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Abstract—In this paper, we address the problem of word
spotting using a shape-based matching scheme between seg-
mented word images represented by local contour features.
As in a typical query-by-example (QBE) paradigm, a user
selects an instance of the query word from the collection of
interest and a ranked list of images is returned, based on their
similarity with the query. This is accomplished in two steps.
The query image is firstly aligned with the test image according
to a similarity measure defined on their descriptors and then
the aligned images are matched through a deformable non-
rigid point matching algorithm. Experiments are carried out
on historical handwritten text, written in Greek and English,
respectively. Moreover, comparisons with other QBE methods
show the efficiency of our system as well as its flexibility in
adapting to different scripts.
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I. INTRODUCTION

Digitized information contained in large databases of
documents renders their indexing essential for information
retrieval purposes. In this context, word spotting is an
alternative solution to optical character recognition (OCR)
approaches, which are rather inefficient for recognizing text
of degraded quality.

Perhaps the most common distinction of word spotting
approaches depends on how the input is specified. In query-
by-example (QBE) methods, an actual instance of the query
word is provided to trigger the search for similar instances
in terms of appearance. In most QBE approaches, no prior
semantic knowledge or transcription is available and thus,
another way to categorize word spotting techniques lies
on whether they are learning-based or not. Following the
learning-free scenario, local features containing appearance
and texture information are combined in a fixed-length vec-
tor in [1]. This representation renders the spotting problem
as a nearest neighbor search, thereby allowing for fast
comparison between two words. Variable-length represen-
tations are also widely used in the QBE approach. Leydier
et al. [2] propose an elastic matching method to compare
different pixel-wise gradient matchings. In addition, the most
common local approach to compute the distance between
sequences of features is dynamic time warping (DTW),

which is thoroughly employed in [3] and compared with sim-
ilar matching techniques of word profiles. A QBE, though
learning-based, method is presented in [4], for spotting
out-of-vocabulary (OOV) words, using a semi-continuous
hidden Markov model (HMM). The model’s parameters are
estimated on a pool of unsupervised samples which allow
the model to adapt online to the query image.

In query-by-string (QBS) approaches on the other hand
[5]–[7], a query word representation is accrued from char-
acter or sub-word level training samples. Almazan et al.
[5] use a fixed-length representation computed over SIFT
descriptors, in an attribute-based framework. These attributes
encode information which is shared between similar words.
Either an example from the document collection or an ASCII
text query can be used as input. A recognition-oriented
system based on recurrent neural networks is used in [6]
to spot arbitrary textual queries using models learnt from
character class probabilities. Fisher et al. [7] incorporate
character language models into their HMM-based system
to improve the spotting performance. These methods can
deal with the inherent handwriting variability on the ground
that an adequate subset from the collection of interest is
transcribed beforehand. However, their adaptation capability
to different languages is uncertain.

Some methods require the document images to be seg-
mented at word [3]–[5] or line [6], [7] level, while others
[1], [2] are applied directly to the document page. Therefore,
we can distinguish two more categories of word spotting ap-
proaches, corresponding to the segmentation-based and the
segmentation-free track. With respect to the QBE paradigm,
in the segmentation-based track, the query image itself is
usually discarded from the evaluation task, whereas in the
segmentation-free track, the query image is also considered
to be a true positive, since no ground-truth bounding box
is available and thus, it could be missing from the retrieved
areas.

Relying on an object detection system for real images
[8], we propose a technique for matching contour shapes,
which is built upon our previous work [9] for spotting
handwritten words in multi-writer conditions. The proposed
system differs significantly from our previous one, as it does
not involve training from multiple instances of the query. It



is rather applied on a single word image selected as a query,
without the need for building an average shape to represent
a word-class. Assuming that document images have already
been binarized and segmented at word level, the first step
of the proposed approach is to extract the contour from
segmented word images using a thinning morphological
operation. Subsequently, scale invariant contour features,
initially proposed by Ferrari et al. [8], are extracted from
thinned word images and stored offline.

Our main contribution lies on the direct use of these
features for retrieving the location and scale of the center
of the query’s bounding box inside the test image. This
acts as an initialization of the non-rigid point matching
algorithm, which deforms the query word in order to capture
the shape of the word of interest. The outcome of this
matching process is a detection at point level (boundary)
which is scored by a weighted sum of four terms [8]. As
a second contribution, we extend this weighted sum with
an extra term to account for false detections obtained from
partial matches of the query inside the test image. Finally, we
evaluate the Mean Average Precision (MAP) of the proposed
system in heterogeneous handwritten scripts and compare,
among others, to the DTW method [10], thereby implying
the potential of the system to extend to different languages.

The rest of our work is structured as follows. In Section
II, we present the local contour features used to represent a
word image. Section III describes the word image matching
algorithm. Experimental results on the George Washington
dataset (GW20) [11], as well as on a dataset containing
handwritten historical Greek (GRPOLY-DB) [12] are dis-
cussed in Section IV and finally, conclusions are drawn in
Section V.

II. WORD REPRESENTATION

In our recent work [9], it was shown that to achieve
a matching of high accuracy in documents which present
variability in writing style, it is essential to detect a query
word at boundary level. Such a detection requires a contour-
shape, formed by continuous connected curves, to describe
each word image. This representation allows for determining
the candidate location and scale of the query inside the test
image which is then used as input to the subsequent non-
rigid point matching scheme (Section III).

A. Preprocessing

To create this contour shape, we first extract the skeleton
of a word by applying a thinning morphological operation
to the binarized word images. This procedure erodes away
the boundaries of foreground shapes as much as possible,
but does not affect pixels at the ends of lines. Edge pixels
(edgels) comprising the skeleton are initially chained into
edgel-chains, which are then linked at their discontinuities
and approximately straight segments are fit to them, using
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Figure 1. (a) The word “Mήτηρ” (“Mother” in English) from the
GRPOLY-DB dataset written in historical Greek. (b) The word “Orders”
from the GW20 dataset. Extracted PAS features from each thinned image
are shown on the right (the figure is better seen in color).

the technique described in [13]. Segments are fit over
individual edgel-chains and bridged across their links.

B. Word description

The next step is to detect the pairs of adjacent segments
(PAS) conceived by Ferrari et al. [8] and use them to
represent each word. A PAS feature, P = (x, y, s, d) has
a location (x, y) which consists of the mean over the two
segment centers, a scale s which is the distance between
the segment centers and a descriptor d = (θ1, θ2, l1, l2, r),
invariant to translation and scale changes. Example binary
instances of the words “Mήτηρ” (“Mother” in English)
written in historical Greek and the word “Orders” from the
GW20 benchmark [11], along with their respective skeletons
and a subset of PAS features are illustrated in Fig. 1. Each
color on the right of the figure corresponds to a PAS whereas
the numbers correspond to its segment IDs.

C. Descriptor similarities

Connecting segments over edge discontinuities renders
PAS features robust to interruptions along the word contour
and to short missing parts. These may be due to segmen-
tation errors, faded ink or poorly pressed thin strokes. It is
interesting to notice that PAS may overlap, meaning that
they can share segments and thus cover pure portions of a
word’s boundary. Consequently, they can be easily detected
across instances of the same word-class, in terms of finding
a common structure among similar instances.

To this end, we make use of the similarity measure
between two word images proposed in our previous work
[9]. This PAS dissimilarity D(P,K) between the descriptors
dp, dk of two PAS P,K, is defined by:

D(dp,dk) = wr∥rp−rk∥+wθ
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The first term is the difference in the relative locations of the
two PAS, the second term contains the difference between
their segment orientations and the last term accounts for
the difference in their segment lengths. The relative location
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Figure 2. Query detection. (a) Query image on the left, test image on
the right. (b)-(c) Initializations of TPS-RPM by centering the query to the
word’s center. (d) The output shape (false positive) is superimposed in green
on the test image. (e) Superimposed output shape in green upon an actual
instance (the figure is better seen in color).

of each PAS feature, as well as its segment lengths are
normalized by dividing with its scale s. As segment lengths
are often inaccurate, higher weight is given to the two other
terms of the dissimilarity measure.

III. WORD IMAGE MATCHING

The first step to detect occurrences of the query inside
the test images is to determine their possible location and
scale using the predefined dissimilarity measure (1). More
specifically, each PAS P inside the query is matched with
every PAS K from the test image according to D(P,K).
If the dissimilarity is lower than a specific threshold γ then
this match votes for a candidate location and scale of the
query’s center inside the test image. Each vote is weighted
by (1−D(P,K)/γ).

For instance, Fig. 2(a) depicts the query “Mήτηρ” and the
test word “Mητϵ́ρα”, which is rather relevant, though not
an actual occurrence. Local maxima inside the 3D voting
spaces (location, scale) yield approximate positions and
scales of the query’s center inside the test image. These act
as different initializations (Fig. 2(b), 2(c)) to the subsequent
non-rigid point matcher which deforms the query to capture
the shape of the unknown word, as it is shown in Fig. 2(d)
for the initialization of Fig. 2(b).

Regarding the first stage of the matching process, the
success of this alignment of the query inside the test image
is attributed to adopting PAS as basic shape elements. Unlike
other local features, such as individual edgels, the shape of
the PAS and its size, are more distinctive than the orientation
of an edgel. Hence, it is very unlikely for a set of PAS not
belonging to a common shape structure of the query-class, to
accidentally have similar locations, sizes and shapes across

instances. In other words, a subset of the query’s PAS is
common among its instances.

As for the second step, we apply the thin plate spline
robust point matching (TPS-RPM) algorithm [14], which
matches two point sets V = {υi}i=1,...,N and X =
{xi}i=1,...,M , by applying a non-rigid TPS mapping param-
eterized by {c,w} to V. TPSs are chosen because they can
be decomposed into affine and non-affine subspaces as it is
shown by the following vector valued function:

f(υi) = υi · c+ ϕ(υi) ·w (2)

where c is the affine component and w is a non-affine
warping coefficient, which is combined with the TPS vector
valued kernel ϕ(υi) to form the non-rigid warp. TPSs
minimize an energy function by iteratively alternating be-
tween updating a correspondence matrix, while keeping the
transformation {c,w} fixed and vice versa. Moreover, it
rejects points for which no correspondence exists.

In line with [8], a detection at point level is scored by a
weighted sum of four terms which is explained as follows:

1) The amount of matched query points to the points of
the test image with a high confidence measure. These
are all points υi with max

j=1,...,N
(mij) > 1/N , where

m is the correspondence matrix.
2) The sum of square distances between the matched

query points and the corresponding image points,
which is made scale-invariant by normalizing them by
the squared range r2 of the image point coordinates
(width or height, whichever is larger).

3) The deviation
∑

i,j∈{1,2}
(I(i, j)− c(i, j)/

√
|c|)2 of the

affine component c of the TPS from the identity I.
The normalization by the determinant of c factors out
deviations due to scale changes.

4) The amount of the non-rigid warp w of the TPS
trace(wTΦw)/r2, where Φ is a N×N matrix formed
by the kernels ϕ(υi).

This scoring integrates the information provided by a
matched shape. Its value is high when TPS fits many
points well (terms 1 and 2), without having to distort much
(terms 3 and 4). It is also interesting to note that different
initializations from the previous stage result into separate
detections from which we retain the one with the highest
score. The second step of the proposed matching scheme
is crucial for obtaining a more accurate detection. While
the query alignment stage handles invariance in terms of
translation and scale, the non-rigid registration algorithm
deals with the case of skewed words or slanted characters,
which are rather frequent in handwritten documents.

Finally, we add a term to tackle false detections of partial
matches, such as that of Fig. 2(d). Assuming that Btest
expresses the image boundary points and that Bquery consists
of the matched output points to the test image, we propose an
accuracy term as the average value between two measures:



1) Coverage is the percentage of points from Btest closer
than a threshold t from any point of Bquery.

2) Precision is the percentage of points from Bquery closer
than t from any point of Btest.

The measures are complementary and t is set to be 4% of
the diagonal of the bounding-box of Btest. In our implemen-
tation, the relative weights between these five terms have
been selected manually and kept fixed in all experiments.
The impact of this extra term on the scoring function is that
it renders scores between correct and false detections even
more discriminative. In fact, the output shape of Fig. 2(d)
achieves a matching score with value 25.61% whereas the
true positive score of the output shape in Fig. 2(e) is 82.66%.

IV. EXPERIMENTAL EVALUATION

In this section, we present the datasets used to evaluate
the proposed word spotting approach as well as the criteria
applied for selecting appropriate queries. Then we briefly
refer to the state-of-the-art QBE systems upon which com-
parisons are made for each dataset.

A. Datasets and Protocol

Experiments are carried out on two challenging datasets.
The first dataset is written in historical Greek by Sophia
Trikoupi, during the 19th century. There are 46 pages of
handwritten polytonic text containing 4939 words, which
derive from the archives of the Hellenic Parliament library.
A sample page from the GRPOLY-DB 1 dataset [12] is
illustrated in Fig. 3(a). Text is rather cursive accompanied by
intra-writer variability among instances of the same word.
In order to evaluate our method we selected words whose
occurrences appear more than five times and their length
is greater than 6 characters. The query list provided by
this criterion includes 21 distinct words along with their
instances, yielding a total number of 141 queries. All pages
are binarized using the technique described in [15] and
manually segmented at word level. Each word is manually
annotated and we only deem an exact match of the query
inside the test image as a hit.

The second dataset is the English manuscript GW20 from
the George Washington collection [11], containing 20 pages
of historical handwritten cursive text which include 4860
words. A sample page from this collection is shown in Fig.
3(b). Similarly to Leydier et al. [2], we selected the same 15
words to evaluate our method. These are the most significant
words in terms of occurrence frequency and semantics. We
consider all instances of each of the 15 words, comprising a
total number of 306 queries. In line with the GRPOLY-DB
benchmark, close hits such as the words “Fort” and “fort”
are deemed as false positives in the evaluation task.

Finally, one important but not restrictive aspect of our
approach is the parameter estimation of our system. All

1http://www.iit.demokritos.gr/∼nstam/GRPOLY-DB

(a) (b)

Figure 3. Sample pages from (a) the GRPOLY-DB dataset and (b) the
GW20 benchmark [11], respectively.

parameters concerning the proposed system are estimated
once using a small subset of handwritten word images from
the IAM dataset and kept fixed in all experiments. Neither
query nor dataset specific tuning is applied. As a means
to improve the speed of the proposed matching scheme we
introduce a pruning criterion which discards unlikely similar
matches. This is based on the difference in the size of the
descriptors between two words as well as the difference in
their respective number of PAS. Such a pruning decision
step, before comparing two words, seems to not only avoid
at least half of the total matches to be processed per query,
but also improve the average precision of our system, with
low risk of reducing its recall.

Considering the above, we evaluated the performance
of the proposed approach using the Mean Average Preci-
sion (MAP). This metric is calculated using the trec eval
software as it is implemented by the National Institute of
Standards and Technology (NIST) 2. Concisely, it is the
average value of the area under the Precision-Recall curve
over all queries.

B. Word spotting results

Before presenting the results we briefly discuss the ref-
erence systems used to compare the performance of our
approach. The first system is the work of Gatos et al.
[16]. Therein, a combination of word image normalization
and feature extraction methods is presented for cursive
handwritten word recognition. The second approach, which
is described in [17], introduced the idea of adaptive zoning
features for word recognition in historical, machine-printed
documents. These features are extracted after adjusting the
position of every zone based on local pattern information.
The adjustment is performed by moving every zone towards

2The trec eval software is available at http://trec.nist.gov/trec eval



Table I
MEAN AVERAGE PRECISION FOR VARIOUS METHODS

Method GRPOLY-DB GW20
(141 queries) (306 queries)

Efficient Recognition [16] 39.44% 21.93%
Adaptive Zoning [17] 40.38% 22.50%
DTW [10] 56.18% 22.08%
Proposed 60.04% 37.86%

the pattern body according to the maximization of the local
pixel density around each zone. The final approach is the
DTW method, based on the word profiles of Rath et al. [10]
for handwritten historical documents.

Following the configuration defined in Section IV-A,
we compare our system with these reference systems and
illustrate the results for both datasets in Table I. With respect
to the first two reference systems [16], [17], we should note
that they were originally created for different datasets. The
method of Gatos et. al [16] was tested on the IAM bench-
mark, containing text written by multiple authors, while [17]
was applied on historical machine printed text. The results
shown in Table I indicate that their adaptation flexibility to
different scripts is not trivial. As for the DTW method, it
is only almost 4% worse than the proposed system in the
GRPOLY-DB dataset, whereas in the GW20 benchmark, it’s
MAP is by far lower than that of our approach. This confirms
our expectation that our system would be able to perform
well in different scripts, as it treats word images as 2D
shapes, independently of the underlying language.

V. CONCLUSION

In this paper, we propose a shape matching technique
for spotting handwritten words in the presence of intra-
class variability. The approach was tested in two challenging
datasets and outperformed a number of QBE techniques,
thereby assuring its stability across different scripts. There is,
however, a tradeoff between the accuracy and computational
cost of the shape matching procedure. This means that we
could re-estimate the parameters of the whole system in
order to increase the speed at the cost of precision.

Several aspects regarding the performance in speed remain
unexplored. For instance, a faster and more accurate non-
rigid point registration algorithm can be proposed, while
keeping the first step of initialization as it is. Furthermore,
possible extensions of the proposed approach lie on the
image matching step. In a segmentation-free concept, the
system is able to spot query instances in a document
page, based solely on the Hough-style voting process. Its
overall speed can be drastically improved by discarding
the registration algorithm and selecting a bounding-box
overlap percentage criterion to measure the accuracy of the
detection.
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