑
i aik(x, xi)/

∑
l k(x, xl). The parameters are

estimated in a least square manner: A = K+Y , where
[K]ij = k(xi, xj)/

∑
l k(xi, xl). The parametric approach of

[9] suggests using only a set of landmark points, i.e. a subset
of the initial points, which alleviates the computation overhead



TABLE I
MAP AND P@5 EVALUATION ON ALL DATASETS FOR dy = 3

GW20 Bentham14 Modern14
Descriptor OOS approach MAP P@5 MAP P@5 MAP P@5

BoVW No Embedding 72.30 91.59 55.29 74.50 28.93 50.60
CFS 80.10 82.22 48.42 49.50 19.67 23.00

Parametric-90 82.59 88.58 35.93 32.25 12.81 13.00
Parametric-100 85.13 92.30 38.13 35.12 13.62 15.33

Proposed 85.18 92.42 63.57 78.00 33.93 53.87

POG No Embedding 62.49 85.85 66.01 82.25 36.83 61.80
CFS 68.63 74.51 56.09 53.69 29.81 28.60

Parametric-90 70.38 79.82 55.67 57.12 35.21 47.73
Parametric-100 74.15 85.04 60.77 64.31 43.64 57.13

Proposed 74.19 85.14 70.43 80.94 48.21 65.80

ZAH No Embedding 61.19 86.40 53.49 75.69 33.29 56.33
CFS 70.69 76.45 37.41 44.06 24.65 30.07

Parametric-90 74.10 84.44 28.51 33.56 30.30 43.33
Parametric-100 76.77 89.13 34.95 42.62 33.08 47.87

Proposed 76.82 89.23 53.17 76.75 38.84 59.93

of inverting a matrix of size N ×N . However, in practice, se-
lecting a subset of the initial space leads to poor performance.
To highlight this behavior, 90% of the points are randomly
selected in order to estimate the parameter matrix A. It should
be stressed that 90% is a very high percentage of points kept,
which yields no significant computational acceleration. As
a result, we distinguish two variations, parametric-100 and
parametric-90, where 100% (all) and 90% of the points are
used as landmark points, respectively.

Proposed: Out-of-sample extension using gradient descent
(Eq. 17) based on the initial t-SNE cost function. The proposed
step size is adaptive and optimal according to the line search
strategy, which guarantees fast convergence. The maximum
number of iterations is set to Nmax = 15, since the majority
of the out-of-sample experiments achieve convergence under
10 iterations.

D. Datasets
The evaluation is performed on the widely used George

Washington Dataset [16] as well as on the more challenging
datasets of ICFHR 2014 KWS Competition [17]. The datasets
are summarized below:

GW20: This dataset is the well-known collection of writ-
ings of George Washington, consisting of 20 pages segmented
into 4860 words. Words with ten or more instances and three
or more characters are selected as queries as in [3], resulting
in 1844 image queries.

Bentham14: This dataset was part of the ICFHR 2014
H-KWS competition and includes manuscripts in English
written by Jeremy Bentham himself as well as by Bentham’s
secretarial staff. It consists of 10370 segmented word images
from 50 document images and 320 image queries.

Modern14: This dataset was also part of the ICFHR
2014 H-KWS competition and includes handwritten docu-
ments written in four languages (English, French, German and
Greek). It consists of 14754 segmented word images from
100 document images (25 for each language) and 300 image
queries.

E. Performance Evaluation

To verify the efficiency of the proposed OOS extension, we
apply the aforementioned OOS methods on all the descriptors
and datasets for the case of dy = 3 (embedding dimension).
The results, in terms of MAP and P@5, are presented in Table
I. The No Embedding case corresponds to the absence of a
manifold embedding step, i.e. the PCA generated descriptors
are used. The main observations are summarized below:
- The proposed OOS extension performs significantly better
compared to the other OOS methods, especially in the chal-
lenging Betham14 and Modern14 datasets.
- The parametric method shows similar performance only on
the GW20 dataset, which is smaller and less challenging,
while in the other two datasets its performance deteriorates
significantly. This leads to the conclusion that the parametric
approach of [9] cannot model the t-SNE embedding suffi-
ciently well. Specifically, the parametric-90 variation reports
a considerable drop in performance, even though 90% of
all points are used. This observation hints that the use of
landmark points yields unreliable parameters for parametric
OOS extension.
- Another important observation is that the performance may
drop after the use of manifold embedding compared to the case
of using the initial descriptors (No Embedding case). This drop
in performance is mainly credited to t-SNE embedding of the
word descriptors, rather than the OOS methods. It is possible
that the selected embedding dimensionality is much lower
than the intrinsic dimensionality of the underlying manifold
and thus the generated embedding is not suitable. It should
be noted that the intrinsic dimensionality depends on the
descriptor and the dataset selection, since both define the initial
space.

Furthermore, we investigate the importance of the em-
bedding dimension dy . Tables II, III and IV summarize the
results for different embedding dimensions concerning the
GW20, Bentham14 and Modern14 datasets, respectively. The
proposed OOS extension is used to obtain the low-dimensional



embedding of the query image. In addition, the performance
of state-of-the-art KWS methods are provided for comparison.
The main observations are summarized below:
- A significant gain in performance, more than 10% in some
cases, is observed for the majority of the datasets and the
descriptors, when using the t-SNE embedding.
- It can be observed that only in few cases the overall gain
is small. In addition, the efficiency increases along with the
embedding dimension. This behavior hints towards a higher
intrinsic manifold dimensionality.
- The presented KWS approach provides results that outper-
form the majority of state-of-the-art techniques without any
fine-tuning (Aldavert et al. [3] performed fine-tuning on the
GW20 dataset). A noteworthy observation is that these results
have been reported using a very low embedding dimensionality
(dy = 2, 3, 4, 5), which highlights the efficiency of the t-SNE
method.

TABLE II
MAP EVALUATION ON GW20 DATASET

dy

Method No Embedding 2 3 4 5

Kovalchuk [4] 66.30 - - - -
Aldavert [3] 76.50 - - - -

BoVW 72.30 84.12 85.35 85.62 86.23
POG 62.49 70.76 74.01 74.79 74.96
ZAH 61.19 74.85 78.51 78.43 79.54

TABLE III
MAP EVALUATION ON BENTHAM14 DATASET

dy

Method No Embedding 2 3 4 5

Kovalchuk [17] 52.40 - - - -
Almazan [17] 51.30 - - - -

Howe [17] 46.20 - - - -

fPOG [1] 57.70 - - - -
Aldavert [3] 46.50 - - - -

BoVW 55.29 61.02 62.38 64.82 64.81
POG 66.01 67.95 70.68 70.66 71.54
ZAH 53.49 53.30 54.46 53.83 54.07

TABLE IV
MAP EVALUATION ON MODERN14 DATASET

dy

Method No Embedding 2 3 4 5

Kovalchuk [17] 33.80 - - - -
Almazan [17] 52.30 - - - -

Howe [17] 27.80 - - - -

fPOG [1] 35.50 - - - -
Aldavert [3] 38.90 - - - -

BoVW 28.93 34.09 34.56 35.64 36.29
POG 36.83 48.82 50.51 49.39 51.61
ZAH 33.29 39.30 40.02 39.50 40.65

VI. CONCLUSIONS

A novel out-of-sample extension of t-SNE has been pro-
posed, which displays superior performance compared to other

out-of-sample extension methods. The proposed extension is
applied on the keyword spotting task, where word descriptors
are embedded using t-SNE and query retrieval corresponds to
an out-of-sample problem. The experimental results demon-
strate a significant gain in KWS retrieval performance while
using Euclidean distance on the embedding space. As a future
direction, the estimation of the intrinsic manifold dimensional-
ity as well as an efficient way of generating higher dimensional
t-SNE embeddings could be further explored.
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